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Abstract: The ongoing search for biodegradable and biocompatible microneedles (MNs) that are
strong enough to penetrate skin barriers, easy to prepare, and can be translated for clinical use
continues. As such, this review paper is focused upon discussing the key points (e.g., choice
polymeric MNs) for the translation of MNs from laboratory to clinical practice. The review reveals
that polymers are most appropriately used for dissolvable and swellable MNs due to their wide
range of tunable properties and that natural polymers are an ideal material choice as they structurally
mimic native cellular environments. It has also been concluded that natural and synthetic polymer
combinations are useful as polymers usually lack mechanical strength, stability, or other desired
properties for the fabrication and insertion of MNs. This review evaluates fabrication methods and
materials choice, disease and health conditions, clinical challenges, and the future of MNs in public
healthcare services, focusing on literature from the last decade.

Keywords: human disease; polymeric microneedle; transdermal drug delivery; vaccine delivery

1. Introduction

Following the approval of the first transdermal patch for scopolamine administration
by the FDA in 1979, as an alternative to oral administration of medications and hypoder-
mic injections, the distribution of transdermal pharmaceuticals has gained considerable
interest [1]. This is due to the numerous benefits, including improved dose reliability and
control, enhanced patient engagement, and reduced clinical side effects [2]. Currently, there
are numerous transdermal gels, ointments, and patches that can be applied to the skin [3].
The anatomical site chosen for these applications depends on the drug used and the rate of
drug diffusion at the site of application [4]. For example, when the Alza Corporation intro-
duced the first testosterone patch for men with hypogonadism, it was designed specifically
to be worn on the scrotal tissue for its high permeability [5], while fentanyl patches were
first designed for application on the upper thigh for pain management [6].

The transdermal drug delivery (TDD) systems such as the above have a range of
constraints in their applications [3]. In particular, they are unable to deliver certain drugs
across the skin at the desired therapeutic rates because of the poor permeability of the
stratum corneum (SC) to these drugs [7,8]. The skin barrier only allows lipophilic and low
molecular weight compounds (<600 Da) to pass through [9]. Therefore, many attempts at
improving drug permeability by physical and chemical approaches have been investigated
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previously. Chemically, the use of chemical penetration enhancers has been shown to
improve lipophilicity and, therefore, the bioavailability of the drug. However, there are
problems of skin irritation and loss of dose associated with them [10]. Alternative methods
such as iontophoresis [11], sonophoresis [12], and electroporation [13] can physically
disturb the SC of skin, reducing its resistance to drug permeability. However, these
methods are costly and require a difficult set of guidelines for effective drug delivery,
which make them less user-friendly. To this end, microneedles (MNs) promise to be a
more cost-effective and patient-friendly TDD system for the delivery of a host of drugs.
MNs can pierce the SC and create transient microchannels that actively disperse foreign
molecules through the blood [14]. Without disturbing the nerves of the underlying dermis
and destroying blood vessels, MNs may also be optimized to enter the specified depths in
the skin [15]. Thus, MN therapy allows for a minimally invasive molecule delivery into the
skin, unlike the traditional methods for transdermal delivery of pharmaceuticals [16].

MNs can be produced from a range of materials such as metals, silicon, carbohydrates,
and polymers [17–20]. Microneedles fabricated from biodegradable and biocompatible
materials such as polymers present major benefits i.e., low cost, non-toxicity, and a range of
physicochemical and mechanical properties. The biodegradable and biocompatible nature
of a polymer-based MN (also called polymeric microneedles) is important as the MNs
penetrate biological barriers and are exposed to bodily fluids and tissue. In this context, the
nontoxic nature of MNs should comply with the United Nations’ Sustainable Development
Goal 3—good health and well-being [21].

In the last two decades, MNs have become an increasingly popular study topic.
This was evidenced in our analysis, which demonstrated that the number of publications
obtained using the database Scopus with the search term “microneedle” has increased
steadily. Figure 1 shows the number of these publications across different time periods in
the last 20 years. This suggests a progression, and it can only be assumed that MN will
continue as a technology in the future. The advanced search with term “microneedle” and
“polymer” gave us the total number of publications that are related to polymeric MNs for
that period. Figure 1 shows that the interest in polymeric MNs within the realm of MN drug
delivery is increasing. For example, during 2017–2021, ~65% of the publications related to
polymeric MNs. With the amount of research into TDD in conjunction with polymeric MN
use continually growing, the potential of polymeric MNs is expected to increase.

However, several challenges must be addressed for these MNs to find widespread
medical applications. Challenges include skin irritation, microbial contamination, lack
of mechanical strength of biomaterials, the quantity of drug loading, and the delivery of
macromolecules with high hydrophilicity [22]. There is also a need to form an optimized
compromise between painlessness and penetration [23]. Thus, without the formation of
accurate mathematical models for the release of specific drugs, the viability in the perfor-
mances of different MNs for treating different diseases is difficult to ascertain. Researchers
have now performed modeling and simulation studies on polymeric MNs to optimize
drug delivery [24]. At the same time, it has been argued that modeling has the potential to
reduce the financial and time cost of MN manufacturing [21].

With the ongoing MNs’ progress toward commercialization, there is a greater need
to address the issues surrounding their translation from the laboratory to the end-user.
In addressing this point, this review aims to discuss the latest trends, progresses, and
challenges of polymeric MNs specifically, e.g., key marketed products, drug delivery
mechanisms, polymer kinetics, fabrication techniques, materials used and classifications,
MNs evaluation techniques, preclinical and clinical trials, and others. Various drugs
administered using MNs for different diseases and ailments along with MN compositions
are also discussed briefly to motivate the review topics further. At the end of the review,
we conclude that for a successful translation of MNs, one needs to consider all these
aspects successfully.
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pletely dissolve in the skin which results in the release of the drug from the needle into 
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2. Polymeric Microneedles

Polymeric MNs have been shown to be a strong technology to provide chemical
molecules with clinical effectiveness and large complex biotherapeutic systems [25]. The
polymeric MNs have also opened up a whole new horizon by offering many advantageous
features as contrasted with silicone, metal, and other MNs [26]. They possess both the
biodegradable and biocompatible properties and other benefits such as low cost, a wide
selection of physicochemical and mechanical properties, and decreased risk of material
build-up in the skin [27]. Polymeric MNs can be further separated into two categories
of dissolving MNs and swellable microneedles. In the case of dissolving MNs, the drug
is loaded inside the microneedle domain. Dissolving MNs absorb the skin water and
completely dissolve in the skin which results in the release of the drug from the needle into
the skin (Figure 2A). Swellable MNs have a reservoir attached at the base which contains
drug in a lyophilized form (Figure 2B). Swellable MNs absorb local moisture within the
skin, opening the polymeric matrix, and allowing the drug to diffuse from the reservoir
into the skin. The swelled polymer matrix remains attached to the MN base throughout
the delivery process, in which there is no polymer dissolution in the skin. We use the
words “swellable” and “hydrogel forming” interchangeably as most of the swellable MNs
are prepared using hydrogels. As the needle arrays either dissolve or soften, disposal of
the medical waste can be executed safely without risk of stick injuries or contamination.
Polymeric MNs are ideal for preserving the bioactivity of thermally unstable drugs such as
protein vaccines and enzymes while at the same time minimizing the associated costs for
cold storage [28]. There is a wide range of polymers with different swelling, degradation
properties, and responsiveness to physical and biological stimuli. MNs made from these
polymers allow control of the physicochemical properties and pharmacokinetics of drug
molecules and performance in the skin for various biomedical applications [29].

www.scopus.com


Pharmaceutics 2021, 13, 1132 4 of 45

Pharmaceutics 2021, 13, x  4 of 47 
 

 

as protein vaccines and enzymes while at the same time minimizing the associated costs 
for cold storage [28]. There is a wide range of polymers with different swelling, degrada-
tion properties, and responsiveness to physical and biological stimuli. MNs made from 
these polymers allow control of the physicochemical properties and pharmacokinetics of 
drug molecules and performance in the skin for various biomedical applications [29]. 

 
Figure 2. A schematic diagram for the mechanism of drug delivery: (A) dissolving MNs and (B) swellable MNs. The MN 
completely dissolve in skin in the case of (A), while there is no polymer dissolution in skin for the case of (B). 

3. Material Choice and Drug Release Kinetics of Polymeric Microneedles 
The choice of material for MN preparation and drug release kinetics has key roles in 

translating polymeric MNs to commercial applications for the treatment of human dis-
eases. Becton Dickinson (BD), United States of America (USA), Georgia Institute of Tech-
nology, USA, and Alza Company, USA, led studies on the development of MNs for med-
ication administration in the 1990s. Metal or silicone was initially used as the raw material 
to produce MNs [30]. Nevertheless, researchers began using other materials that were bi-
ologically viable, lighter, and more renewable [31]. Biodegradable polymer MNs were de-
veloped in 2003 for the biodegradability method used in TDDs [32]. A list of the polymers 
for MN with competitive features is included in Table 1. 

Due to its cost, consistency, biodegradability, hygienic application, swelling, and dis-
solving capability, polymers are favored [33]. Polymers are primarily used in dissolving 
and swellable MN arrays [34]. The in vivo breakdown creates nontoxic subproducts in 
biodegradable MNs. This decreases the chance of infection in the body [35]. The polymeric 
MNs can be classified based on compositions, construction, in vivo efficiency, and ingre-
dients [36]. The use of biodegradable polymers is important for the management and anal-
ysis of the continuous release profile of the products in terms of the rates of decline [37]. 
Common components that are widely used in dissolving polymeric MNs included so-
dium hyaluronate, which is naturally found in the skin, sodium carboxy-methynyl cellu-
lar, poly(vinylpyrrolidone) (PVP), carboxymethyl cellulose (CMC), hydroxypropyl 
methylcellulose (HPMC), sodium alginate, as well as other components [38,39]. Further-
more, bio-responsive polymers such as hyaluronic acid (HA), polyvinyl alcohol (PVA), 
and alginate, cross-linking methacrylate are also used [40]. Biocompatible, non-
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3. Material Choice and Drug Release Kinetics of Polymeric Microneedles

The choice of material for MN preparation and drug release kinetics has key roles
in translating polymeric MNs to commercial applications for the treatment of human
diseases. Becton Dickinson (BD), United States of America (USA), Georgia Institute of
Technology, USA, and Alza Company, USA, led studies on the development of MNs for
medication administration in the 1990s. Metal or silicone was initially used as the raw
material to produce MNs [30]. Nevertheless, researchers began using other materials that
were biologically viable, lighter, and more renewable [31]. Biodegradable polymer MNs
were developed in 2003 for the biodegradability method used in TDDs [32]. A list of the
polymers for MN with competitive features is included in Table 1.

Due to its cost, consistency, biodegradability, hygienic application, swelling, and
dissolving capability, polymers are favored [33]. Polymers are primarily used in dissolving
and swellable MN arrays [34]. The in vivo breakdown creates nontoxic subproducts in
biodegradable MNs. This decreases the chance of infection in the body [35]. The poly-
meric MNs can be classified based on compositions, construction, in vivo efficiency, and
ingredients [36]. The use of biodegradable polymers is important for the management and
analysis of the continuous release profile of the products in terms of the rates of decline [37].
Common components that are widely used in dissolving polymeric MNs included sodium
hyaluronate, which is naturally found in the skin, sodium carboxy-methynyl cellular,
poly(vinylpyrrolidone) (PVP), carboxymethyl cellulose (CMC), hydroxypropyl methyl-
cellulose (HPMC), sodium alginate, as well as other components [38,39]. Furthermore,
bio-responsive polymers such as hyaluronic acid (HA), polyvinyl alcohol (PVA), and al-
ginate, cross-linking methacrylate are also used [40]. Biocompatible, non-immunogenic,
mechanically complex materials should be perfect for polymeric MN materials [41]. A list
of the polymers for MNs with competitive advantages are included in Tables 1 and 2.

Each polymer used within an MN is characterized by its potential for strength, penetra-
tion, and continuous release of drugs [42]. MN penetration through the skin is the greatest
obstacle for polymer MNs [43]. In contrast to non-dissolving materials such as silicon or
copper, the mechanical strength of water-soluble polymers is often lower, and drug encap-
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sulation may further weaken the strength of MNs [44]. Flash modulus and polymer MN
fractures are important for mechanical resistance, as the insertion capability of the polymer-
based MN is reflected here [27]. Researches can also combine the mechanical power of two
or more polymers and additional materials [45]. Furthermore, during polymer selection,
the target tissue for the MN must be called transdermal or non-transdermal [46,47]. Aimed
at soft tissues that cannot withstand pressure from the high-strength MN implant, careful
balancing of strength and versatility must be considered [48]. Environmental moisture is
also an important consideration, as greater moisture levels decrease the resistance of the
MNs by the polymer and humidity [49].

Moreover, the active ingredient loaded into the polymeric MNs may improve me-
chanical strength [50]. The mechanical strength of the MNs can be decreased if the drug
dispersed in the base plate of the MN arrays, which were shown by cracking the base plate
after mechanical assessment, is placed in the MN not only to overcome the mechanical
strength problem but also to decrease drug wastage [51]. The substance used for producing
MNs is the most important design element, as it determines the strength of the mechanism
and the release effect of MN drugs [52]. The substrate density, MN height, diameter width,
and base of the MN are other factors to be considered [43]. However, manufacturing is
constrained by the time-consuming steps typically needed, for example, master prepara-
tion, mold creation, and plasticization of thermoplastic polymers above their transition
temperature. Therefore, thermal-free products cannot be used, and thus polymer MNs
are usually manufactured with the aid of shaping techniques [53]. Researchers tackle the
problem of thermal-friendly medicines by pouring the medication and polymer solutions
into the mold under vacuum or heat [54]. In Table 1 it has been shown that the favorable
materials and their benefits after using them to develop MN. It has been shown that the
challenges that must be overcome for developing a good quality MN.

Table 1. General properties of typical polymers used in the preparation of MNs.

Material * Benefits Limitations Fabrication Technique Reference

PVA

Low material cost
Different grades and molecular weight
(MW) available
Composites provide good plasticity and
dissolvability
Nontoxic
Can be used to prepare dissolving as well as
swellable MNs

Cross-linkers used such as
glutaraldehyde or
formaldehyde may reduce
biocompatibility
Absorbs water quickly

Molding
Fused deposition
modeling (FDM)

[55,56]

PLGA Offer excellent applicability
Used in preparing dissolving MNs High material cost

Molding
Micro milling
Hot embossing

[57,58]

HA
Offers rapid dissolution
Used in preparing dissolving MNs as well
as glucose-responsive MNs

Can cause skin irritation Micro molding [59]

Gantrez®

Copolymer of methyl vinyl ether and
maleic anhydride
Excellent swellable capacity
Mostly used for preparing swellable MNs

High material cost Micro molding [36]

PCL
Exceptional thermal stability
Easily processed
High permeability

Slow degradation
Micro molding
Hot embossing
3D printing

[60,61]

PEGDA Easily customized to include biological
molecules High material cost Photolithography [62]
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Table 1. Cont.

Material * Benefits Limitations Fabrication Technique Reference

PGA

Fast degradation
High tensile strength
Excellent fiber-forming ability
Excellent mechanical properties

High material cost

Injection molding
Lithography
Fused deposition
modeling (FDM)

[61,63,
64]

PLA

Easily processed
Adjustable degradation rates
Excellent physical and mechanical
properties
Mainly used in solid and coated MN
fabrication

High material cost
Slow degradation Molding, FDM [65–67]

PVP

Different grades and MW available
Composites provide good plasticity and
dissolvability
Low cost

Difficulty scaling up the
process efficiently

Molding
Photopolymerization [63,68]

* Reference: HA: hyaluronic acid; PEEK: polyether ether ketone; PEG: polyethylene glycol; PEGDA: poly (ethylene glycol) diacrylate; PGA:
polyglycolide; PLGA: poly (lactic-co-glycolic acid); PMVE/MA: polymethyl vinyl ether-alt-maleic anhydride; PVA: polyvinyl alcohol; PVP:
polyvinylpyrrolidone.

Table 2. Various polymers and fabrication techniques for dissolving and swellable MNs.

Type of Polymeric MN MN Construction Polymers Fabrication Techniques

Dissolving MNs

Chitosan [69];
Carboxymethyl cellulose, CMC [70];
Dextran [71];
Dextrin [72,73];
Hyaluronan, HA [74];
Polyvinyl alcohol, PVA [34]
Polyvinylpyrrolidone, PVP [75]
Sugars [76]

Micro molding [54].
Drawing lithography [70];
Continuous liquid interface production, CLIP [77];
3D Printing [2,78];
Injection molding [79];
Hot embossing [80,81];
Photolithography and etching [82];

Swelling MNs

Hyaluronan, HA [83];
(Hydroxyethyl) methacrylate, HEMA [84];
Polyvinyl alcohol, PVA [55];
Poly(styrene)-block-poly (acrylic acid),
PS-b-PAA [85]

Crosslinking via:
Lyophilization [55];
Heating [84];
UV exposure [86];

Polymer Dissolution Kinetics

Kinetics can be defined as the study of the rate of change of concentration. Dissolution
is described as the process of a substance moving from a solid state to forming an aqueous
solution. Hence, dissolution kinetics is the study of the rate of change of concentration
due to a substance dissolving [87]. Therefore, research into dissolution kinetics is a vital
part of modeling dissolving MNs. The dissolution of the polymer that forms the dissolving
MNs can be prompted by several stimuli [88]. In this section, we briefly discuss the key
parameters, namely, temperature, ultraviolet, pH, and moisture responsive polymers that
affect the performances of dissolving MNs.

Photothermal Responsive. Photothermal responsive polymers are polymers that melt
in the presence of photons of a specific range of wavelengths due to the absorption convert-
ing light energy into thermal energy [87]. Chen et al. [60] produced polycaprolactone MNs
with silica-coated lanthanum hexaboride (LaB6@SiO2) nanostructures incorporated. The
purpose of the LaB6@SiO2 was to absorb near-infrared ray (NIR) wavelengths. Therefore,
when exposed to NIR, the structure heated, causing the MN to melt at 50 ◦C. This approach
allows for the release of active pharmaceutical ingredients upon demand using externally
applied NIR [89].
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pH-Responsive. pH-responsive polymers are polymers that allow for the transfer
of a substance as a direct result of acidic or alkaline conditions. Ke et al. [90] developed
hollow MN arrays containing microspheres, which encapsulated two model drugs and
sodium bicarbonate. The microspheres had a thin poly(D,L-lactic-co-glycolic acid) (PLGA)
external membrane, which protons could diffuse through. Thus, when the hollow MN
array delivered the microspheres into the skin, which is naturally acidic, the protons
reacted with the sodium bicarbonate within the microspheres. This formed CO2, which
generated pressure within the microsphere. The pressure increased until the microsphere
membrane ruptured, releasing the encapsulated drugs [90]. Ullah et al. [91] implemented
the foundations of the microsphere technology into a polymeric MN array. Ullah et al. [91]
created a MN array containing pores of sodium bicarbonate mixed with the drug. The MN
array had a thin PLGA external membrane that protons could diffuse through. Therefore,
when introduced to the acidic environment of the skin, the pressure was generated inside
the pore. When the pressure was large enough, the membrane ruptured, releasing the
encapsulated drug [91].

Moisture Responsive. Moisture responsive polymers are polymers that undergo dis-
solution due to hydrolysis. Moisture responsive dissolving MNs can either be designed for
an instant release or a controlled release system [92]. Commonly, water-soluble polysac-
charides are used as the construction polymer for instant release systems. Examples used
in instant release systems include polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP),
hyaluronan (HA), dextran, and carboxymethyl cellulose (CMC). However, polysaccharides
are also used in dissolving MNs for the controlled release of a drug due to their biocompati-
bility and stability [87]. Koh et al. [93] developed a method of delivering basic mRNA using
a polyvinylpyrrolidone dissolving MN patch (RNA patch). The RNA patch was shown to
completely preserve the physical and functional integrity of the encapsulated mRNA for
at least two weeks. The kinetics of the RNA patch were comparable with subcutaneous
injections and could be increased with longer MN lengths. The use of moisture responsive
polyvinylpyrrolidone in a dissolving MN array showed potential for the safe and efficient
delivery of mRNA-based therapeutics [93].

4. Modeling and Optimization for Designing Polymeric MNs

MNs are ultra-small and minimally invasive drug-delivery devices requiring regu-
lated, precise, and repeatable injections into human skin [1]. During injection into the
skin of the hard SC layer, complex injection methods are pursued because of the high
flexibility and elasticity of the skin [94]. Lutton et al. [95] proposed three basic requirements
in considering universal acceptance criteria for MNs: (1) they must pierce the skin, (2) they
must penetrate and remain in the skin to dissolve or interact in the skin while delivering
the therapeutic agent, and (3) they must act within the specified timeframe and must be
able to dissolve or else be removed [95].

There are different parameters which shape the design and effectiveness of MN
devices, as shown in Figure 3. Therefore, to successfully insert MN devices with various
materials, geometric characteristics, and array size, the effect of MN design on the skin
needed to be established [14]. The selection of materials capable of controlling the release
and drug stability during manufacturing are central to the design strategy are the key
for safe and efficacious MNs [66,96,97]. The materials (e.g., silicon, polymer, metals, or
carbohydrates), arrangement on the substrate (e.g., radial, triangular, square, or hexagonal),
and the geometry (i.e., base diameter, tip diameter, base-to-tip ratio, and center-to-center
spacing) of the MNs can affect the penetration depth [36,82]. Controlling the length,
sharpness, arrangement, and puncture rate of the MNs is important to meet the criteria
set by the FDA for an MN system as a medical device [98]. Geometries of the MN, such
as shapes, aspect ratios, and tip radius, affect the skin insertion capability of polymeric
MNs [99]. For example, pyramidal shapes exhibited better mechanical strength than those
with conical shapes due to their larger cross-sectional area with the same base width [2,100].
Also, the mechanical strength of pyramidal-shaped MNs can be further improved by
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increasing the base width and decreasing the aspect ratio [40]. Shorting the tip length and
widening the base width increased the failure force [101]. Chen et al. [102] showed that the
smallest aspect ratio exhibited the highest mechanical strength and the deepest insertion
depth in the pyramidal MNs. The mechanical strength for MNs with the same aspect
ratio but different dimensions does not vary significantly [102]. These results support that
both shapes and aspect ratios are crucial variables for the mechanical properties of MN.
It should be noted that widening the bases for decreasing the aspect ratio would increase
the difficulties in achieving efficient skin insertion [40]. For better penetration, increasing
the sharpness of the tip increases the penetration depth considering sufficient mechanical
strength is present [103,104]. Insertion force for MN decreases by increasing the insertion
speed, whereas increasing center-to-center interspacing of MN tips decreases the insertion
force [104,105]. Overall, polymeric MNs with a pyramidal shape, smaller aspect ratio, and
sharper tips exhibit good skin insertion [40].
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4.1. Role of Skin on MN Insertion Behavior and Drug Delivery

Numerous factors, including age, gender, ethnicity, anatomical area, and hormonal
balance affect the thickness of the skin [106]. MN patches pierce the SC, thus bypassing
the barrier layer and delivering 100% of the loaded drug without pain [107]. Then, the
drug is directly delivered into the upper dermis layer, which distributes into the systemic
circulation, and on reaching the site of action, produces a pharmacological response [9,108,109].
Most MNs are 150–1500 µm long and 50–250 µm wide, with 1–25 µm tip thickness. The
MN length of up to 1500 µm is sufficient to release the drug into the epidermis since the
epidermis is up to 1500 µm thick [110]. MNs larger than 1500 µm in length can go deep
into the dermis, damage the nerves, and therefore cause pain [110,111]. Laurent et al. [112]
found that regardless of gender (205 women and 137 men), age (18–70 years), and ethnicity
(Asian, Caucasian, and African American), the mean skin thickness of the suprascapular,
deltoid, and waist ranges from 1.55 to 2.54 mm and the suitable MN length for intradermal
vaccine delivery is 1.5 mm [112]. As presented in Figure 4 [113], MNs only penetrate the
epidermis to deliver the drug where hypodermic needles need to reach up to the muscle
level for drug delivery.

Longer MNs can penetrate deeper and create longer micro-holes in the skin. As a
result, more drugs can effectively move across the stratum corneum (SC), increasing drug
permeability through the pathways created by the MNs [36,48,114]. Increasing the MNs
height can promote the vertical and hardly affect the horizontal drug diffusion. The
dosage of drug administered can be controlled by adjusting the height of MNs for skin
pretreatment, and thus more drug distribution occurs in the skin [24,48]. Higher density
MN patches can induce higher drug diffusion horizontally as higher densities of the MNs
create more micro-holes and distribute more drugs through the micro-holes into the skin.
Therefore, increasing MN density is an effective way to increase drug penetration for large
scales of skin pretreatment with MNs [115,116].

To visualize and evaluate intradermal penetration depth, there are techniques such
as histological sectioning, confocal microscopy, fluorescence microscopy, optical coher-
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ence tomography (OCT), X-ray computed tomography (micro-CT), and high-speed X-ray
imaging [7,117–121].
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4.2. Mathematical Modeling of Polymeric MNs

The mathematical models, in general, have been used mostly to verify the performance
of the designed MNs [122]. The main objectives of mathematical modeling are to obtain
the required design parameters to optimize the MN [123,124]. The establishment of a
mathematical model that simulates the physical mechanisms occurring during transdermal
drug delivery is essential for the medical industry as the development of such a model will
enable key parameters that are difficult to measure be quantified. The most notable parame-
ters include the rate of swelling and dissolution, insertion forces, drug release profiles, and
MN efficiency (the percentage of drug released to drug initially encapsulated) [24,125–128].

When focusing on the skin, the major barrier-to-mass transfer within the skin is
the SC. However, when modeling the MN-skin system, the full epidermis should be
considered [129]. Andrews et al. [130] provided evidence for this statement as they showed
the removal of the SC significantly increased the permeability of the drug. Also, the
removal of the full epidermis increased drug permeability by another one to two orders
of magnitude. The base membrane and tight junctions should also be considered when
modeling as they may also provide resistance to mass transfer [130]. For an effective
diffusion study of therapeutics using MN, the skin-related parameters (e.g., porosity,
thickness, Young’s modulus, etc.) are needed to be included [127].

When modeling polymeric MNs, there are several factors associated solely with the
MN that needs to be considered. The main consideration for the MN is the hydrolysis
reaction occurring between the steric bonds of the polymer. The reaction results in a
reduction of the molecular weight and describe the degradation of the MN array [21]. The
geometry of the MN also needs to be considered [82]. However, as Sandrakov et al. [131]
proved that conical MNs are the most optimal, it is logical to start with conical geometry
as a standard when modeling. The length of the MNs, both tip and base diameter of the
MNs, center-to-center spacing between two MNs, numbers of MNs in the array, and the
distribution of the MNs in an array (square, diamond, triangle, rectangle, or exceptional
design), etc. are responsible factors for MN performance [24,128]. The insertion force
is further related to the MN tip angle and radius of the tip’s curvature [24,126]. Various
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mechanical parameters of MN, including Poisson’s ratio, Young’s modulus, ultimate tensile
strength, etc. are used for evaluating insertion studies of MNs [132].

The other key component of modeling is the selection of physics that allows for the
evaluation of drug-release profiles. The governing equation for the mass transfer of the
drug is Fick’s law [12]. Once the physics has been selected and the parameters have all
been defined, the model can be simulated on computational software. The most common
software packages used are MATLAB® and COMSOL Multiphysics® [133,134]. The water
absorption rate should also be considered while modeling the dissolving and swellable
MNs [135]. Gomaa et al. [122] demonstrated that molecular weight is one of the significant
factors that affect the molecular diffusion rate in the skin in general, and MN pierced skin.

Zhang et al. [136] developed a mathematical model to quantitatively predict the
transient behavior of the drug delivery using solid polymeric MNs. To achieve this, Zhang
et al. [136] applied mixture theory where the skin (biological tissue) was treated as a multi-
phase fluid-saturated porous medium, using conservation equations to characterize the
mathematical behavior of the tissue. The model [136] also included drug absorption by
blood capillaries and tissue cells, modeled as a moving interface along the flowing pathway.
The mathematical model was used to help solve problems with drug absorption within
the blood capillaries and tissue cells. The Zhang et al. [136] model allowed for a greater
understanding of the mechanics behind drug delivery from MNs. However, interest has
moved away from solid MNs, and the focus is upon dissolving MNs.

Kim et al. [22] developed a mathematical model which predicts the quantity of drugs
delivered via the dissolution of dissolving MNs. The initiative part of their model was the
inclusion of a biological membrane. The model used governing equations and numerical
solutions to estimate fentanyl concentrations within different layers of the skin and simu-
lated the dissolution of the dissolving MNs. The model agreed with predictions created
from dimensionless parameters. The predictions included the pitch of the dissolving MNs
being inversely proportional to the fentanyl delivered and the insignificance of elimination
kinetics to the dissolution of the dissolving MNs. The model also had an optimization
algorithm applied to recover parameters that represented the experimentally obtained data
most accurately. Kim et al. [22] concluded that the algorithm applied may provide a useful
tool to characterize the drug delivery regimen by dissolving MNs.

Recent research has focused on the advancement of dissolving MN technology to
increase the therapeutic effects of drug molecules, which requires a further understanding
of the transport mechanisms within the skin. Ronnander et al. [32] developed their model
to assist researchers when evaluating the administration of sumatriptan with a limited
dataset. The model simulates the dissolution of pyramidal-shaped dissolving MNs and the
diffusion of sumatriptan using governing equations, as shown in Figure 5 [32]. The results
obtained by Ronnander et al. [32], shown in Figure 5, suggest that the mathematical model
developed agrees with the experimental data. Conclusions drawn by Ronnander et al. [32]
included reducing pitch width significantly, which increased sumatriptan diffusion within
the skin, coinciding with the findings of Kim et al. [22]. The PVP polymer concentrations
also had a significant effect upon dissolution, and drug loading had a lesser effect upon
dissolution [32].

Chavoshi et al. [21] developed their mathematical model using the same methodology
as Ronnander et al. [32]. However, Chavoshi et al. [21] considered autocatalytic effects
on their polymeric dissolution to predict drug release profiles. The drug release profiles
obtained for aspirin and albumin are shown in Figure 6. From Figure 6, it is apparent that
the model produced by Chavoshi et al. [21] does not match the experimental values as
accurately as the model developed by Ronnander et al. [32]. Chavoshi et al. [21] concluded
that the differences between experimental and model values arose from errors within the
estimation of some parameters of the model. The need for estimation is due to the difficulty
in finding the parameters in the exact same utilized conditions.
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5. Polymeric Microneedle Manufacturing Techniques

The drug is normally embedded inside the needle through polymeric MNs, but
swellable MNs may also distribute the medication from an external reservoir [137]. The
drug is subsequently combined with a solvent to create a drug-containing solution. The
composition of a solvent with a selected polymer forms a solvent for a polymer sub-
stance [80]. MNs may be made using a wide range of methods using a polymer-drug
solution [32]. The choice of the construction technique of the polymer and the MN is
dependent on the specifications of the MN patches needed [8]. A list of the building
polymers and processing methods used in both dissolving MNs and swellable MNs is
given in Table 3, in Section 8. The advancement of science and technology has aided the
development of more versatile MN fabrication techniques in the past few decades [88,138].

Micro molding is the preferred method for the preparation of polymeric MNs due
to high reproducibility, convenience for scalable production, and cost-effectiveness [139].
This is because certain medications and vaccinations are thermolabile, and micro forming
allows for the preparation of needles in mild conditions [51]. Usually, hot embossing
methods, investment molding, and injection molding are used to fabricate degradable and
insoluble MNs, but due to relatively high processing temperatures, the drug activity may be
easily affected [140–145]. The casting method is currently the most used method to prepare
dissolvable polymer MNs due to the advantages of low processing temperature, convenient
fabrication process, and insignificant impact on drug activity [145,146]. Involved heat or UV
irradiation in the micro molding method might reduce the activity of sensitive drugs [147].
Apart from the micro molding method, drawing lithography, droplet-born air blowing,
electro-drawing, and 3D printing can achieve rapid (usually within 10 min) MN preparation
as these do not require the use of a mold [70,77,148,149]. In Figure 7 [150], the basic steps
for micro molding have been illustrated.
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Droplet-born air blowing (DAB) is a novel technique of fabrication where the droplet
of a polymer is shaped into the MN through air blowing [70], as shown in Figure 8. The
direct application of the air is for the solidification of the polymer droplet that helps in the
formation of the shape of the MN [151]. This DAB technology allows the fabrication under
conditions without the need for UV irradiation or high heat [152]. It requires a temperature
of 4–25 ◦C and a brief period (≤10 min) [153]. The number of drugs can be controlled by
regulating the pressure and time with the help of the droplet dispenser [154]. As a result,
loading the drug in the MN is possible without drug loss, which facilitates the maintenance
of the activity of the biological drugs [155].
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clude inkjet printing, photopolymerization-based technique, and fused deposition mod-
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steps for fabricating MN devices using 3D printing technology. Inkjet printing allows the 
selective deposition of droplets of the drug onto the MN surface with the help of thermal 
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polymerization-based techniques to fabricate polymeric MNs [170–173]. 

Figure 8. Schematic illustration of dissolving microneedle fabrication via droplet-born air blowing
method. (A) Biopolymer dispensing on the flat surface for base structure fabrication. (B) Dispensing
of drug-containing droplet over the base structure. (C) Contact of dispensed droplet by downward
movement of upperplate. (D) Control of microneedle length. (E) Air blowing-mediated solidifica-
tion of droplet to shape microneedle structure. (F) Separation of two plates producing dissolving
microneedle arrays on upper and lower plates. Droplet-born air blowing (DAB) technology for
fabricating polymeric MNs, reproduced with permission from [70], Elsevier, 2013.

Drawing lithography involves creating microstructures that are three-dimensional
from two-dimensional (2D) materials [156]. The drawing lithography method can not
only fabricate MNs with a high aspect ratio but also eliminates the need for molds and
UV light irradiation, thereby avoiding the use of toxic photo-initiators in comparison
with conventional micro molding [157]. However, in comparison to micro molding, the
drawing lithography method exhibits much worse reproducibility [149]. Electro-drawing
has emerged as an alternative fast and mild temperature strategy to the conventional use
of stamp-based techniques for the fabrication of biodegradable polymer MNs [158].

Most importantly, the mentioned conventional MN fabrication techniques can only
fabricate MNs on a flat substrate surface; consequently, it is difficult to fabricate uneven
or curved skin surfaces due to its decreased penetration efficiency and drug delivery
amount [159]. The reason for the popularity of 3D printing technology has been attributed
to the tunability and versatility that facilitates the personalized fabrication of physical
models of the desired geometric shape with computer-aided design and computer-aided
manufacturing [160–162]. This prototyping technology is based on layer-by-layer printing
and superposition that provides high accuracy along with good reproducibility [163,164].
The most current and commonly utilized manufacturing technologies of 3D printing
include inkjet printing, photopolymerization-based technique, and fused deposition mod-
eling (FDM) for fabricating polymeric MNs [160,162,164–167]. Figure 9 [162] shows the
steps for fabricating MN devices using 3D printing technology. Inkjet printing allows
the selective deposition of droplets of the drug onto the MN surface with the help of
thermal or piezoelectric-driven printing heads [168,169], and digital light processing (DLP),
stereolithography (SLA), and two-photon polymerization (2PP) are the commonly used
photo-polymerization-based techniques to fabricate polymeric MNs [170–173].
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6. Characterization Techniques for Polymeric MNs

A drug can be loaded in suspension or dispersion form or encapsulated into MNs [174].
The medication may also be coated or sprayed as a patch with a silicone solution [175].
For a drug-loaded MN, various physicochemical characterizations, including the grade
of particle size, Poly dispersion index, viscosity, and zeta potential may be measured
according to the type of formulation used in MNs [176]. An MN patch is complete after
preprocessing for the release of drugs, adhesion, and permeation checks [177]. Dynamic
light dispersion, X-ray dispersion, and transmission electron microscopy technologies
allow for the characterization of MN size, inner structure, and crystallinity [178]. Drug
dispersion stability and MNs can be tested at a different temperature, pH, and physiological
stimulation in vivo [179]. Additional testing is conducted on engineered MNs, such as
solubility experiments, pharmaceuticals content, in vitro release, and biocompatibility
analyses [180].

Morphological Evaluation. Scanning electron microscopic (SEM) studies of MN
patches are the most common techniques to understand MN morphology [181,182]. Pre-
vious research has used SEM studies to examine MN size, shape, height, base, pitch, and
other physical attributes [36,183]. For SEM analysis, coating the MNs with a gold solution
is used for capturing a clear image using a low voltage (1.0 kV) to avoid any electrical
charges on the MNs surface [2,184]. The images of coated MNs are captured digitally from
a fixed working distance using different magnifications (e.g., 30, 80, 110, or 120×) [2,164].
A closer look at the MN patches reveals high-resolution architecture with fine and sharp
tips [181,183–186].

Dimensional Evaluation. Different techniques have been used for the measurements
of MN geometry and for calculating the MN tip radius, length, and height [187]. Optical or
electrical microscopy is the most common technique [188]. An optical scanning microscope is
used to visualize the array and tips of the MNs, which capture digital images to show an entire
array of uniformly distributed MNs with the same height and sharp tips [181,182]. A better
image of the MN is produced using 3D image analysis, which helps to control quality [137],
and for this purpose, scanning electron microscopic (SEM) and laser microscope confocal
microscopy have also been used [164,189]. The SEM creates a sample image by using an
electron-focused beam that interacts with the atoms of the sample when scanning and
provides information on the topography and structure of samples [190]. Conversely, a
confocal laser microscope produces images that are high in resolution [191]. Confocal
microscopy studies are performed for producing fluorescent imaging of the MNs aimed at
characterizing the compartmental structure of MNs using different chromophores in the
sample [181,182,184].
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Mechanical Testing. An MN should be sharp and thin enough to reach the skin quickly
and firmly enough not to rupture within the skin [192]. The force at which the MN loses
its structural integrity and insertion force are two essential considerations for the secure
and effective construction of the MNs [193,194]. The Instron 5848 Micro Tester has been
used to determine the mechanical properties of the MNs [195]. For this purpose, MNs are
placed directly on a loading cell for an axial fracture test, using an axial force [196]. A block
of aluminum is used for the transverse fracture test [197] and with ethyl cyanoacrylate
super-glue gel, the back layer of the MNs are then fastened [198]. For transverse forces on
the MN, a metal sonde with a 1 cm blunt can be used. To measure bend, the MN array is
contained above the loading cell, using two aluminum blocks [199] and the sample then
adds strength to the middle of the backplate [200].

In vitro and In vivo Studies. For the in vitro study, diffusion cells have been used to
determine drug permeation across the skin [201]. The skin of the porcine ear was used
primarily in the experiment between the recipient and the donor compartment [202]. Here,
a typical set of permeation profiles for MN-treated and untreated skin were compared [203].
For the in vivo study, hairless rats were used [166]. The effective technique used for
anesthetizing the animal and then measuring the trans epidermal water loss (TEWL) before
and after MN insertion is one of the key parameters to be considered [204].

Content Uniformity Studies. According to FDA guidelines, the drug contents of the
MNs need to be evaluated accurately [98]. For example, content uniformity is critical for
solid MN systems; however, achieving a uniform coating on MNs is challenging [106,138].
Coating uniformity, including the homogeneity of drugs and the smoothness of the coating
on coated MNs, have previously been qualitatively evaluated using scanning electron
microscopy (SEM) and polarized microscopy [205–207].

Stability Evaluation. The stability of MNs depends on the stability of the polymers
and drugs individually [35,208]. To evaluate the storage stability of MN arrays, the MN
arrays, or their base-plates (with no MN) were exposed to different relative humidity
and store in a temperature-controlled environment for a specific time [56,209]. Durability,
deformation, and suction prevention are important considerations for MNs, whereas
particle size, crystallinity, and polymorphism need to be considered for drugs coated on or
dissolved in MNs [208]. The stability of the vaccine is of immense importance because of the
limitation for refrigeration [210–213]. Several MN systems contain a solid form of vaccines
that can potentially overcome the stability issue [214,215]. The addition of a stabilizer
can improve the thermostability of the vaccine, and the appropriateness of the stabilizer
depends on the nature of the vaccine [216]. The trivalent subunit influenza vaccine in a
dissolving MN patch, for example, was stable at 25 ◦C for more than 1 year and at 60 ◦C
during freeze-thaw cycles and electron beam irradiation for more than 6 months [205].

Chemical Stability. Differential scanning calorimetry (DSC) has been used to observe
the enthalpy-related changes in the constituent materials of MNs by increasing the tem-
perature. The constituent materials were heated to 300 ◦C at a rate of 10 ◦C min−1 using
DSC that was calibrated previously with standard materials [44,217]. Thermogravimetric
analysis (TGA) was used to record the samples’ weight loss on increasing temperature.
To evaluate the physical and chemical stability of the materials, the desired samples were
heated from 25 ◦C to 350 ◦C at a rate of 10 ◦C min−1, and the weight loss was recorded
during this time. Fourier transform infra-red (FTIR) spectroscopic analysis was used to
record the vibrational changes of different functional groups present in the samples in
following interactions with light over a specific wavelength range (400–4000 cm−1) [44].

7. Pharmacokinetic and Drug Release Behavior from Polymeric MNs

Polymeric MN technology has been successfully used to improve drug penetration
through the skin layer [218]. This has been shown in in vitro skin models with increased
absorption of larger molecules such as calcein [219]. Polymeric MNs encompass the
functions of a transdermal patch and hypodermic needle, aiming to achieve their benefits
and remove each of their drawbacks [29].
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Animal Models. Most pharmacological studies are conducted through in vivo animal
models [46,50,220–223]. The animal fur was removed from the anesthetized animal, and
the MN patch was subsequently applied to the underlying skin. Next, the blood was
collected for the detection of different biomarkers [50,223–225], and a punch biopsy was
performed on the dorsal skin of the mouse post-treatment [226]. Hematoxylin-eosin stain
can be performed to observe epidermal status, while improvements in the bundle of
collagen and elastic fibers were prepared with trichrome stain of Masson and blue Victoria
stain, respectively [227]. The immunohistochemical components were evaluated using
UltraVision LP Large Volume Detector Systems HRP Polymer Package (Thermo Fisher
Scientific, Waltham, MA, USA) to determine the regulatory effects of UV and micronodular
RF applications on the collagen in the extracellular matrix [228]. However, the structure
and pharmacological response in an animal model differs from humans [50,106]. The
pharmacological and pharmacokinetic analyses aid in optimizing the design of MNs and
drug delivery for better therapeutic effect [44,200,220,224].

Porcine Skin Cargo Delivery Tests. The amount of drug delivered from the MNs to the
skin was assessed using Franz diffusion cells with abdominal porcine skin [44,153,200,223].
Collected Skin samples were then placed in a phosphate-buffered saline (PBS) (pH 7.4)
system for 1 h, and the prepared MN patch is inserted into abdominal porcine skin
(1000 µm thick) for 30 s to determine the diffusion rates and effectiveness into porcine
skin [153,164,229]. Methylene blue was applied to the needles to test the delivery of cargo
covered on polymeric MNs [230]. The pierced skin and MN patch were then mounted onto
the donor compartment of a Franz diffusion cell and maintain a temperature of 37 ◦C [223].
To determine drug concentrations, sample fractions were taken at set intervals, and atomic
absorption spectroscopy used for quantitative analysis of drugs [164].

Skin Recovery Process and Irritation. When an MN device is implanted and removed
from the skin following treatment, it leaves behind micron-size pants [231]. The skin
needs time to recover its barrier properties [232]. If the skin is sensitive, it can lead to
mild to medium inflammation or allergies, redness, pain, swelling, and itching may cause
discomfort for the patient [233]. Although the pores formed by microns in comparison
to the hypodermic needle are small, microbial penetration is also less serious [153], and
the pores will take time to rescreen [234]. These pores must be immediately resealed the
active drugs, or contamination will occur [235]. An electrical impedance measurement
can be studied for the resealing of pores [236]. Depending on the skin’s occlusion and
the geometry of the needle, it can take 2–40 h to recover [237]. TEWL and the shading of
tissues can also be used for pores [238]. The MNs do not contact the pain receptors deep
inside the dermis, causing less pain than the needle of a hypoderm [239]. The pain severity
is influenced by the MN numbers on a patch, the MN duration, and the tip angle or needle
shape [6]. The length and number of the MNs on the spot are smaller than the discomfort
involved with the procedure [240,241].

8. Key Human Diseases Studied by Polymeric MNs

Polymeric MNs have been studied for the treatment of various diseases such as
cancer, HIV, diabetes, etc. They have also been used for vaccination and immunization.
A successful translation of MN technology requires careful consideration for the targeted
disease. To motivate this point, we discuss some key diseases targeted for polymeric MNs
application in this section. Furthermore, Table 3 summarizes different drug molecules
administered through polymeric MNs.

Diabetes. Diabetes mellitus is a common metabolic disorder that involves hyper-
glycemia or an excess of glucose in the bloodstream due to insulin deficiency or abnormality
in the use of insulin [242]. Early work on insulin delivery was performed by administering
insulin using nanovesicles combined with iontophoresis. The transdermal administration
through porcine skin was aided by a solid stainless-steel MN array that perforated the
skin, creating microchannels. The nanovesicles combined with iontophoresis and MNs
had a penetration rate of insulin 713.3 times higher than passive diffusion [243]. Darvishha
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and Amiri [244] reported the viability of swellable MNs for the purpose of delivering high
molecular weight molecules, such as insulin. Darvishha and Amiri [244] describe how the
MNs swell and dissolve when they are inserted into the skin, allowing diffusion of the drug
from the MN into the skin. The authors also state that swellable MNs provide a transder-
mal route of delivery with a prominent level of control on the release of compounds from
the MNs [244]. Vora et al. [245] discussed the potential of dissolving MNs manufactured
from the carbohydrate biopolymer pullulan to deliver low and high molecular weight
drugs. Vora et al. [245] determined that the pullulan dissolving MNs were able to penetrate
porcine skin and successfully deliver the insulin encapsulated within the MNs. With the
stability of the insulin encapsulated confirmed by circular dichroism, pullulan dissolving
MNs were shown to provide a viable route of insulin delivery [245]. Research performed
by Yu et al. [86] is of significant interest as well. Yu et al. [86] validated a glucose-responsive
polymeric MN in the form of a “smart insulin patch” that controls blood glucose levels by
altering the insulin released in accordance with the quantity of glucose within the blood.
This alteration is due to function of dissolution kinetics of blood glucose [86,246].

Basal Cell Carcinoma. Skin cancer is a worldwide threat [247]. Basal cell carcinoma
(BCC) is a type of melanoma skin cancer caused by exposure to UV light from the sun or,
more recently, sunbeds [248]. It can be found on the most exposed areas to the sun, such
as the face, head, neck, and ears. Although it is not a hereditary disease, the people most
susceptible to BCC are fair-skinned or those who have prolonged exposure to the sun [249].
Superficial BCC is a locally destructive skin tumor on the epidermis that can leave red
scaly marks on the skin while other types can result in the formation of lumps [250]. If
left untreated, BCC can lead to the development of skin ulcers that can be painful and
itchy [251]. Although BCC is curable, the longer it is neglected, the more complex the
treatment becomes [252]. Therapeutic techniques to treat BCC such as curettage, cautery,
cryotherapy [253] exist, including the topical use of creams such as imiquimod (IMQ)
and 5-fluorouracil (5-FU) as a noninvasive approach [254]. MNs have been introduced to
improve the skin’s permeability of molecules as delivery efficiency is not optimized by
the sole use of such creams [46]. Most of the drug remains in the formulation and is not
delivered [255]. In an experiment conducted by Naguib et al. [256], it was found that the
flux of 5-FU through the skin was increased by up to 4.5-fold when the skin was pretreated
with the Dermaroller® MN (500 µm in length, 50 µm in base diameter). Figure 10A,B [256]
show the decreased visibly in size and Figure 10C,D [256] show the decreased weight of
the tumor after MN treatment. B16-F10 murine melanoma cells (100,000 cells per mouse)
in 100 µL DMEM were injected subcutaneously in the lower dorsal skin of anesthetized
mice. To investigate the effect of MNs on the skin’s permeability and antitumor activity
of topical 5-FU, the mice were randomly grouped: (1) mice treated with 5% 5-FU once
a day for 8 consecutive days; (2) MN + cream group where mice were pretreated with
MNs prior to application of the cream; (3) I.V. 5-FU the positive control group where mice
were injected with 5-FU in sterile PBS intravenously via tail vein on days 9 and 15 of the
experiment; (4) the negative control groups where tumor-bearing mice were left untreated;
or (5) treated with MN only. Figure 11 illustrates the diffusion of aqueous 5-FU solution
through the skin treated or not treated with MNs over time. Without MNs, the relationship
between the amount of 5-FU diffused is almost linear; however, when treated with MNs, it
is evident that the amount diffused in each time increased resulting in a steeper gradient.
The use of statistical analysis on experimental data led to the conclusion that MNs can
significantly (p < 0.05 two-tailed test) improve the in vitro skin permeability and in vivo
anti-tumor activity of topical 5-FU [256].
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HIV and Vaccination (Immunobiological Administration). In 2018, it was estimated that
over 37.9 million people across the world had human immunodeficiency virus (HIV) [257].
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HIV attacks the CD8+T cells of the body’s immune system, making it more difficult for
the body to fight infectious diseases [258]. As a result, people with HIV become more
susceptible to unintentional weight loss, chronic diarrhea, recurrent infections, and serious
life-threatening illnesses, such as AIDS [259]. Vaccines can deliver protective antibody
responses against HIV. Hence, the safe and effective delivery of HIV vaccines is imminent
to minimize the impact of infection [260]. The skin has a high density of antigen cells
in the epidermis and dermis, thus vaccines are typically administered through injections
either intramuscular or subcutaneously, which have demonstrated effective systemic im-
munization [259]. However, exploration of the possible benefits of solid dosage forms over
liquid dosage forms has led to the introduction of vaccine delivery via MNs [258]. Overall,
solid dosage forms provide a higher level of immunogenicity, resulting in a dose-sparing
effect and making vaccines more cost-effective [261]. With hollow polymeric MNs, the
dose can be minimized, as seen with the rabies and anthrax vaccines [262,263]. The use of
MNs also omits the use of cold-chain storage used for conventional vaccines due to better
thermostability [28]. In addition, MNs are not limited in their applications for the delivery
of different vaccinations. Coated MNs have been effectively tested to deliver Bacillus
Calmette-Guerin (BCG) to guinea pigs for tuberculosis, resulting in a 1.3-fold higher IFN-
γ in the lungs compared to a hypodermic needle [264].

Contraception—Transdermal Patches. While the introduction of the contraceptive
pill in 1974 to the National Health Service (NHS), United Kingdom (UK) was pivotal to
women’s health, the current state of reproductive and sexual health in the UK highlights
the inconsistencies in contraception and effectiveness [265]. Although this cannot be
determined solely by one factor, it does perpetuate the need for contraceptive innovation.
One way to approach this is via transdermal delivery of contraceptives via penetration
through the skin for systemic delivery [266]. The major concern with transdermal delivery
is penetration affecting the pharmacokinetics of absorption; thus, the efficacy is influenced.
Researchers are currently investigating MN skin patches for long-acting contraceptive
delivery. Mofidfar et al. [80] aimed to create a self-administering long-acting contraceptive
MN patch applied once a month for 5 s. The use of an effortless MN patch may combat
several issues with the orally-administered contraceptive pill. The forgetfulness and,
therefore, ineffectiveness may potentially be minimized; patients only must remember to
apply it once per month. The increased level of estrogen exposure and reduced variability
in plasma concentration of the pill minimizes typical side effects such as diarrhea, nausea,
and vomiting. The patch also creates a hormone gradient, allowing a controlled and
constant release rate [80,81]. Current patches are more than 99% effective (when used
correctly) against pregnancies but do not protect against STIs such as less effective barrier
devices in the same way as condoms. The number of drugs that can be integrated into an
MN patch is limited and this technology is yet to be tested in humans as far as the authors
are aware [267].

Dermatological Conditions and Cosmetics. The advances in the transdermal appli-
cation of MNs to systemically deliver drugs through the skin have provoked the use
of MNs for the treatment of dermatological conditions and nonmedical cosmetic ther-
apeutics [268]. The application of MNs to treat acne, atrophic scars, actinic keratosis,
hyperhidrosis, melasma, skin rejuvenation, alopecia, and more severe dermatological dis-
eases can potentially be revolutionary in this field [269]. Dermatological conditions are
proven to cause low self-esteem in individuals, leading to psychological problems [270]. In
a recent study, MNs were combined with phototherapy to transmit light deeper into the
skin, improving the use of phototherapy as a cosmetic and medical tool. The combination
significantly increased the light transmissivity by 160%. For phototherapy with MNs, the
light is internally reflected and then refracted at the tip of the MNs, mimicking optical
fibers [271]. Such treatment can be used to treat psoriasis, a chronic papulosquamous
disease estimated to affect 3% of the world’s population, according to the International
Federation of Psoriasis Association [272]. It primarily affects the skin as well as nails, joints,
and tendons. Acanthosis, increased thickness of the dermal layer, and hyperkeratosis of
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the SC are responsible for the scaly appearance and may cause the skin to be inflamed,
bleed, crack, itch or shed scales. This is most found in areas such as the elbow, knee, and
scalp [273]. There are a variety of treatment options for psoriasis, which are suppressive
but of which none are curative [274]. Methotrexate is a drug that is typically administered
orally or parenterally to help treat psoriasis. However, the side effects of systemic exposure
to methotrexate include nausea, vomiting, and anemia [275]. Alternatively, Vemulapalli
et al. [105] investigated the transdermal delivery of methotrexate utilizing MNs and ion-
tophoresis. The solid maltose MN used to deliver Methotrexate with an applied voltage
caused a 25-fold improvement of delivery into the skin in vivo [105]. Anti-TNF-α anti-
body therapy was employed to reduce the epidermal inflammation in psoriatic lesions.
When anti-TNF-α was applied to a psoriatic mouse, the critical biomarkers of psoriasis
inflammation were drastically reduced [276]. This suggests that with further research, the
future application of MNs to treat psoriasis and other dermatological conditions of this
nature can be widely improved. To demonstrate further the effect of combining MNs with
techniques to treat dermatological conditions, Konicke and Olasz [277] investigated the use
of a commercial Dermapen® and topical bleomycin to treat plantar warts. Plantar warts
are viral proliferations caused by human papillomavirus (HPV) infection [278]. Current
practices involve the physical destruction of the infected cells via cryotherapy. The limita-
tions of such treatments are the intense pain associated and the recurrence of warts [279].
This clinical study concluded that with the use of MNs and bleomycin, all patients were
completely cured with minimal pain [280]. The cosmetic field is the most progressive in
the day-to-day physical application of MNs [268]. MNs have surpassed trial phases and
are now available in clinical practices [281]. It is more advantageous than other techniques
such as dermabrasion, laser treatment, or chemical peeling as there is less damage to the
epidermis [282]. It is a quick and safe procedure resulting in skin rejuvenation due to
the induced production of collagen. Collagen regenerates the skin to look smoother and
healthier [283]. This is particularly appreciated for aging skin because, with time, the skin
becomes dehydrated, elasticity decreases, and it is continually thinning [271]. Hyaluronic
acid MNs have been statistically proven (p < 0.05) to improve wrinkles and skin hydra-
tion. This is attributed to its high-water binding and uptake capacity, biocompatibility,
and biodegradable properties, making it suitable for anti-wrinkle treatment [284]. The
delivery of other cosmetic ingredients such as ascorbic acid, retinoic acid, and adenosine
has also been investigated [9]. Adenosine-loaded dissolvable MNs show better efficacy and
skin improvements than topical adenosine cream. Despite the dosage of the MNs being
140 times less (10.72 µg) than the cream (1400 µg), this underlines the significance of the SC
as a chemical and physical barrier [271].

Table 3. Examples of polymeric MNs used in TDD.

Drug/Molecule Loading
(Targeted Disease)

Polymeric
Material * In Vivo/In Vitro Analysis Type of MN Advantages/Key Results References

Etonogestrel
(Contraceptive hormone) PVA, HPMC Female Sprague-Dawley

rats, (200 ± 20 g) Dissolving

Sustained release for around 1 week
Fabrication process was optimized to
increase drug loading without
compromising the mechanical
strength of the MN

[285]

Levonorgestrel
(Contraceptive hormone) PLGA, PLA

Adult female
Sprague-Dawley rats, (200 ±

12g)
Dissolving

Air bubble between MN and patch
backing for easy removal
Sustained-release was achieved,
maintaining concentration above the
human therapeutic level for 1 month

[80]

Bleomycin
(Treatment of warts) PLA Porcine skin, (2.3318 ± 0.22

mm thick) Coated

The MN had high mechanical
strength and was able to transport
80% of bleomycin in 15 min
Can be used at different anatomical
sites

[286]

Poly hexamethylene
biguanide (PHMB)
(Ocular diseases)

PLGA Eight-week-old female mice Dissolving
Patch was applied to the cornea
Sustained drug release was achieved
for 9 days when applied to the cornea

[140]
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Table 3. Cont.

Drug/Molecule Loading
(Targeted Disease)

Polymeric
Material * In Vivo/In Vitro Analysis Type of MN Advantages/Key Results References

Bevacizumab
(Cancer)

PVA (MW:
9–10 kDa) Female Sprague-Dawley rat Swellable,

dissolving

Successful in diffusing high molecular
weight drug Bevacizumab (MW:
149 kDA)
Targeted delivery of
chemotherapeutic agents to the
lymphatic system was achieved
Comparable study performed on
dissolving and swellable MN

[287]

Esketamine
(Treatment-resistant

depression)

PMVE/MA + PEG
(Gantrez®) Female Sprague-Dawley rats Swellable

No polymer degradation in skin
Parafilm M used as a substitute model
for the MN insertion study
Sustained delivery of Esketamine was
achieved for >24 h.

[219]

Amyloid β peptide (Aβ)
(Alzheimer’s disease)

MicroHyala
(containing

Hyaluronic acid)

APPPS1 mice (genetic
background; C57BL/6) Dissolving

Approved polymeric MN for wrinkle
treatment
100% delivery of encapsulated Aβ
with efficient immune response.

[288]

Rapamycin
(Skin tumors and vascular

anomalies)
PVP (MW: 10 kDa) Female BALB/c mice Dissolving

Improved delivery of poorly
water-dissolvable rapamycin
80% of the drugs into the skin in 10
min.

[220]

Tetanus toxoid
(Immunization)

PVA (MW:
160 kDa), PVP
(MW: 30 kDa)

Swiss-Albino mouse Dissolving Complete dissolution within 1 h of
insertion. [190]

Doxorubicin (Cancer) GelMA Mouse cadaver skin Dissolving

Possibility of tunable drug release by
adjusting the crosslinking density of
GelMA
MN swells initially followed by
enzymatic degradation
Ability to administer macromolecules
(e.g., protein, nucleic acid)

[289]

Penta gastrin, Sincalide
(Therapeutic peptides) PVP (MW: 40 kDa) Freshly excised skin (porcine

ear) Dissolving

Capable of delivering several types of
peptides
Release rate varies with peptide’s
physical and chemical properties
Looked into the effect of MW on
delivery of peptide.

[290]

Dihydroergotamine
mesylate (Migraine)

PVA (MW: 6 kDa),
PVP (MW: 10 kDa),

Male Sprague–Dawley rats
(500–550 g) Dissolving

The delivery was in line with the
subcutaneous administration with
high relative bioavailability (97%).

[291]

Ovalbumin
(Vaccination)

PMVE/MA-PEG
(Gantrez®) BALB/c mice Swellable

Highlighted the importance of MN
design and composition on the
immune response to vaccine antigens

[292]

Doxorubicin HCl and
docetaxel (Cancer)

PVA (MW:
160 kDa), PVP
(MW: 40 kDa)

Excised mouse skin Dissolving

MNs dissolved within 1 h of insertion
in excised skin
Co-delivery of doxorubicin and
docetaxel

[63]

Amlodipine (Hypertension) PEEK LT-3 grade Pig ears skin Coated

FDA approved polymer
Effects of various MN geometry
parameters on the degree of drug
permeability enhancement were
studied

[293]

Tranexamic acid (Melasma) PVP (MW: 40 kDa) Anesthetized Albino rat Dissolving

All loaded drugs were released within
7 h of insertion
Simulation studies were performed to
understand the drug delivery
mechanism using COMSOL software

[294]

Gentamicin
(Neonatal sepsis)

PVA (MW:
9–10 kDa), PVP
(MW: 360 kDa),
PEG (0.4 kDa)

Female Sprague-Dawley rats
(208.65 ± 21.48 g) Dissolving

Three different doses of Gentamicin
were successfully delivered into the
skin with a delivery time ranging
from 1 to 6 h

[153]

* Reference: GelMA: gelatin meth acryloyl; HA: hyaluronic acid; HPMC: hydroxypropyl methylcellulose; PEEK: polyether ether ketone;
PEG: polyethylene glycol; PLGA: poly (lactic-co-glycolic acid); PMVE/MA: polymethyl vinyl ether-alt-maleic anhydride; PVA: polyvinyl
alcohol; PVP: polyvinylpyrrolidone.

9. Polymeric MN Based Devices and Preclinical and Clinical Trials

By the year 2025, the market for TDD is estimated to be worth approximately
$95.57 billion [295]. Consequently, many preclinical and clinical trials have been con-
ducted that involve polymeric MN devices. In the fabrication of an MN master template, it
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is required to have thousands of USD and the access and arrangement of facilities such as a
clean room and photo-etching equipment for the implementation of techniques such as
deep-reactive ion-etching, laser-etching, and anisotropic wet etching [296,297]. Hurdles
are encountered along the way of clinical translation of this device [298]. The current
production methods are often limiting as these methods employ batch production pro-
cesses [297,299]. The biggest obstacle is in developing processes that allow for robust,
efficient, and high throughput production in an industrial setting [31]. The usage of 3D
printing technology for fabricating MNs can overcome the existing disadvantages of con-
ventional techniques and can provide high precision, rapid fabrication, reduced processing
steps, and freedom to print a wide range of shapes [160–162,166].

MNs have important advantages relative to traditional transdermal pads, particularly
in the delivery of biopharmaceuticals [300]. Thus, in the last decade, economic activity
in this field has grown considerably [301]. Several MN-based drugs are currently being
produced by various firms, including Zosano Pharma (USA), 3M (USA), Sanofi Pasteur
MSD (USA), Becton-Dickinson (BD) Technologies (USA), Valeritas (USA), Nano pass
Technologies (Israel), MN Therapy System (USA), and Rodan+ Fields (USA). Remarkably,
no drug delivery product based on the MN array is yet commercialized [297]. Micro-
injection systems are also a type of MN-based device being developed. There exists
Micronjet® (no-pass) and Soluvia® (BD), but they are not genuine MN arrays and are
instead small hollow needles that can be used to insert a traditional syringe barrel with
effective ID. These devices work in the same manner as traditional syringes. MicronJet®,
a hollow MN device for intradermal injection, was developed by Nano pass Technology.
The device consists of four hollow silicon needles smaller than 500 µm, which are attached
to a plastic device that can be connected to any regular syringe. This method was used
to vaccinate influenza with the immunogenicity of at least 20% of the traditional vaccine
dosage. In 2010, the FDA approval was granted to Micronjet® [302,303]. The Micro
structured Transdermal System®, which consists of coated MN arrays, was developed by
3M, which allows quicker delivery of medicines and vaccines. This machine demonstrated
quick distribution, with a manageable administration for up to 90 min [304–306]. BD
Technologies has produced a new type of machine, the Microinfusor. This machine is
automatic and hands-free for delivery in a few seconds to several minutes of a large variety
of pharmaceuticals to the subcutaneous tissue. The hollow MN device can be used to supply
extremely viscous biotech medicines with a capacity of 0.2 to 15 mL [307–310]. Preclinical
experiments found the delivery of the influenza vaccine with the same potency as a
traditional intramuscular injection [146,222,235]. The Swiss business DE biotech has taken
a similar approach. They also developed an injector system with one or more MNs called
DebioJectTM silicon. It can be used to inject in under 2 s up to 100 µL and in less than 5 s
up to 500 µL [311,312]. Sanofi Pasteur MSD Limited has already developed an intradermal
influenza vaccine micro-injection system. This pioneering machine is called Intanza® and
uses the BD technologies Soluvia® injector. This device includes a hypodermic needle
1.5 mm long attached to a syringe injector [214,305]. Soluvia® and MicronJet® are currently
the only therapeutic-based MN-basic devices on the market. This injector is currently sold
globally under the names IDflu® and Fluzone Intradermal® in addition to Intanza® [313–315].
In the last few years, MN rollers have become available on the market [316–318]. The FDA
has authorized the MTS RollerTM for cosmetics. Clinical trials have shown, in enhancing
collagen and elastin development and eradicating wrinkles, that this type of device is
more successful than other traditional ablative and Non-ablative therapies [268,319–321].
Two types of MN-based systems were developed by Valeritas. The first one was Micro-
TransTM Array Patch, a system for painless delivery to dermatics. The second was the
h-PatchTM, a tool for controlled subcutaneous drug delivery [322,323]. Alza Macroflux®

has been designed with coated titanium micro-projections as an optimized delivery of
biopharmaceuticals. In this system, the skin penetration depth can be reproductively
regulated due to the integration of an applicator device system. Moreover, the ovalbumin
delivery system has been successfully tested [324]. Rodan+Fields Dermatologists produced



Pharmaceutics 2021, 13, 1132 23 of 45

a cosmetic MN product available on the market. It is a dissolving MN series of hydrolyzed
hyaluronic acid for cosmetic use [325]. Furthermore, MN analysis was extended, and a
more diverse and extensive MN product was created. Few currently available MN products
are presented in Figure 12 [326].
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Although polymeric MNs are biocompatible, when the accumulation of polymers
occurs in our bodies through repeated application of the MN arrays, hepatic impairment,
immunological reaction, and build-up of polymers in the dermal tissue are probable health
implications with the use of this device [327]. One of the major challenges associated with
the use of polymeric MNs is the penetration of MNs through the skin layer [328]. Thus, the
insertion ability of the MN should not involve any bending or breakage [329]. To combat
this challenge, a mixture of two or more polymers is used such that the mechanical strength
and structural integrity are not compromised. It is important to strike the proper balance
of flexibility and strength when targeting soft tissues that may not withstand the pressure
of high-strength MN insertion [330].

To develop polymeric MNs, environmental factors need to be taken into consideration
as well. The polymers used in MN fabrication can be hygroscopic [88]. This hygroscopic
nature causes the arrays of MNs to absorb water from the production facility. The presence
of moisture exerts a negative impact on the structural integrity and strength of the finished
product. Eventually, the performance of the final MN product is also hampered [331].
Therefore, initiatives must be undertaken in the MN production facilities and methods
necessary for the successful fabrication of MN arrays [332]. As the technology of MN-
based products is quite innovative in terms of application in the clinical setting, sufficient
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standards are not available in the pharmacopeia in this regard [19]. There exists the
need for the maintenance of environmental conditions for standardization and regulation
regarding sterility, safety, durability, application, and disposal of MNs that will help in the
commercialization of polymeric MNs in the pharmaceutical sector [106].

There are several clinical trials related to MN technology available on the ClinicalTrials.
gov database. Data from 116 clinical trials are available on the database, using the keyword
“microneedle”. The selected number of clinical trial studies in this review was 76 based on
the “complete” status (information accessed on 21 February 2021 at www.clinicaltrials.gov).
Depending on the availability of data, an overview of the percent of MNs in the clinical
stage state and selected clinical trials are listed in Figure 13A and Table 4, respectively.
Initially, a total of 260 issued US patents were found from the United States Patent and
Trademark Office database (Information accessed on 21 February 2021 at http://patft.uspto.
gov/netahtml/PTO/search-bool.html) using the term “microneedle” and field “Title”.
From there, specific to each year, 2000–2020 were searched and is presented in Figure 13B.
A total of 252 issued patents were the sum from 2000 to 2020. Table 5 lists the US patents
relevant to the polymeric MN system.
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Table 4. List of completed clinical trials in MN technology. Information collected from the ClinicalTrials.gov database
(Information accessed on 21 February 2021 at www.clinicaltrials.gov).

ClinicalTrials.gov
Identifier Title of Study Investigating

Condition
Clinical Trial

Phase Starting Year Number of
People Location Reference

NCT00837512
Insulin Delivery Using
Microneedles in Type 1

Diabetes

type 1 diabetes
mellitus

Phase 2
Phase 3 2008 16 United States [333]

NCT01368796
Comparison of 4 Influenza

Vaccines in Seniors
(PCIRNRT09)

influenza vaccine Phase 4 2011 953 Canada [334]

NCT01812837 The Use of Microneedles in
Photodynamic Therapy actinic keratosis N/A 2012 51 United States [335]

NCT01674621

Phase 2 Study of BA058
(Abaloparatide) Transdermal
Delivery in Postmenopausal
Women with Osteoporosis

post-menopausal
osteoporosis Phase 2 2012 250

United States,
Denmark,
Estonia,
Poland

[336]

ClinicalTrials.gov
ClinicalTrials.gov
www.clinicaltrials.gov
http://patft.uspto.gov/netahtml/PTO/search-bool.html
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Table 4. Cont.

ClinicalTrials.gov
Identifier Title of Study Investigating

Condition
Clinical Trial

Phase Starting Year Number of
People Location Reference

NCT03203174

The Use of Microneedles with
Topical Botulinum Toxin for

Treatment of Palmar
Hyperhidrosis

hyperhidrosis Phase 1 2015 13 United States [337]

NCT02438423

Inactivated Influenza Vaccine
Delivered by Microneedle
Patch or by Hypodermic

Needle

influenza Phase 1 2015 100 United States [338]

NCT02745392

Safety and Efficacy of
ZP-Zolmitriptan

Intracutaneous Microneedle
Systems for the Acute

Treatment of Migraine (Zotrip)

acute migraine Phase 2
Phase 3 2016 365 United States [339]

NCT03282227

A Study to Evaluate the
Long-Term Safety of M207 in

the Acute Treatment of
Migraine (ADAM)

migraine Phase 3 2017 342 United States [340]

NCT03739398

A Study on the Effectiveness
and Safety Evaluation of

Combination Therapy With
1927 nm Thulium Laser and

Fractional Microneedle
Radiofrequency Equipment for

Improvement of Skin Aging

wrinkle N/A 2018 26 Republic of
Korea [341]

NCT04253418
Nano-Pulse Stimulation (NPS)

in Sebaceous Hyperplasia
Optimization Study

sebaceous
hyperplasia;

skin abnormalities;
skin lesion

N/A 2019 125 United States [342]

NCT04249115
Nano-Pulse Stimulation (NPS)

in Seborrheic Keratosis
Optimization Study

lesion skin;
seborrheic
keratosis;

skin lesion;
benign skin tumor

N/A 2019 175 United States [343]

Table 5. List of US patents related to polymeric MN technology. Information collected from the United State Patent and
Trademark Office database (Information accessed on 21 February 2021 at http://patft.uspto.gov/netahtml/PTO/search-
bool.html).

US Patents Number Title Issue Date Inventor(s) References

10737083
Bioactive components conjugated to

dissolvable substrates of
microneedle arrays

11 August 2020 Falo, Jr.; Louis D., Erdos; Geza [344]

10682504 Microneedle and method for
manufacturing microneedle 16 June 2020 Kato; Hiroyuki [345]

10377062 Microneedle arrays formed from
polymer films 13 August 2019 Kaspar; Roger L., Speaker;

Tycho [346]

10195410 Fabrication process of
phase-transition microneedle patch 5 February 2019 Jin; Tuo [347]

9498524 Method of vaccine delivery via
microneedle arrays 22 November 2016 Corium International, Inc. [348]

9302903 Microneedle devices and production
thereof 5 April 2016 Park; Jung-Hwan, Prausnitz;

Mark R. [349]

8834423 Dissolvable microneedle arrays for
transdermal delivery to human skin 16 September 2014 Falo, Jr.; Louis D., Erdos; Geza,

Ozdoganlar; O. Burak [350]

8708966 Microneedle devices and methods of
manufacture and use thereof 29 April 2014

Allen; Mark G., Prausnitz; Mark
R., McAllister; Devin V., Cros;

Florent Paul Marcel
[351]

8366677 Microneedle arrays formed from
polymer films 5 February 2013 Kaspar; Roger L., Speaker;

Tycho [352]

7429333

Method for fabricating microneedle
array and method for fabricating
embossing mold of microneedle

array

30 September 2008 Chiou; Jin-Chern, Hung;
Chen-Chun, Chang; Chih-Wei [353]

ClinicalTrials.gov
http://patft.uspto.gov/netahtml/PTO/search-bool.html
http://patft.uspto.gov/netahtml/PTO/search-bool.html
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10. Regulatory Issues with Polymeric Microneedles

In the last two decades, a significant effort has persisted for the alternative use of
MNs in clinical practice to be more concrete [354]. As researchers have become aware of
the potential of MN technology, several organizations have taken steps to switch from
laboratory-scale experiments to pre-commercial stages [137]. Cosmetics have been the
simplest to work with MNs [355]. However, concerns have been raised in using MNs in
clinical practices, such as in hospitals, regarding their sterility, reliability, and protection be-
fore disposal and after use [107]. The fundamental issues have been addressed hitherto, in
which the criteria and limitations have relied significantly on implementation [356]. Several
systemic approaches to these issues, especially with sterile MN production and stability,
have been published in the literature. Sterilization is based on gamma-ray irradiation, as
required by the European Pharmacopoeia [45]. Depending upon the form of the polymeric
matrix, this process may affect polymeric MNs differently [357]. It has been argued that
the least impacted during the sterilization process are the swellable MNs as compared to
the dissolvable MNs [358]. The MNs secure the molecules loaded in the polymer from
the point of view of medical stabilization [359]. During the cold chain and other climate
pressures, these operations have been maintained for vaccines [360].

Studies on diabetes, psoriatic plaques, topical anesthetics, and influenza vaccines
have involved hundreds of MN devices for clinical trials. Without laboratory trials with
volunteer human subjects, clinical translation of the emerging medical innovations is
unlikely to be successful. Dissolvable but also permanent, MNs prove to be easy to use
and well-tolerated in clinical trials. Various study groups have recently published the
results of MNs in dermatological disorders such as scars and keloids. In both cases,
MNs have improvedimproved the efficiency of treatments by self-administration and
painlessness. In several experiments, hollow MN systems that are commercially available
were used, although clinical trials on polymer MNs are limited. The penetration potential
and protection of the HA-base dissolving MNs have been investigated in two Phase I
experiments. The findings indicate that the MNs can be reproducibly absorbed through
the skin with the aid of an applicator and no apparent side effects. The protection and
immunogenicity of dissolvable MNs dependent upon HA were analyzed in another phase
trial. In the clinical trial for the delivery of strains of seasonal H1, H3N2, and B influenza
virus vaccines, results revealed that the MN patch is tolerable, and a strong immune
response is possible. These experiments have shown that polymer MNs can be translated
clinically. However, we know that to date, no clinical trials on the continuous release
of MNs are published [361–366]. Immune modeling and the treatment of diseases in
mice models have been effectively developed and implemented by MNs with continued
release properties of drugs or vaccines. Many have demonstrated superior strength with the
standard quick-dissolution MNs or the possibility to use free drug and vaccine formulations
as a patient-friendly alternative to conventional continuous release approaches [360,363].

Consequently, Because of its creativity and technologies, there are no regulatory
criteria specified now for MN array-based products [367]. The different mechanisms of
action, therefore, indicate that MN is known from a regulatory viewpoint as a modern
dose form rather than a special pre-existing transdermal patching device. In Addition, the
regulatory requirements should be specified for these new goods [368]. There are guidelines
to help develop global specifications for emerging drugs and drug products not previously
licensed in the United States, the European Union, or Japan [369]. The International
Conference on Harmonization of Legal Criteria on Pharmaceuticals Classification for
Human Use has issued guidelines, which is classified as Q6A [370]. According to these
guidelines, the following requirements are specified: “List of tests, references to analytical
methods, and acceptable standards to be approved for the tests mentioned, including
numerical limits, range or other criteria” [63,208]. It shows the conditions to be deemed
suitable for the planned usage of medicinal material or drug items. Specifications form an
essential factor of the quality assurance system and are needed to ensure that medications
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and drug products of superior qualities are continuously manufactured [371,372]. In short,
the main regulatory issues to be resolved for MN product requirements are as follows [95]:

1. The MN dosage forms microbiological requirements. In certain instances, the MN
dose formulations pierce the SC to the dermis. Microbiological requirements can
also represent a significant regulatory concern. If there is also a proven antimicrobial
activity, it may be appropriate for a substance to have low bioburden [21,65,373,374];

2. Content standardization: this is a standard prerequisite for pharmacopeia to be
used in MN schemes. This condition can, however, be extended to either the entire
system or to individual drug-loaded MN in an array, depending on the system
configuration [375,376];

3. Certain MN devices cannot be dissolved or biodegraded and can be re-inserted easily.
This can be dangerous and requires a proper disposal process [377,378];

4. Certain MN chemicals accumulate on the skin. Polymeric MN dissolvable deposits
can deposit materials, causing adverse effects on the skin, such as the formation of
granulomas or local erythema. By alternating the application platform, this may be
mitigated. As stated earlier, this problem must be solved, for the long-term use of
MN goods [17,359,379–381].

5. Patient ease of use and reliability: without risks, patients should be able to use the
goods as possible [77,84];

6. Correct delivery insertion: since MN injection does not induce discomfort or appar-
ent emotion, the patient has no feedback. A proper program framework may be
appropriate [381–383];

7. Repetitive use of immunological effects: repeated insertion of MN into the skin
may cause immune reactions. The regulators should be assured of immunological
protection [139,384,385];

8. Profile for long-term security: to date, human volunteers have conducted short-
term security experiments. The long-term protection of the MN program should
therefore be taken into consideration from the point of view of sporadic and repetitive
demands [379,386,387].

11. Current Trends and Future Perspective

The combined efforts of engineering, pharmaceuticals, and immunology researchers
can promote the future success of this technology and clinical translation [365]. A micro-
based lithographic approach to the manufacturing of tapered-cone MNs was developed to
create MNs using biodegradable sharp tips, micro-e-machining, and etching [26]. PDMS
micro-molds have been produced, and a vacuum-based process for filling the forms with
polylactic acid, polyglycolic acid, and their polymers was designed for replicating Mi-
crofabricated Master Structures [388]. The mechanical testing of the resulting needles
measured the force that split the needles during axial loading and showed that this failed
strength increased with the material and needle foundation diameter and decreased with
the needle length [389]. The failure forces were normally much greater than the forces
needed to inject MN into the skin, suggesting the mechanical properties of biodegradable
polymers for MN were adequate [389]. Finally, the ranges of polymer MNs revealed that
the permeability of human skin cadaver was improved by up to three orders of magnitude
to a low-molecular tracer, a calcein, and a macromolecular, bovine serum Albumin [354].
These findings demonstrate that biodegradable polymer MNs can be produced with the
right geometry and strength to inject them into the skin such that the transdermal transport
of molecules can significantly increase [137].

Sustained drug release MNs demonstrated higher performance relative to fast dis-
solving MNs [107]. Nevertheless, certain MN parameters still need to be investigated or
optimized in the future [356]. For their therapeutic transition, the limited drug loading po-
tential of MNs is a limiting factor since their scale and volume are small [355]. Researchers
have employed centrifugation, refilling, and evaporation of micro cardiogram enrichment
with medicinal substances and drug-laden nanoparticles [45]. Another path toward improv-
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ing the capacity of drug loading may be to develop larger MN patches or produce novel
polymers with higher solubility or loading capacities for drug molecules [357]. Techniques
used in MN preparedness often include a physical and chemical process that influences the
structures or functionality of biotherapeutics [358]. New techniques are therefore important
to mitigate the use of such extreme environments [359]. It also seems that there is a lack
of systematic analysis on the effect of drug strength of the various release kinetics of the
MN matrix. Several studies have shown that kinetics can be regulated and optimized
by adjusting the MN matrix components or adjusting the chemical modification level of
polymers. More mechanisms and studies of comparison must be detailed [360,363,390].

The effectiveness of polymer MNs relies heavily upon the polymer form or combi-
nation of polymers, their biocompatibility with drugs, their nature, and their mechanical
ability [391]. Furthermore, several new improvements in the original technique used for
microneedling has been made over the last 10 years [392]. In comparison to other surgical
methods, this procedure can have better outcomes [91]. This is a particularly safe technique,
in which the chance of post-inflammatory pigmentation with other epidermis damaging
techniques is high [330]. With the invention of the MN delivery system, medical research
is moving forward with the promise of versatility as traditional delivery mechanisms
malfunction or cause patients undesired pain [393]. The fabrication of the medication
delivery system for MNs is a big breakthrough into the world of medicine with the hope
of numerous uses, in which traditional delivery methods malfunction or give patients
unwanted discomfort [394]. Basic research and marketing campaigns should be paired with
the acceleration of large-scale polymer MN development and with further understanding
of the long-term adverse effects of polymers in regenerative medicine to provide guidelines
for sterilization procedures [377].

The production of MN-based multifunctional smart bioprocessing is still desperately
needed for potential biomedical applications, considering the impressive achievements
around MNs [139]. It is believed that MNs will gradually and practically progress into mass
production with the advancement of science and technology, adding comfort to people’s
lives [233]. Researchers expect that in the future, these MN-based smart therapeutic devices
will also be more desirable if long-term usage and multi-stage medication distribution
are needed for health conditions such as chronic diseases, treatment of diabetes, and
chronic pain management [395]. Present MN techniques should be improved to completely
convert microchip-based MNs into clinical applications to reach broad-scale output. In
the first instance, the vast majority of TDD systems focusing on MNs were concerned
with the on-demand release of pharmaceutical goods, with minimal literature focusing
on MNs with electrochemical or microchip-controlled sensors or drug release controls.
To enhance programming and wireless networking technology, it is also important to
change the precise and sensitive design of the electronic microchip sensing and effecting
components. The perfect conditions with smart wearables should be such as this: body
state should be tracked in real-time, and an early alert can be given by the MN wireless
contact system to the patient’s physical unit until an alarming situation is detected. Then,
a drug release system is activated, and the patient can be warned of this. To attain this
goal, MNs combined with electronic microchip elements are of essential significance. In
comparison, the present MN-based transdermal distribution primarily focuses on drug
delivery, so MNs can, in the future, be used as cell therapy for local delivery [166,396–399].

Researchers aim to make use of MNs to provide organ repair [400], as illustrated in
Figure 14A, and regeneration with stem cells [84]. MNs can also be used as a depot of
probiotics in the intestinal tract for the treatment of certain metabolisms to control intestinal
microecology [78]. Certain essential questions must be resolved before reaching such an
aim, such as how cell viability can be sustained and how cells inside the MN can be evenly
distributed. Finally, the interest in immunotherapy has increased in recent years because
of its high efficacy and its widespread use in several advanced biomedical fields [380].
There are also several studies of MNs being added to the provision of tumor control
point inhibitors (shown in Figure 14B) [17,401]. Soon, we envisage using MNs not only
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to deliver immune inhibitors for the treatment of tumors but on-demand skin and tumor
microenvironmental modulation as well as cytokine and immune cells [84,401]. Due to
the recent developments in MNs, this target is possible [78]. MN-based immunotherapy is
thought to be used in clinical practice by collaborative efforts of the multi-disciplined [381].
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Despite major developments in the development, detection, and control of MNs for
the delivery of transdermal drugs, biomedical applications are still early in existence
and have not advanced toward large-scale manufacturing and practicality [355]. Shortly,
these state-of-the-art developments may be combined with MNs [359]; however, they are
not risk-free [378]. The most frequent side effect is mild inflammation of the skin after
operation [402]. If the following signs exist: coughing, bruising, infections, peeling, etc.,
physicians should be advised [377]. It is necessary to look after the skin after an MN
procedure for better outcomes, equivalent to any cosmetic treatment of the skin [403].

• Patients should not take anti-inflammatory drugs for a full week after treatment [404];
• Patients should not use ice on the face or use bromelain/arnica. This will impair

a normal mechanism of inflammation that is essential to the rejuvenation of the
skin [275,329];

• Prevention of sun tanning and extended direct sunshine use for at least 2 weeks. Use
sunblock (30 SPF or higher) always after 24 h and wear a hat when outdoors [403];

• Patients with anxiety should take a painkiller or Tylenol [155].

12. Conclusions

This review paper demonstrates the value of polymeric MN as a promising technology,
and it has a great future ahead. However, there are major obstacles in the immediate
challenges of manufacturability, cost factors, and regulatory clearance. Science in this
area is potentially advancing to safer supplies of transdermal drugs using the polymeric
MNs method [405,406]. There has been noteworthy progress in the fields of transdermal
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medication using polymer MN [297]. With new polymeric substrates and manufacturing
techniques [138,407,408], polymeric MNs can not only be administered upon request but
can be individually customized to improve the quality of life of patients and achieve
better therapeutic effects [107,161,399]. The creation of smart and compact MN devices
is the general pattern of today, with the advancement of people’s living standards and
the fast development of MNs [355]. Polymeric MN systems for the supply of medicines,
diagnostic, thermo-therapeutic integrated, and wearable systems are the highlights in MN
research [409].
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