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Abstract: Nanoparticles are materials with overall dimensions in the nanoscale, ie, under 

100 nm. In recent years, these materials have emerged as important players in modern medicine, 

with clinical applications ranging from contrast agents in imaging to carriers for drug and gene 

delivery into tumors. Indeed, there are some instances where nanoparticles enable analyses 

and therapies that simply cannot be performed otherwise. However, nanoparticles also bring 

with them unique environmental and societal challenges, particularly in regard to toxicity. This 

review aims to highlight the major contributions of nanoparticles to modern medicine and also 

discuss environmental and societal aspects of their use. 
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Introduction
Nanoparticles are materials with overall dimensions in the nanoscale, ie, under 100 nm. 

In recent years, these materials have emerged as important players in modern medi-

cine, with applications ranging from contrast agents in medical imaging to carriers 

for gene delivery into individual cells. Nanoparticles have a number of properties that 

distinguish them from bulk materials simply by virtue of their size, such as chemical 

reactivity, energy absorption, and biological mobility.

Nanoparticles are also referred to as “zero-dimensional” nanomaterials. This defi ni-

tion arises from the fact that all of their dimensions are in the nanoscale, as opposed to 

one-dimensional nanomaterials, which have one dimension larger than the nanoscale 

(such as nanowires and nanotubes), and two-dimensional nanomaterials, which have 

two dimensions larger than the nanoscale (such as self-assembled monolayer fi lms).

The benefi ts of nanoparticles to modern medicine are numerous. Indeed there 

are some instances where nanoparticles enable analyses and therapies that simply 

cannot be performed otherwise. However, nanoparticles also bring with them unique 

environmental and societal challenges, particularly in regard to toxicity. This review 

aims to highlight the major contributions of nanoparticles to modern medicine and 

also discuss environmental and societal aspects of their use. 

This review is intended to serve as a broad introduction to the role of nanoparticles 

in medicine rather than as an exhaustive review. Furthermore, this review will focus 

on technologies that have either already advanced to clinical use or in vivo experi-

mentation. Within the broad categories of medical imaging and drug/gene delivery, 

this review will discuss examples of medical applications of nanoparticles. Where 

possible, the reader will be referred to the numerous comprehensive reviews already 

available within each application area. Lastly, the environmental and societal impact 

of the use of nanoparticles in modern medicine will also be discussed.
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Nanoparticles in medical imaging
Nanoparticles can provide significant improvements in 

traditional biological imaging of cells and tissues using 

fl uorescence microscopy as well as in modern magnetic 

resonance imaging (MRI) of various regions of the body. 

Chemical composition distinguishes the nanoparticles used 

in these two techniques. A summary of the applications of 

nanoparticles in imaging is provided in Table 1

Optical imaging 
Conventional imaging of cells and tissue sections is per-

formed by loading organic dyes into the sample. Dyes such 

as fl uorescein isocyanate (FITC) and rhodamine are often 

tethered to biomolecules that selectively bind to cells or 

cell components through ligand/receptor interactions. Two 

problems often encountered in this mode of imaging are 

inadequate fl uorescence intensity and photobleaching. Pho-

tobleaching is the gradual decrease in fl uorescence intensity 

often observed over time due to irreversible changes in the 

molecular structure of the dye molecules that render them 

nonfl uorescent.

Quantum dots (QDs) are nanoparticles composed of 

inorganic semiconductor molecules. These nanoparticles 

emit strong fl uorescent light under ultraviolet (UV) illumi-

nation, and the wavelength (color) of the fl uorescent light 

emitted depends sensitively on particle size. This size depen-

dence is a unique characteristic of these materials. Inorganic 

semiconductor molecules derive their properties from the 

presence of a “band gap.” The band gap is the difference in 

energy between the valence band (or energy level), where 

the electrons primarily reside, and the conduction band, to 

which they can be “promoted” by the supply of energy of 

a specifi c wavelength (excitation), usually in the form of 

a photon. When an electron moves from the valence band 

to the conduction band, it leaves behind a “hole” (this is a 

term given to an energy level lacking an electron, and is 

not a physical feature). When the excitation ceases, elec-

trons move back to the valence band, releasing their excess 

energy. In the case of QDs, this energy is released entirely 

as light. Larger QDs have more electron-hole pairs and are 

therefore capable of absorbing and releasing more energy. 

Since energy is inversely related to wavelength (E = hc/λ), 

this means that the wavelength of emitted light decreases 

as QD size increases. QDs can emit light that is far more 

intense and signifi cantly more stable against photobleaching 

compared with conventional organic dyes. This is a major 

advantage in 3-D tissue imaging where photobleaching is a 

major concern during acquisition of successive sections in 

the z-direction.

Being inorganic materials, QDs are insoluble in aqueous 

solutions. An essential part of using QDs in biological and 

medical applications is therefore coating them with a thin 

layer of a water-soluble material. Typically, this step is fol-

lowed by coating with a material that binds preferentially to a 

particular cell or cell component. The surface of each QD has 

a large number of sites onto which soluble and/or bioactive 

molecules can be tethered. Furthermore, more than one type 

of molecule can be attached to each QD, giving it multiple 

functionalities. In a review of the application of QDs for live 

cell and in vivo imaging, Michalet and colleagues (2005) 

have described different surface modifi cation strategies such 

as targeting and prolonged retention in the bloodstream.

Kim and colleagues (2004) recently described the use 

of oligomeric phosphine-coated QDs to map lymph nodes 

in mice and pigs. These QDs were made of CdTe capped 

with CdSe, a combination that is capable of light emission 

under near infrared excitation. The signifi cance of this work 

is the ability to map lymph nodes up to 1 cm below the skin 

surface without the need for surgical incisions. The toxicity 

of the injected QDs was not examined in this study and the 

authors inferred that the concentrations used were below 

known toxic levels.

QDs can be targeted to specifi c organs within the body by 

coating the QD surface with appropriate molecules. Akerman 

and colleagues (2002) demonstrated that ZnS-capped CdSe 

QDs can be directed to the lungs of mice by coating the QD 

surface with a peptide sequence, CGFECVRQCPERC, which 

is known to bind to endothelial cells in lung blood vessels. 

The same methodology was used to direct QDs to blood or 

lymphatic vessels within tumors in mice. In both instances, 

the QDs were internalized by the targeted cells by endocytosis 

but not by cells in surrounding tissue.

Gao and colleagues (2004) encapsulated semiconduc-

tor QDs within an amphiphilic copolymer and modifi ed 

the polymer surface with targeting ligands (as shown in 

Figure 1A). The QDs were made of CdSe capped with ZnS 

and protected from aggregation in solution by a coordinating 

ligand (tri-n-octylphosphine oxide [TOPO]). The copolymer 

was a triblock, consisting of butylacrylate, ethylacrylate, 

and methacrylic acid segments; the former two segment 

types are more hydrophobic than the latter. In solution, the 

hydrophobic segments of the copolymer are attracted to the 

TOPO, resulting in the structure shown in Figure 1A, which 

has the carboxylic acid groups of the hydrophilic segment 
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sticking out. These acid groups can be used as attachment 

points for molecules such as poly(ethylene glycol) (PEG) or 

affi nity ligands. The composite particles were 20–30 nm in 

diameter. Tumor targeting was achieved by tethering to the 

particle surface an antibody against prostate specifi c mem-

brane antigen (PSMA). As hypothesized, these particles did 

indeed selectively bind to tumors in mice upon intravenous 

injection (Figure 1B). No accumulation was observed in the 

brain, kidney, or lung.

Magnetic resonance imaging 
Magnetic resonance imaging (MRI) is a technique used to 

perform 3-D, noninvasive scans of the body. This technique 

is widely used in modern medicine, particularly in the diag-

nosis and treatment of most diseases of the brain, spine, and 

musculoskeletal system. MRI utilizes magnetic resonance 

spectroscopy to analyze hydrogen atoms that are naturally 

present in tissue (as water and cell membrane proteins, for 

example). A sample is placed within a strong static mag-

netic fi eld and a transverse radiofrequency (RF) signal is 

use to excite the magnetic dipoles within hydrogen nuclei 

in the sample. Prior to the RF pulse, the spinning nuclei are 

aligned with the static fi eld. The RF pulse provides additional 

energy to these nuclei and causes them to spin at a different 

frequency and in a different (transverse) direction. Follow-

ing the RF pulse, the hydrogen nuclei return, or “relax,” to 

a state of equilibrium in alignment with the static magnetic 

fi eld. The relaxation process is typically characterized by two 

parameters referred to as T1 and T2. T1 represents the time 

required for restoration of nuclear spins in alignment with the 

static fi eld; T2 represents the characteristic time over which 

the transverse magnetization of the nuclei vanishes. Hydro-

gen nuclei and different types of tissue can be differentiated 

on the basis of different T1 and T2 relaxation times. MRI 

scans involve collection of several images based on spatial 

location as well as on weighting based on T1 or T2. A sample 

with low T1 appears bright in a T1-weighted image.

In many clinical applications, however, the natural dif-

ferences in relaxation times between regions of interest 

(such as normal versus scar tissue) are small, necessitating 

the use of contrast agents. Contrast agents are typically 

paramagnetic molecules that can alter the relaxation times 

of selected regions or types of tissue or fl uid within the body. 

Compounds of gadolinium have been successfully utilized 

for several years as contrast agents with the ability to resolve 

such areas as the kidney and brain (Mornet et al 2004). 

Gadolinium-based contrast agents act by shortening T1. 

Superparamagnetic iron oxide (SPIO) nanoparticles have 

recently emerged as effective contrast agents for T2-weighting, 

thereby serving as a complement to gadolinium-based agents. 

T2 weighting is important for the imaging of the liver, lymph 

nodes, and bone marrow (Mornet et al 2004). The relaxation 

times of superparamagnetic nanoparticles (such as iron oxide) 

are much higher than those of gadolinium-based agents.

Huh and colleagues (2005) recently described how SPIO 

nanoparticles can be used to detect cancer in vivo using a 

mouse xenograft model. In this investigation, the nanopar-

ticles were conjugated to herceptin, a cancer-targeting 

antibody. SPIO nanoparticles were prepared by the thermal 

decomposition of iron acetylacetonate and made water-

soluble by binding with 2, 3-dimercaptosuccinic acid before 

conjugation with herceptin. When administered intravenous-

ly to mice, a rapid change was observed in the T2-weighted 

MRI signal from the tumor located in the thigh of the animals. 

The specifi city of antibody binding was verifi ed in a control 

experiment where the same iron oxide nanoparticles were 

OD capping ligand
TOPO

PEG

Polymer coating

Affinity ligands Injection
site

Tumors

BA

Figure 1 Quantum dots (QDs) used in tumor imaging. (A) Surface modifi cation of the CdSe/ZnS QD with a capping ligand TOPO which keeps QDs from aggregating in 
solution; this assembly is enclosed by an amphiphilic polymer whose hydrophobic segments bind to TOPO and whose hydrophilic carboxylic acid groups can bind to affi nity 
ligands (such as a tumor-specifi c antibody) or PEG. (B) Fluorescence image of a live mouse showing targeted delivery of QDs to a tumor.  Adapted from Gao et al (2004) 
with permission from Macmillian Publishers Ltd: Nature Biotechnology. Copyright © 2004.
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bound to a nonspecifi c antibody. These control nanoparticles 

did not produce any change in MRI signal.

SPIO nanoparticles can also be used to visualize features 

that would not otherwise be detectable by conventional MRI. 

Harisinghani and colleagues (2003) utilized SPIO nanopar-

ticles in human patients with prostate cancer to detect small 

metastases in the lymph node. In this case, the nanoparticles 

were coated with dextran for retention in the blood stream 

and gradual uptake into the lymph nodes where they are 

internalized by macrophages. As shown in Figure 2, SPIO 

nanoparticles allow the visualization of metastases that can 

only be vaguely discerned by conventional MRI. The sig-

nifi cance of this work is that patients with localized disease 

have the option of early treatment by surgery without being 

restricted to radiation therapy, the primary treatment for 

advanced-stage patients.

Nanoparticles in drug and gene 
delivery
Among the different application areas of nanoparticles, 

drug delivery is one of the most advanced. This is large part 

due to the success of polymer- and liposome-based drug 

delivery systems (Figure 3), many of which are in clinical 

use today.

Polymer-based drug delivery systems can be categorized 

as polymeric drugs, polymer-protein conjugates, polymer-

drug conjugates, and polymeric micelles (Duncan 2003). 

Polymers can also be emulsifi ed into nanometer-size particles 

within which drugs can be trapped. Polymeric drugs are typi-

cally natural polymers that are known to have antiviral or 

antitumor characteristics. Polymer-protein conjugates most 

commonly use PEG. PEG is well known for its high water 

solubility and excellent biocompatibility, and its attachment 

to drugs results in increased solubility. PEG attachment 

is also known to reduce the renal clearance of drugs and 

enhance receptor-mediated uptake by cells. This approach 

can therefore be utilized to prolong the half life of a drug and 

reduce dosing frequency. Polymer-drug conjugation is aimed 

at improving solubility and specifi city of low molecular 

weight drugs. Lastly, polymeric micelles are typically created 

with amphipilic polymers that form micelles in solution with 

a drug entrapped inside the micelles.

Liposomes are vesicles formed by the entrapment of fl uid 

by phospholipid molecules which have hydrophobic and 

hydrophilic components and can form bilayers. A bilayer is 

formed when two layers of oriented lipid molecules come 

together such that their hydrophobic sides are in contact 

with one another. Under certain conditions, lipid molecules 

form vesicles, in which a volume of fl uid is enclosed by lipid 

bilayers. Vesicles can range in size from tens of nanometers 

to thousands of nanometers (Torchilin and Weissig 2003). 

Drug molecules can be incorporated along with the fl uid 

enclosed by vesicles or within lipid bilayers. The structure 

of these synthetic bilayers, which are biocompatible and bio-

degradable, is similar to that of biological membranes in the 

body. Targeting can be achieved by chemical modifi cation 

of the vesicle surface using ligands or polymers. As such, 

liposomes are not conventional “particles” in that they do 

not have a solid core that defi nes their identity. However, 

just like nanoscale “particles” of polymers, they are colloidal 

entities and constitute a signifi cant proportion of nanoscale 

drug delivery systems. Solid lipid nanoparticles (SLN) are 

another class of nanoparticles that are made from lipids 

that are solids at room temperature (Muller et al 2000). The 

4 mm4 mmA B

Figure 2 Visualization of lymph node metastases in prostate cancer using iron oxide nanoparticles as MRI contrast agents. (A) A conventional MRI image can only vaguely 
indicate the presence of metastases. (B) Two metastases, indicated by arrows, can be clearly seen when the iron oxide nanoparticles are used. Scale bars = 4 mm (added 
based on the authors’ description of 2 mm metastases).  Adapted from Harisinghani et al (2003) with permission. Copyright © 2003. Massachusetts Medical Society. All 
rights reserved.
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nanoparticles are synthesized by emulsifying a molten lipid 

mixed with drug and surfactant which is then cooled.

The utilization of polymer- and liposome-based nanopar-

ticles in drug delivery is illustrated below with a few 

examples organized by disease type. The list of diseases 

or the number of examples within each disease is by no 

means exhaustive; the intent here is to illustrate the breath 

of nanoparticle drug delivery systems rather than cover all 

areas in depth. A summary of key examples is included in 

Table 1.

Cancer
Nanoparticles have made a tremendous impact in the 

treatment of various types of cancer, as evidenced by the 

numerous nanoparticle-based drugs and delivery systems 

that are in clinical use. Examples of numerous liposome- 

and polymer-based drugs or therapeutic agents have been 

presented in recent reviews (Duncan 2003; Allen and Cullis 

2004).

Paclitaxel is a well-known anti-cancer agent used to treat 

several types of cancer (such as ovarian, skin, esophageal, 

and lung) (Kikuchi et al 2005; Abratt et al 2006; Chao et al 

2006; De Giorgi et al 2006; Roof et al 2006; Worden et al 

2006). This drug interferes with the functions of cancer 

cells by microtubule stabilization, resulting eventually in 

apoptosis (Koziara et al 2006). The most common mode of 

administration of this water-insoluble drug is as a solution 

in ethanol (Taxol®), administered together with a solvent, 

polyoxyethylated castor oil (Cremophor® EL). A major 

shortcoming of this approach has been the side effects associ-

ated with Cremophor®, including hypersensitivity reactions, 

necessitating the administration of steroids and antihista-

mines as premedications (Zhang et al 2005a; Micha et al 

2006). In early 2005, a different form of paclitaxel known 

as Abraxane® was approved for clinical use. In this form, 

paclitaxel is loaded within nanoparticles of a natural polymer, 

albumin, using a high-pressure emulsifi cation process. This 

soluble form of paclitaxel has been shown not only to elimi-

nate the side effects associated with the use of Cremophor® 

(Micha et al 2006) but also provides some additional benefi ts. 

The albumin carrier improves transport of the drug from the 

bloodstream to the tumor site and allows higher drug dosing 

compared with Taxol® (Ibrahim et al 2002). 

Nanoparticle loading of paclitaxel, however, did not 

address multidrug resistance, a common problem in tumor 

therapy that arises when cancer cells adapt to stimuli by 

expressing effl ux transporters or other proteins on the surface 

(Gottesman et al 1996 ; Tomonaga et al 1996). Koziara and 

colleagues (2006) have attempted to overcome this problem 

by loading paclitaxel into emulsifying wax nanoparticles. 

The wax is a commercially available product (Tween 80®) 

alternatively known as polyoxyethylene 20-sorbitan mono-

oleate. The nanoparticles were prepared by heating a mixture 

of the wax, drug, and a surfactant and then emulsifying. The 

effi cacy of these drug-loaded nanoparticles was assessed in 

a murine xenograft model (HCT-15) in which tumor cells 

express p-glycoprotein, an effl ux transporter. With the help of 

a control experiment using Taxol®, the resulting cessation of 

tumor growth was judged to be due to a combination of over-

coming resistance (by nonspecifi c cytoskeletal disturbance) 

and the antiangiogenic effect of paclitaxel. These examples of 

different versions of paclitaxel serve to illustrate how differ-

BA

MeO

Na+ _OSO3

O O O
O

Aqueous
Interior

O

O

O

OO OH
OH

O

S

HN

HN

HN

HNNH

HO

110

Figure 3. Schematic representations of (A) a polymeric matrix and (B) a liposome, both of which can enclose a drug. Reprinted with permission from Brigger I, Du-
bernet C, Couvreur P. 2002. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev, 54:631–51 (Elsevier) and John AE, Lukacs NW, Berlin AA, et al 2003. 
Discovery of a potent nanoparticle P-selectin antagonist with anti-infl ammatory effects in allergic airway disease. FASEB J, 17:2296-8.
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ent nanoparticle-based drug delivery strategies can be utilized 

to modulate and improve the performance of a drug.

An important consideration in tumor therapy is the 

interplay between chemotherapeutic and antiangiogenic 

agents. As Sengupta and colleagues (2005) have pointed out, 

disruption of tumor blood vessels can impact delivery of the 

chemotherapeutic agent and also cause increased expression 

of factors associated with drug resistance. These investiga-

tors synthesized a nanoparticle drug delivery system with 

two layers: a core of poly-(lactic-co-glycolic) acid (PLGA) 

conjugated with doxorubicin enclosed within a liposome 

composed of phospholipids conjugated with PEG and 

combretastatin. Here, doxorubicin is the chemotherapeutic 

agent and combretastatin is the antiangiogenic agent. These 

multilayered particles ranged in size from 80–120 nm. The 

underlying strategy was to deliver the particles to the tumor 

site and then release the drug slowly by degradation of the 

PLGA core. When administered intravenously to mice with 

tumors induced by carcinoma or melanoma cells, the par-

ticles were readily taken up by the tumor, consistent with the 

increased residence time resulting from PEG conjugation 

(Harris and Chess 2003) and the known ‘leakiness’ of tumor 

vessels (also termed the enhanced permeability and retention, 

or EPR, effect; tumor vessels have 400–600 nm pores) (Yuan 

et al 1995). The nanoparticles induced signifi cant inhibition 

of tumor growth and prolonged the lifespan of the animals.

Neurodegenerative diseases
Drug delivery to the central nervous system remains a chal-

lenge in developing effective treatments for neurodegenera-

tive diseases (Garcia-Garcia et al 2005; Popovic and Brundin 

2006). An important part of this challenge is overcoming 

the natural tendency of the blood–brain barrier (BBB) to 

block to drug transport. This barrier is designed to protect 

the brain from foreign substances and blood-borne infections 

but it cannot recognize many therapeutic compounds. As a 

result, high doses must be administered, with increased risks 

of adverse side effects. Among the different approaches 

explored in recent years to overcome this limitation are 

nanoparticle-based systems ranging from polymer particles 

to liposomes. A thorough review of work in this area has been 

published by Garcia-Garcia and colleagues (2005).

Nanoparticles made from poly(hexadecyl cyanoacrylate) 

and related compounds have been shown to facilitate drug 

transport across the BBB. Kreuter and colleagues (2003) 

adsorbed dalargin (an analgesic) onto poly(butyl cyanoac-

rylate) (PBCA) nanoparticles and demonstrated penetration 

across the BBB in rats. More recently, Siegemund and col-

leagues (2006) showed how PBCA nanoparticles loaded with 

thiofl avins can target fi brillar amyloid β in a murine model 

of Alzheimer’s disease. Calvo and colleagues (2002, 2001) 

synthesized a nanoparticle system composed of a copolymer 

of PEG and poly(hexadecyl cyanoacrylate) (PHDCA). Since 

PEG is hydrophilic and PHDCA is hydrophobic, an aqueous 

environment causes the copolymer molecules to arrange 

themselves as particles with an insoluble PHDCA core and a 

surface layer of PEG. The incorporation of PEG is common 

in many drug delivery systems because it is not recognized as 

a foreign material by macrophages in blood and can therefore 

increase the half life of drug carriers in blood (Harris and 

Chess 2003). Indeed the incorporation of PEG enhances the 

ability of PHDCA to cross the BBB. Polymeric micelles 

can be formed by copolymers of PEG and materials similar 

to PEG, such as poly(propylene oxide). The commercially 

available Pluronic® P-85 polymer is an example, and P-85 

micelles have been utilized to transport analgesics across the 

BBB in mice (Witt et al 2002).

Liposome-based drug delivery systems have also been 

extensively investigated for drug delivery to the central 

nervous system (Garcia-Garcia et al 2005). Surface cover-

age with PEG is also effective in these systems. Schmidt 

and colleagues (2003) prepared liposomes with diameters 

ranging from 90–100 nm to encapsulate prednisolone, a drug 

used in the treatment of multiple sclerosis (MS). Following 

intravenous injection in mice with experimental autoimmune 

encephalomyelitis (an animal model for MS), the liposomes 

were observed to accumulate to high levels in the central 

nervous system within 2 h. Figure 4 shows gold-(black) 

labeled liposomes among astrocytes and microglia in a spinal 

cord section, indicating BBB penetration. Treatment with 

the drug-loaded liposomes resulted in restoration of BBB 

integrity and reduction in infl ammation as well as macro-

phage infi ltration. This treatment was judged to be superior 

to the administration of free glucocorticosteriods, which is 

a conventional therapy for MS.

A further application of PEG-conjugated liposomes is 

in gene delivery across the BBB. This approach is being 

followed to develop therapies for chronic neurological 

diseases that do not respond to small molecule drugs (such 

as Huntington’s disease, Rett syndrome, and Fragile-X syn-

drome, to name only a few) (Schlachetzki et al 2004). Shi 

and colleagues (2001) delivered plasmid DNA encoding 

β-galactosidase across the BBB in rats. Some of the PEG 

molecules on the liposome surfaces were attached to a target-
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ing monoclonal antibody anti-TFR, which targets the brain, 

liver, and spleen. Antibody attachment allowed targeted 

delivery of the liposomes to specifi c regions, and plasmid-

induced gene expression in the brain was observed for at least 

6 days following liposome administration. The signifi cance 

of this approach is the ability to transport genes that would 

normally be degraded by endonucleases in vivo by loading 

them within liposomes with targeting capability. 

HIV/AIDS
De Jaeghere and colleagues (2000) investigated the delivery 

of an HIV-1 protease inhibitor, CGP 70726, using pH-sensi-

tive nanoparticles made from a copolymer of methacrylic 

acid) and ethyl acrylate. This copolymer is commercially 

available under the name Eudragit® L100–55. The copo-

lymer was chosen because of its pH-dependent solubility. 

CGP 70726 and other similar anti-viral agents are known to 

disrupt the replication cycle of HIV-1 (Robins and Plattner 

1993). A major challenge in delivering agents such as CGP 

70726 is poor water solubility. De Jaeghere and colleagues 

synthesized nanoparticles by emulsifying a solution of the 

copolymer with a mixture of CGP 70726 and benzyl alco-

hol. The nanoparticles were administered orally to dogs and 

successful drug release was observed by analysis of blood 

samples. 

The HIV-1 Tat protein has recently emerged as a potential 

candidate for a prophylactic or therapeutic vaccine against 

HIV-1/AIDS (Cafaro et al 1999; Caputo et al 2004). Rudolph 

and colleagues (2004) recently described an SLN-based 

system consisting of DNA compacted with a Tat protein. 

This work built on earlier studies by the same group in which 

SLNs loaded with DNA were shown to transfect mammalian 

cells in vitro (Olbrich et al 2001; Tabatt et al 2004). SLNs 

were prepared from a cationic lipid in addition to a surfactant. 

DNA and Tat peptide were subsequently adsorbed onto the 

nanoparticle surface by electrostatic forces. When adminis-

tered to the lungs of mice by either intratracheal instillation or 

aerosol application, increased gene expression was observed 

indicating successful transfection of the SLNs, but some 

DNA degradation was observed. 

While there are comparatively fewer reports of in vivo 

nanoparticle-based drug delivery in the area of HIV/AIDS 

than in such areas as cancer and neurodegenerative diseases, 

activity in the area can certainly be gauged by numerous recent 

in vitro studies (Berton et al 1999, 2001; Nam et al 2002; Cui 

and Mumper 2003; Becker et al 2004; Sawant et al 2006).

Ocular diseases
The primary motivation for using nanoparticle-based drug 

delivery systems in ophthalmic applications is the ability 

to prolong drug residence times by trapping the drug in the 

ocular mucus layer (Ludwig 2005). This layer, which is 

considered to be a diffusion barrier to macromolecules, is 

secreted by goblet cells in the conjunctiva and protects the 

epithelial layer of the cornea. Most ocular diseases are treated 

with drug solutions administered as eye drops. These solu-

tions are usually highly concentrated and require frequent 

application because of rapid precorneal loss caused by the 

movement of mucus during blinking. Nanoparticles have 

provided an effective way to overcome this diffi culty, as 

illustrated by a comprehensive review by Ludwig (2005); 

this review includes a summary of in vivo drug delivery 

studies in this area.

Pignatello and colleagues (2002a; 2002b) have used com-

mercially available Eudragit® polymers to deliver nonsteroi-

dal and anti-infl ammatory drugs (fl urbiprofen and ibuprofen) 

to rabbit eyes. These drugs are typically used to mitigate the 

infl ammatory response that typically occurs following oph-

thalmic surgery. The Eudragit® RS and RL polymers used in 

these investigations were copolymers of poly(ethyl acrylate), 

poly(methyl methacrylate), and poly(chlorotrimethyl-amino-

ethyl-methacrylate). These polymers are insoluble and capa-

ble of swelling under physiological conditions, making them 

suitable platforms for controlled release. Mixtures of drug 

100 μm

Figure 4 Liposome-based drug delivery to the nervous system. Gold-labeled lipo-
somes (colored black in image) among astrocytes and microglia in rat spinal cord 
sections indicating penetration of the blood–brain barrier (astrocytes and microglia 
stained red); scale bar = 100 μm.  Adapted from Schmidt et al (2003) by permission 
of Oxford University Press.
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and polymer were dissolved in ethanol and emulsifi ed (with 

the help of water and a surfactant) to form drug-embedded 

nanoparticles ~100 nm in size. Saline suspensions of these 

nanoparticles were instilled in the conjunctive sac of the rab-

bit eyes. Nanoparticles loaded with both drugs (fl urbiprofen 

and ibuprofen) effectively inhibited infl ammatory responses 

after surgical trauma and were comparable with conventional 

eye-drop controls. The signifi cance of this result is that the 

nanoparticle system was assembled with a lower drug con-

centration compared to the eye-drop control. Secondly the 

nanoparticle system was able to generate higher drug levels 

in the vitreous humor, which arises from the longer residence 

time of the drug in the polymer matrix.

Certain disease conditions, such as cytomegalovirus 

(CMV) retinitis require administration of drugs to the retinal 

region of the eye. Infection with CMV can lead to permanent 

damage of the retina, choroid (the region behind the retina), 

iris, and adjacent tissue. Merodio and colleagues (2002) 

have described the use of bovine serum albumin (BSA) 

nanoparticles to deliver ganciclovir, a drug used to treat CMV 

infection. The drug was incubated with BSA in an aqueous 

solution and droplets were subsequently generated by the ad-

ditional of ethanol in an emulsifi cation process; the resulting 

nanoparticles were approximately 280 nm in diameter. These 

nanoparticles were resuspended in saline and administered by 

intravitreal injection. The authors observed that the nanopar-

ticles remained in a thin layer on the retina for up to two 

weeks post-injection and histological analysis indicated the 

absence of any infl ammatory responses or changes in tissue 

morphology compared with normal eye controls.

Respiratory diseases
The application of nanoparticle-based drug delivery 

approaches in respiratory diseases has been somewhat 

limited. The literature nevertheless contains several examples 

of therapies that have been effectively demonstrated for the 

treatment of allergic, genetic, and infections diseases of the 

respiratory system (Pison et al 2006). 

John and colleagues (2003) demonstrated the use of a 

liposome-based nanoparticle system to inhibit infl amma-

tion in a murine model of allergic asthma. The strategy 

employed was to inhibit P-selectin receptors on activated 

endothelial cells in circulation, which mitigates interactions 

between endothelial cells and leukocytes. This, in turn, 

attenuates the development of peribronchial infl ammation. 

The nanoparticles (average diameter of 73 nm) were designed 

to mimic the physiological P-selectin super ligand (PSGL-1) 

by incorporating fucose and sulfate ester groups on the lipo-

some surface. Lung infl ammation and airway hyperreactivity 

were induced in mice by LPS and cockroach antigen. In 

both instances, the liposomal nanoparticles were observed 

to bind preferentially to selectins on activated endothelial 

cells (Figure 5). Histological analysis indicated signifi cant 

reduction in peribronchial infl ammation and airway hyper-

reactivity in mice treated with the nanoparticles compared 

with controls.
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Figure 5 Selective binding of liposomes presenting fucose and sulfate ester groups to activated endothelial cells in mouse lungs following allergen challenge. (A) Nega-
tive control (liposomes without fucose and sulfate ester groups). (B) Liposomes with fucose and sulfate ester groups. Scale bars in both images = 30 μm.  Adapted with 
permission from John et al (2003).
Abbreviations: alv, alveolar wall; bv, blood vessel; e, endothelium; PLNP, liposomes.
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Kumar and colleagues (2003) have described how 

a polymer-drug conjugate, chitosan/interferon-γ pDNA 

nanoparticles, can reduce allergen-induced airway infl am-

mation. It is known that allergic diseases (such as asthma) 

cause a drop in production of interferon-γ (IFN-γ) in patients, 

leaving the patients susceptible to airway infl ammation and 

hyperresponsiveness. The approach of Kumar and colleagues 

(2003) aims to overcome IFN-γ defi ciency by supplying it 

intranasally as a polymer-drug conjugate. In allergen-chal-

lenged mice, nanoparticle therapy resulted in increased IFN-γ 

expression by epithelial cells, thereby facilitating reduction 

in infl ammation and restoration of lung morphology within 

3–6 hours. 

Environmental and societal 
considerations
The impact of nanomaterials on the environment and on 

public health has received considerable attention in recent 

years. As technologies in nanomedicine and the broader fi eld 

of nanotechnology mature, however, much more needs to be 

done, particularly because different nanomaterials have dif-

ferent kinds of risks associated with them. This section will 

focus on the nanoparticle types described in the applications 

above. As in the previous sections, in vivo studies will be 

given particular attention; however signifi cant in vitro work 

will also be described. 

Toxicity of quantum dots
As described in the section on medical imaging, QDs are 

inorganic nanoparticles that typically have an organic coat-

ing them makes them biocompatible or bioactive. The main 

toxicological risk associated with the use of QDs in vivo is the 

exposure of the inorganic core by deterioration of the organic 

layer. QDs can be made from a large variety of inorganic-

metal complexes, such as CdSe, ZnS, CdTe, InP, InAs, GaAs, 

to name only a few. Each such compound has unique chemi-

cal properties that can profoundly infl uence its toxicology. 

Although the literature on the toxicity of such compounds in 

vivo is not extensive, there are reports that highlight major 

concerns and illustrate the need for more work. A detailed 

review of the toxicology of quantum dots was recently pub-

lished by Hardman (2006). A summary of recent toxicogical 

investigations on QDs is given in Table 2.

Derfus and colleagues (2004) examined the toxicity of a 

range of cadmium-based QDs using an in vitro model consist-

ing of primary rat hepatocytes. The choice of this cell type was 

motivated by the fact that the liver is the primary target of Cd 

exposure. QDs with CdSe cores capped with mercaptoacetic 

acid (MAA) and TOPO were determined to be acutely cyto-

toxic at a QD concentration of 62.5 μg/mL. This behavior was 

correlated with the liberation of Cd2+ ions following oxidation 

of the CdSe lattice by air and ultraviolet (UV) light. Surface 

oxidation and cytotoxicity were nearly eliminated by coating 

the CdSe particles with ZnS and further improvement was 

observed by polymer or protein coating on top of the ZnS. 

While this was an encouraging result, some Cd release was 

also observed from commercial QDs made with CdSe/ZnS 

with an overcoat of polyacrylate and streptavidin. 

Ballou and colleagues (2004) examined the in vivo toxicity 

of CdSe/ZnS QDs coated with either amphiphilic poly(acrylic 

acid) or PEG in mice. QDs were administered to the animals at 

a concentration of 20 pmol/g animal weight. No necrosis was 

Table 2 Toxicological effects of nanoparticles associated with medical applications

Nanoparticle type Toxicological effects References

Quantum dots Potential for exposure to inorganic core (eg, cadmium) and  Derfus et al  2004
 resulting cytotoxic effects (eg, liver damage).
 Toxicity risk greatly reduced by coating with ZnS and soluble polymers (such as PEG). Ballou et al 2004
 Risks associated with production, handling, and storage of QDs need to be evaluated. Oberdorster et al 2005;  
  Hardman 2006
Metallic Iron oxide and gold nanoparticles are not toxic. Weissleder et al 1989;  
  Connor et al 2005; 
  Muldoon et al 2005; 
  Hainfeld et al 2006;.
 Surface functionalization may infl uence toxicity. Goodman et al 2004
Polymeric/liposomal  Not toxic since these nanoparticles have natural or highly biocompatible 
 components (eg, chitosan, PEG). Alonso 2004;  
  de Campos et al 2004

Abbreviations: PEG, poly(ethylene glycol); QD, quantum dots. 
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observed in liver, spleen, and bone marrow, where the QDs 

were observed to deposit, and the animals remained viable 

for 133 days when tissue analysis was performed.

The above two examples illustrate the complexities of 

measuring the toxicity of QDs. The in vitro and in vivo 

studies cannot be directly compared because of inherent dif-

ferences in experimental design (QD concentration measure-

ment being just one of many aspects of this) and differences 

in the organic coating. Nevertheless, they point to the need 

for long-term animal studies before QDs can be approved 

for commercial use; they also point to the potential need for 

controlled conditions in storing and handling QDs. Questions 

that arise with regard to the safety of QD manufacturing 

processes, such as the risk of QD exposure by inhalation 

or dermal contact, also need to be answered defi nitively 

(Oberdorster et al 2005; Hardman 2006). 

Toxicity of metallic nanoparticles
Muldoon and colleagues (2005) investigated the toxicity of 

superparamagnetic iron oxide nanoparticles used as MRI 

contrast agents in rats. The nanoparticles were administered 

to the brain by either intracerebral inoculation or intraarteri-

ally. Although the MRI signal intensity dropped over time 

(weeks to months), no pathological changes were observed 

in brain tissue in normal rats. These fi ndings are consistent 

with a toxicity study of iron oxide nanoparticles in mice 

and dogs performed nearly two decades ago by Weissleder 

and colleagues (1989). In this work, the nanoparticles were 

administered intravenously and no acute or subacute toxicity 

responses were found in the histology of targeted tissues or in 

blood tests. The safety of various iron oxide-based nanoparti-

cles used as contrast agents in clinical use is well-established 

(Lubbe et al 1999, 2001; Neuberger et al 2005).

Hainfeld and colleagues (2006) examined the toxicity of 

gold nanoparticles within the context of their use as X-ray 

contrast agents. When injected intravenously into mice, 

accumulation was observed in kidneys and within tumors 

(retention was low in the liver and spleen). Organ histology 

and blood analysis did not show any indication of toxicity 

up to 30 days following injection. These observations are 

consistent with the fi ndings from an in vitro study of gold 

nanoparticle toxicity performed by Connor and colleagues 

(2005) with a human leukemia cell line. 

The nanoparticles were taken up by the cells but did not 

cause cytotoxicity. The chemical surface modifi cation of 

gold nanoparticles can, however, impact toxicity. Goodman 

and colleagues (2004) recently demonstrated that attachment 

of a cationic polymer monolayer (alkyl thiol with a quater-

nary ammonium group) onto gold nanoparticles can render 

them cytotoxic. Attachment of an anionic monolayer (alkyl 

chain with carboxylate end group), however did not result 

in cytotoxic behavior.

Toxicity of polymeric and liposomal 
nanoparticles
This category of nanoparticles is probably the least problem-

atic with respect to toxicity because the particles are very 

often typically either made from or covered with natural 

or highly biocompatible polymers (such as PEG). In drug 

delivery applications, these particles often carry drugs that 

are cytotoxic by design (to kill cancer cells) but they are 

prevented from attacking other regions of the body by the 

selective targeting described earlier in this review.

The incorporation of natural polymers such as chitosan 

or natural lipids in the assembly of polymer- or liposome-

based nanoparticles is benefi cial because these polymers are 

not recognized as being foreign by the body and are readily 

metabolized (Alonso 2004; de Campos et al 2004). Nanopar-

ticles made from synthetic polymers can vary widely in the 

rate of clearance from the blood stream and accumulation 

in mononuclear phagocytic system (MPS) organs (MPS) 

organs (such as the liver and spleen) depending on polymer 

type and composition (Moghimi et al 2001; Owens and 

Peppas 2006). The incorporation of PEG in the nanoparticle 

structure can delay the removal of nanoparticles from the 

blood stream, as discussed earlier. PEG-coated particles are 

therefore considered to be less toxic than uncoated particles 

because they are less likely to saturate the MPS (Peracchia 

et al 1999; Plard and Bazile 1999).

Summary
Nanoparticles have made major contributions to clinical 

medicine in the areas of medical imaging and drug/gene 

delivery. While several innovations such as iron oxide 

contrast agents and many drug delivery systems are by now 

well-established, newer technologies continue to emerge 

following the same basic concepts of design. As these 

innovations advance to clinical application, attention must be 

paid to environmental and societal implications, particularly 

in areas such as quantum dots.
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