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Background: In recent years, the prevalence of type 2 diabetesmellitus (T2DM)

has increased annually. The major complication of T2DM is cardiovascular

disease (CVD). CVD is the main cause of death in T2DM patients, particularly

those with comorbid acute coronary syndrome (ACS). Although risk prediction

models using multivariate logistic regression are available to assess the

probability of new-onset ACS development in T2DM patients, none have been

established using machine learning (ML).

Methods: Between January 2019 and January 2020, we enrolled 521 T2DM

patients with new-onset ACS or no ACS from our institution’s medical

information recording system and divided them into a training dataset and a

testing dataset. Seven ML algorithms were used to establish models to assess

the probability of ACS coupled with 5-cross validation.

Results: We established a nomogram to assess the probability of newly

diagnosed ACS in T2DM patients with an area under the curve (AUC) of

0.80 in the testing dataset and identified some key features: family history of

CVD, history of smoking and drinking, aspartate aminotransferase level, age,

neutrophil count, and Killip grade, which accelerated the development of ACS

in patientswith T2DM. The AUC values of the sevenMLmodelswere 0.70–0.96,

and random forestmodel had the best performance (accuracy, 0.89; AUC, 0.96;

recall, 0.83; precision, 0.91; F1 score, 0.87).

Conclusion: ML algorithms, especially random forest model (AUC, 0.961),

had higher performance than conventional logistic regression (AUC, 0.801) for

assessing new-onset ACS probability in T2DM patients with excellent clinical

and diagnostic value.
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type 2 diabetes mellitus, acute coronary syndrome, machine learning, random forest,
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Introduction

Type 2 diabetes mellitus (T2DM) is a prevalent chronic

disease with an increasing worldwide increase. In 2018,

∼11% of the world’s population was diagnosed with diabetes,

with a large proportion of patients being undiagnosed

in China (1). The complications of T2DM, not T2DM

alone, have terrible consequences. Diabetes complications

include microangiopathy or macroangiopathy as well as the

cardiovascular and nervous systems (2). A study showed

that, compared to patients without T2DM, those with T2DM

suffer from high-risk cardiovascular factors a mean 14.6 years

earlier (3).

A high blood glucose level as an independent cardiovascular

risk factor increases the risk of acute coronary syndrome

(ACS) (4–6). The main mechanisms of ACS are rupture

or the invasion of coronary atherosclerotic plaques and

secondary occlusive thrombosis, including acute ST-segment

elevationmyocardial infarction, acute non-ST segment elevation

myocardial infarction, and unstable angina pectoris (7).

There were 17.92 million deaths due to coronary heart

disease in 2015 (8). A decline in patient productivity and

improvement in rehospitalization probability due to ACS

caused huge economic losses (9). High glucose levels are

strongly associated with low-density lipoprotein cholesterol

related to ACS, and adults with T2DM have a much higher

probability of ACS than those without ACS (10). More

attention should be paid to the probability of ACS in T2DM

patients, and a prediction model should be established for

the arm as soon as possible. Machine learning (ML) can

overcome the limitations of the above problem. ML, an

interdisciplinary subject based on artificial intelligence, studies

how computers learn from data and continuously improve

its performance (11). In recent years, many ML algorithms

(12–14) have been used to establish a prediction model for

diagnosing cardiovascular disease (CVD) and determining

patient prognosis. A single algorithm often has its own

advantages or disadvantages and cannot satisfy all of the

data. Conversely, using different ML method algorithms can

greatly improve the prediction ability and identify the best

prediction model. Therefore, our key characteristics of the ML

method include traditional logistic regression and other ML

method algorithms.

Materials and methods

Study population

This observational retrospective cohort study collected

data from 521 patients diagnosed with T2DM at Shaoxing

People’s Hospital from January 2019 to January 2020. The

academic ethics committee of Shaoxing People’s Hospital

approved the study protocols, and all participants completed

informed consent. According to the International Classification

of Diseases (ICD)-10 (120.0, 121, 122), the diagnostic criteria

of ACS included ST-segment elevation myocardial infarction,

non-ST segment elevation myocardial infarction, or unstable

angina pectoris. The diagnosis of T2DM was as follows:

(1) a random venous plasma glucose concentration ≥ 11.1

mmol/L; (2) fasting blood glucose concentration ≥ 7.0

mmol/L (whole blood ≥ 6.1 mmol/L) or 2-h plasma glucose

concentration ≥ 11.1 mmol/L after an oral glucose tolerance

test; (3) glycosylated hemoglobin A1c (HbA1c) level ≥ 6.5%.

Moreover, we excluded other types of diabetes, such as type

1, gestational, monogenic, and drug- or chemically induced.

Among the 521 enrolled patients from the Chest Pain

Center of Shaoxing People’s Hospital, 222 were diagnosed

with T2DM and new-onset ACS, while the other 299 were

diagnosed with T2DM but not ACS. Patients with T2DM

were excluded if they had: (1) a history of myocardial

infarction and stent implantation; (2) a history of cancer or

tumor resection; (3) rheumatic or immunological diseases; (4)

severe liver failure or disseminated intravascular coagulation

with concomitant severe infection and renal failure; (5)

a history of stroke.

Data collection

A total of 39 clinical and demographic characteristics

were collected by trained clinicians from the medical

information recording system of Shaoxing People’s Hospital.

Demographic features included sex; age; history of smoking,

drinking, hypertension, or hyperlipidemia; and family

history of CVD (myocardial infarction, stroke, hypertension,

heart failure, peripheral artery disease, etc.). Clinical data

comprised respiratory rate; heart rate; systolic blood

pressure; diastolic blood pressure; Killip grade; and serum

biomarkers including aspartate aminotransferase (AST),

lactate dehydrogenase, total bilirubin, total protein, albumin,

globulin, albumin/globulin ratio, urea, creatinine, uric acid,

total cholesterol, triglyceride (TG), high-density lipoprotein,

low-density lipoprotein cholesterol, apolipoprotein A1,

apolipoprotein B, apolipoprotein B/apolipoprotein A1, fasting

blood glucose (FBG), α-hydroxybutyrate dehydrogenase,

creatine kinase MB, homocysteine, C-reactive protein,

neutrophil count, lymphocyte count, neutrophil-lymphocyte

ratio, HbA1c, and triglyceride-glucose (TyG) index: ln

[fasting TG (mg/dL) × FBG (mg/dL)/2]. Complete

clinical and demographic characteristics were available

for all patients. All characteristics were collected within

24 h of the patients’ hospitalization. Patients for whom

complete data were missing were excluded to ensure high

data integrity.
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Statistical analysis

Normally distributed data are presented as mean

± standard deviation, and the differences between

the two groups were compared using an independent

sample t-test. Classified data are described as counts

(percentages), and the Pearson chi-square test (Pearson

χ
2 test) was used to compare the classification variables.

Correlations between the 39 features were examined

using the Pearson correlation test or Spearman’s rank

correlation test.

The initial dataset was randomly divided into a training

dataset and a testing dataset at a ratio of 70:30. The training

dataset was used to create and validate the models, the

robustness of which were verified by the testing dataset.

Significant features with values of P ≤ 0.05 were selected from

the training dataset using the least absolute shrinkage and

selection operator (LASSO) approach. The features chosen by

the LASSO approach and other clinical characteristics were used

to perform the multivariate logistic regression and establish

the prediction models in the training dataset. The selected

features were incorporated into the nomogram to predict the

FIGURE 1

Workflow diagram: The initial dataset was randomly split into training dataset and testing dataset in the ratio of 70:30. Di�erent machine learning

algorithms were using k-folding cross validation (k = 5). ACS, acute coronary syndrome.
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probability of new-onset ACS in patients with T2DM. The area

under the curve (AUC) of the receiver operator characteristic

(ROC) curve analysis was used to assess the discriminatory

capacity of the nomogram. In addition, a calibration curve

was constructed in the training group to predict the similarity

between the prediction probability and the actual observed

probability. Moreover, decision curve analysis was used to

evaluate the clinical usefulness of the nomogram by quantifying

the net benefits at different threshold probabilities.

Six other common ML algorithms (K-nearest neighbor

[KNN], support vector machine [SVM], decision tree, random

forest, extreme gradient boosting, and artificial neural networks

[ANN]) developed prediction models for the probability of new-

onset ACS. All models were coupled with 5-cross validation. The

KNN model was classified by measuring the distance between

different feature values, used the training data to divide the

feature vector space, and considered the division result the

final algorithm model (15). The SVM is a generalized linear

classifier that performs binary data classification in a supervised

learning method, treats each predictor as a dimension in a high-

dimensional space, and tries to identify the best hyperplane to

classify the sample (16). The decision tree is a tree structure in

which each internal node represents a judgment on an attribute,

each branch represents the output of a judgment result, and

each leaf node represents a classification result (17). The random

forest is a classifier containing multiple decision trees. The

algorithm classifies the input vectors. Each tree is classified,

and the input vector should be “voted.” The forest is the tree

that chooses the most votes (18). Artificial neural networks

imitate the behavioral characteristics of animal neural networks

and adjust the connection between internal nodes to process

information on the system’s complexity (19).

All performance parameters (accuracy, AUC, recall

[sensitivity], precision, and F1 score) were recorded for the

training and testing datasets (Figure 1). All data analyses and

ML models were performed using R version 4.1.0 (The R

Foundation for Statistical Computing, Vienna, Austria). All of

the statistical tests were two-tailed, and values of P < 0.05 were

considered statistically significant.

Result

Baseline characteristics

A total of 521 patients with T2DM were enrolled

in this study. Of them, 222 were newly diagnosed

with ACS, while the other 299 did not have ACS. The

baseline characteristics of the training and testing datasets

are presented in Table 1, and the feature correlation

heatmap is shown in Supplementary Figure 1. There

were no statistically significant intergroup differences

except for a history of drinking (P = 0.031), history of

hyperlipidemia (P = 0.019), TG level (P = 0.003), and

TyG index: ln [fasting TG (mg/dL) × FBG (mg/dL)/2]

(P = 0.014).

Feature construction and summarization

According to LASSO logistic regression analysis, six

of 39 features were potential indicators in the training

dataset to predict the possibility of ACS in T2DM patients

(Supplementary Figure 2). The selected features were a family

history of CVD, a history of drinking, age, neutrophil count,

Killip grade, and AST. Given the harmful effects of smoking

on the cardiovascular system (20), a history of smoking

was also enrolled as a potential indicator. To calculate the

regression coefficient, odds ratios, and P values of the potential

indicators, we made multivariate logistic regression shown

that a family history of CVD (OR, 8.302; 95% CI, 3.566–

19.326; P < 0.0001), history of smoking (OR, 1.819; 95%

CI, 0.994–3.327; P = 0.0523), history of drinking (OR,

0.310; 95% CI, 0.163–0.592; P = 0.0004), age (OR, 3.261;

95% CI, 2.075–5.127; P < 0.0001), neutrophil count (OR,

1.488; 95% CI, 1.09–2.031; P = 0.0122), Killip grade (OR,

159.060; 95% CI, 9.545–2,584.400; P = 0.0004),40 ≤AST

< 200 (OR, 8.557; 95% CI, 3.721–19.676; P < 0.0001)

and AST ≥ 200 (OR, 47.548; 95% CI, 4.852–466.01; P =

0.0009) were associated with T2DM patients with new-onset

ACS (Table 2).

Construction of nomogram

As shown in Figure 2, a nomogram incorporating the

above features to calculate the possibility of T2DM patients

with ACS was constructed. The nomogram performed

a C-index of 0.86 (95% CI, 0.82–0.90) in the training

dataset vs. 0.80 (95% CI, 0.73–0.80) in the testing dataset,

which could describe the model’s predictive ability by

considering the occurrence of the results (21). Moreover,

the calibration curve showed consistency between the

actual diagnosis of ACS and its predicted probability

(Supplementary Figure 3).

Assessment of nomogram

The decision curve analysis was based on the net benefit

under event threshold probabilities for the nomogram to

forecast the probabilities of ACS (22). Supplementary Figure 4

shows that remarkable net benefits were obtained with the

nomogram in the training and testing datasets, which indicated

the nomogram’s clinical validity.
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TABLE 1 Patients characteristics.

Baseline characteristics Training dataset (n = 380) Testing dataset (n = 141) P value

Sex

1=Male, n (%) 237 (62) 80 (57) 0.242

2= Female, n (%) 143 (38) 61 (43)

Age, years 64.3± 12.3 65.1± 12.0 0.54

Smoking, n (%)

1= YES 135 (36) 49 (35) 0.869

0= NO 245 (64) 92 (65)

Drinking, n (%)

1= YES 135 (36) 36 (26) 0.031

0= NO 245 (64) 105 (74)

Breath, times/min 18.8± 1.8 19.2± 5.7 0.231

Heartrate, beats/min 82.4± 14.0 80.3± 14.2 0.127

SBP, mm/hg 138.6± 21.1 138.4± 18.2 0.932

DBP, mm/hg 81.0± 12.1 79.5± 10.7 0.199

Killip, n (%)

1 340 (89) 127 (90) 0.898

2 28 (7) 9 (7)

3 9 (3) 3 (2)

4 3 (1) 2 (1)

Hypertension, n (%)

1= YES 228 (60) 76 (54) 0.21

0= NO 152 (40) 65 (46)

Hyperlipidemia, n (%)

1= YES 153 (40) 41 (29) 0.019

0= NO 227 (60) 100 (71)

Family history of CVD, n (%)

1= YES 41 (11) 9 (6) 0.129

0= NO 339 (89) 132 (94)

AST, U/L 49.0± 83.6 47.1± 83.2 0.818

LDH, U/L 268.7± 242.1 264.2± 239.2 0.849

TBIL, umol/L 12.6± 7.4 11.9± 5.1 0.217

Total protein, g/L 65.2± 6.4 11.9± 15.1 0.371

Albumin, g/L 38.5± 4.8 38.6± 3.8 0.921

Globulin, g/L 26.7± 4.5 27.1± 4.0 0.324

A/G 1.5± 1.2 1.5± 0.3 0.408

Urea, mmol/L 6.0± 3.4 5.8± 2.4 0.555

Creatinine, umol/L 78.2± 67.7 72.9± 32.3 0.367

Uric acid, umol/L 322.2± 108.5 308.1± 96.3 0.179

Total cholesterol, mmol/L 4.5± 1.3 4.5± 1.1 0.513

Triglyceride, mmol/L 1.9± 2.0 1.5± 0.9 0.003

HDL, mmol/L 1.1± 0.3 1.1± 0.4 0.297

LDL, mmol/L 2.7± 0.9 2.7± 0.9 0.881

Apo A1, g/L 1.1± 0.2 1.1± 0.3 0.595

Apo B, g/L 1.0± 0.3 1.0± 0.3 0.415

Apo B/Apo A1 0.9± 0.3 0.9± 0.3 0.328

Fasting blood glucose, mmol/L 9.8± 4.2 9.2± 3.0 0.108

HBDH, U/L 206.3± 210.9 210.3± 232.2 0.854

(Continued)
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TABLE 1 Continued

Baseline characteristics Training dataset (n = 380) Testing dataset (n = 141) P value

CKMB, U/L 26.2± 47.1 19.9± 26.2 0.054

Homocysteine, umol/L 11.2± 5.2 12.7± 18.0 0.128

C-reactive protein, mg/L 14.7± 27.2 14.1± 28.5 0.836

Neutrophils,*1012/L 4.3± 2.4 4.0± 2.1 0.319

Lymphocyte,*1012/L 1.7± 0.8 1.7± 0.6 0.688

Neutrophils/lymphocyte 3.3± 3.8 2.9± 2.8 0.312

HbA1c, % 8.4± 2.2 8.5± 2.0 0.609

TyR 9.3± 0.8 9.1± 0.6 0.014

Variables with normal distribution were presented as mean ± standard deviation (SD), other variables with classification were described as counts (percentages). Abbreviations: SBP,

systolic blood pressure; DBP, diastolic blood pressure; CVD, cardiovascular disease; AST, aspartate aminotransferase; LDH, lactate dehydrogenase; TBIL, total bilirubin; A/G, albumin-

globulin ratio; HDL, high-density lipoprotein; LDL, low-density lipoprotein; Apo A1,apolipoprotein A1; Apo B, apolipoprotein B; Apo B/Apo A1, apolipoprotein B-apolipoprotein A1

ratio; HBDH,α- hydroxybutyrate dehydrogenase; CKMB, creatine kinase MB; Neutrophils/lymphocyte, neutrophil-lymphocyte ratio; TyG, ln [fasting TG (mg/dL)× FBG (mg/dL)/2].

TABLE 2 Multivariate logistic regression analysis.

Intercept and

variable

Coefficient Odds ratio

(95%CI)

P-value

(Intercept) −7.689 <0.0001

Family history of

CVD

2.116 8.302

(3.566–19.326)

<0.0001

Smoking

0= NO Reference

1= YES 0.598 1.819

(0.994–3.327)

0.0523

Drinking

0= NO Reference

1= YES −1.170 0.310

(0.163–0.592)

0.0004

Age 0.066 3.261

(2.075–5.127)

<0.0001

Neutrophils 0.175 1.488

(1.090–2.031)

0.0122

Killip 1.686 157.060

(9.545–

2,584.400)

0.0004

AST < 40 Reference

AST 40-200 2.147 8.557

(3.721–19.676)

<0.0001

AST ≥ 200 3.862 47.548 (4.852–

466.010)

0.0009

Model performance of ML algorithms

Figure 3A shows the ROC curves for various ML methods

in the training dataset. The highest AUC (1.00) under the ROC

curve was achieved using the KNN model and the SVM with

radial kernel model, and the 95% CI values were 0.99–1.00 and

1.00–1.00, respectively. The logistic regression model, logistic

regression with LASSO model, SVM with linear kernel model,

decision tree model, random forest model, extreme gradient

boost model, and artificial neural network model also performed

well with AUC values of 0.7–1, representing excellent diagnostic

ability. Extreme gradient boosting was the most consistent

method, with an AUC of 1.00 (95% CI, 0.99–1.00) in the

training dataset and 0.96 (95% CI, 0.93–0.99) in the testing

dataset (Figure 3B). The prediction ability of the KNN and SVM

models with the radial kernel model, which performed best in

the training dataset, decreased in the testing dataset with an

AUC of 0.96 (95% CI, 0.93–0.99) and 0.92 (95% CI, 0.87–0.97),

respectively. Other methods such as logistic regression, SVM

with linear kernel model, decision tree, and artificial neural

network were well displayed in the testing dataset.

Table 3 presents the accuracy, AUC, recall, precision, and F1

score of the different ML methods in both training and testing

datasets. SVM with a radial kernel model (accuracy, 0.99; AUC,

1.00; recall, 0.98; precision, 1.00; F1 score, 0.99) demonstrated

the highest performance in the training dataset. In the

testing dataset, the highest performing model was the random

forest (accuracy, 0.89; AUC, 0.96; recall, 0.83; precision, 0.91;

F1 score, 0.87).

Discussion

The purpose of this study was to assess the predictive

performance of different ML algorithms for determining the

probability of ACS in T2DM patients. All models had excellent

predictive performance, especially the KNN model (AUC, 1.00)

and SVM with radial kernel model (AUC, 0.96) for their almost

perfect performance in the training dataset and the random

forest model (AUC, 0.961) in the testing dataset. The results also

suggested that ML algorithms represent promising prospects for

identifying ACS.
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FIGURE 2

Developed newly ACS prediction nomogram in T2DM patients. ACS, acute coronary disease; CVD, cardiovascular disease; AST, aspartate

aminotransferase.

FIGURE 3

ROC curves from training test (A) and testing test (B) using di�erent machine learning algorithms. Legend including area under receiver operator

characteristic curve for each algorithm with 95% confidence intervals. LR, logistic regression; LASSO, the least absolute shrinkage and selection

operator; KNN, K-nearest neighbor; SVM, support vector machine; XGBoost, extreme gradient boosting; ANN, artificial neural networks.
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TABLE 3 The contrast of di�erent machine learning models performance.

Model Training dataset Testing dataset

Accuracy AUC Recall Precision F1-score Accuracy AUC Recall Precision F1-score

LR 0.86 0.95 0.77 0.90 0.83 0.80 0.86 0.70 0.76 0.73

LR with LASSO 0.78 0.86 0.59 0.85 0.69 0.74 0.80 0.59 0.77 0.67

KNN 0.93 1.00 0.84 0.99 0.91 0.80 0.88 0.64 0.89 0.74

SVM linear 0.89 0.92 0.83 0.89 0.86 0.82 0.90 0.75 0.83 0.78

SVM radial 0.99 1.00 0.98 1.00 0.99 0.83 0.92 0.76 0.84 0.80

decision tree 0.87 0.92 0.80 0.88 0.84 0.82 0.88 0.75 0.83 0.78

random Forest 0.87 0.86 0.91 0.77 0.84 0.89 0.96 0.83 0.91 0.87

extreme gradient boosting 0.97 1.00 0.94 0.99 0.97 0.88 0.96 0.81 0.91 0.86

neural network 0.76 0.71 0.49 0.89 0.63 0.68 0.70 0.38 0.80 0.52

The model with best performance is given in bold. LR, logistic regression; KNN, K-nearest neighbor; SVM, support vector machine.

During the import of data from the medical information

recording system, we ensured that all characteristics data were

complete. Therefore, data imputation was unnecessary, which

may have influenced our results and decreased the accuracy of

our models. In addition, original data, without feature selection,

were used to establish our models of ML that could retain as

many useful characteristics as possible and reduce the loss of

significant diagnostic features.

As we all know, T2DM patients have a high incidence of

cardiovascular disease. Studies have shown that HbA1c and FBG

were found to identify ACS in T2DM patients and improving

glucose control decrease the chances of CVD in T2DM patients

(23, 24). Besides, prediabetes was highly associated with adverse

outcomes in heart failure (25–28). So, it is important to use

different ML algorithms to identify the new incidence of ACS

in T2DM patients.

Previous studies (29, 30) showed that the TyG index, a

new indicator of insulin resistance, was associated with the

prognosis of ACS patients or ACS patients after percutaneous

coronary intervention. To this end, we investigated whether

the TyG index could be used to forecast ACS in T2DM

patients. Unfortunately, using logistic regression, although the

TyG index was negatively correlated with the probability of

new-onset ACS (coefficient = −0.049), it was not statistically

significant (P = 0.7952). The reason for this remains unclear,

and we suspect that TG diluted the impact of TyG index

with no statistical significance between T2DM patients and

T2DM patients with ACS. Moreover, this index was determined

by TG and glucose levels, which were easily influenced by

hypotensive or hypolipidemic medications. Therefore, the TyG

index may not have prognostic impact in patients with T2DM

or T2DM and ACS. The same is true of lipid parameters.

We cannot know whether the patient has used hypolipidemic

medications or other treatments to reduce blood lipid. So,

lipid parameters were also not included in the features of

the nomogram.

Using multivariate logistic regression analysis with LASSO,

we established a nomogram to predict the probability of new-

onset ACS in T2DM patients. The selected features, including

a family history of CVD, a history of smoking, a history

of drinking, and age were the key factors related to heart

disease reported by the American Heart Association in 2021

(4). Many epidemiological (31) and genetic (32–34) evidence

suggested that a family history of CVD played a major role

in the occurrence of coronary heart disease, and it was also

reflected in a position that could not be ignored. Waterpipe

drinking and smoking are prevalent among adults. There was

sufficient evidence (20, 35) to prove an adverse association

between smoking and ACS. According to the report, the

2015 US Dietary Guidelines Advisory Committee summarized

that, instead of smoking, proper drinking was considered

a healthy diet for cardiometabolic results. Our group had

a long history of commitment to the beneficial effects of

yellow wine on heart protection (36) and demonstrated that

polyphenols and polypeptides in yellow wine inhibited the

proliferation and migration of vascular smooth muscle cells

(37) to delay the occurrence of cardiovascular events. Thus, a

history of drinking was an essential factor in evaluating the

probability of ACS in our study. Moreover, AST, as a common

biochemical measure, was screened more conveniently and

economically than CK-MB, which was a particular measure

only if the patients had chest pain. Although AST was not

a specific biomarker of ACS, other activities like pulmonary

embolism, hepatic failure, and myocarditis would also lead to

the increase in AST, while the specificity and sensitivity of

AST were less than those of troponin (38, 39) but convenient

and fast.

Killip grade accounted for the largest proportion in this

nomogram. A high Killip grade often reflects the seriousness

of ACS with acute pulmonary edema and cardiogenic

shock. A retrospective study also proved that Killip grade

was a significant independent predictor in diagnosing
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ACS (40). Others found that the neutrophil-lymphocyte

ratio was an independent predictor of cardiovascular risk

because its results were associated with the incidence

and mortality of cardiovascular events (41, 42). Although

neutrophil-lymphocyte ratio had great potential for predicting

CVD, neutrophil count (P = 0.0019) performed better

than the neutrophil-lymphocyte ratio (P = 0.0508) in

our study, and the neutrophil-lymphocyte ratio may

influence the efficiency of the model. Neutrophil count

was chosen instead of neutrophil-lymphocyte ratio, and

it performed well in our nomogram model for a single

score close to 50. Age (43) played an essential role in

the development of CVD, although some studies (44)

demonstrated that the incidence of ACS decreased with

age in older adults compared with young adults, as organ

malfunction and vascular aging would increase. A large-

scale clinical trial also confirmed that age was the strongest

risk factor for myocardial infarction and stroke in T2DM

patients (45).

ML has changed medical services (46). For example,

in the event of coronavirus disease 2019 (COVID-2019),

ML played a major role in its diagnosis (47), surveillance

(48), and mortality risk evaluation (49). The main goal

of our study was to evaluate the probability of new-

onset ACS using ML. A previous study (50) established

a nomogram to predict the probability of ACS, and the

AUC values of the training and validation sets were 0.830

and 0.827, respectively. Our study used six other ML

algorithms, and our results were better than those of the

traditional logistic regression algorithm. The AUC of the

training set was 1.00 with the SVM using the radial kernel

model, while the AUC of the testing set was 0.96 using

the random forest model. The prediction models of ML

yielded better discrimination and higher accuracy than the

traditional models.

Our research had some advantages. First, we established

a nomogram to access the risk of ACS in T2DM patients

and the model had high accuracy. Second, we demonstrated

the usefulness of ML algorithms in predicting cardiovascular

disease. Third, we proved family history of CVD, history

of smoking and drinking, aspartate aminotransferase

level, age, neutrophil count, and Killip grade were the

key features that accelerated the development of ACS in

T2DM patients.

Limitation

The limitations of our study should not be overlooked.

First, because of the negligence of the medical staff, body

mass index (BMI) data were not available in the medical

information recording system. This loss of BMI data may

have decreased the model’s accuracy. Second, we did not

collect information about patients’ recent medications, such

as hypotensive or hypolipidemic medications, which may

cause low blood pressure levels and blood lipid levels.

Besides, because the nature of the ML algorithms was

“black box,” the clinicians were unable to understand the

inherent complexity of the algorithms, which may have

led to mistrust. Moreover, our patient sample was not

large enough. Thus, we must conduct additional external

validation studies and other ML algorithms to update our

prediction models.
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