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In the heart, cardiac macrophages have widespread biological functions, including roles
in antigen presentation, phagocytosis, and immunoregulation, through the formation
of diverse cytokines and growth factors; thus, these cells play an active role in
tissue repair after heart injury. Recent clinical studies have indicated that macrophages
or elevated inflammatory cytokines secreted by macrophages are closely related to
ventricular arrhythmias (VAs). This review describes the role of macrophages and
macrophage-secreted inflammatory cytokines in ventricular arrhythmogenesis.
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ORIGIN AND FUNCTIONS OF CARDIAC MACROPHAGES

Tissue-resident macrophages have been observed in various organs, including the heart, brain,
liver, and lung, and originate from the embryonic lineage, which is different from that of
monocytic progenitors (Ginhoux et al., 2010; Davies et al., 2013; Moore et al., 2013). Cardiac
macrophages maintain a homeostatic population through their self-proliferative properties and
are independent of blood monocyte-derived macrophages. Recently, in steady-state conditions,
two resident cardiac macrophage subsets, MHC-IIlowCCR2- and MHC-IIhighCCR2- cells, were
identified by gene fate-mapping techniques. Under cardiac injury conditions, a third cardiac
macrophage population, MHC-IIhighCCR2+ cells, was identified in the heart (Epelman et al., 2014;
Honold and Nahrendorf, 2014). Cardiac CCR2− macrophages originate from the primitive yolk
sac and are replenished through local proliferation, whereas CCR2+ macrophages originate from
bone marrow-derived monocytes and repopulate through monocyte recruitment and proliferation.
Resident CCR2− macrophages are involved in angiogenesis and cardiomyocyte proliferation.
Bajpai et al. (2018) demonstrated that the human myocardium is populated by distinct subsets of
CCR2− macrophages, CCR2+ macrophages, and CCR2+ monocytes. Subsequently, Bajpai et al.
(2019) showed that the depletion of resident cardiac CCR2- macrophages in a murine model of
myocardial infarction increased the infarct area, reduced left ventricular (LV) systolic function,
and aggravated LV remodeling. Interestingly, a recent study published in Cell demonstrated that
resident macrophages in the steady-state heart facilitated electrical conduction, thus highlighting a
novel concept regarding the potential role of cardiac macrophages in modulating cardiac electrical
function (Hulsmans et al., 2017).

Under myocardial inflammatory conditions, monocyte-derived macrophages are recruited to
the heart and characterized as MHC-IIhighCCR2+ cells. Mouse blood monocytes have been
divided into Ly6Chi and Ly6Clow (Robbins et al., 2012; Yap et al., 2019). Ly6Chi monocytes
induce excessive monocytosis, accumulate in the injured area, and differentiate into macrophages.
Ly6Clow monocytes, derived from pro-inflammatory Ly6CHigh cells, are less recruited than their
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Ly6CHigh counterparts following MI. Ly6Clow monocytes
are responsible for patrolling and tissue injury repair.
However, human peripheral blood monocytes have 3
phenotypes: proinflammatory CD14++CD16− monocytes,
anti-inflammatory CD14+CD16++ monocytes with a
function similar to Ly6Clow monocytes, and proinflammatory
CD14++CD16+ monocytes secreting TNF-α (Heidt et al., 2014;
van der Laan et al., 2014).

MACROPHAGE ACTIVATION UNDER
INFLAMMATORY CONDITIONS

Macrophages are extremely heterogeneous and show adaptation
of the phenotype and functions according to the surrounding
microenvironment and aging (Gosselin et al., 2014; Pinto
et al., 2014). Macrophage activation produces distinct
functional phenotypes that are most commonly categorized
as classically “inflammatory” macrophages and alternatively
“anti-inflammatory” macrophages. This is a basic delineation
of macrophage phenotypes but an overly simplistic view of
macrophage behavior. Classically activated macrophages have
proinflammatory properties, whereas alternatively activated
macrophages are linked to cell proliferation and tissue repair
(Nahrendorf et al., 2007; Biswas and Mantovani, 2010; Italiani
and Boraschi, 2014). Classically activated macrophages secrete
proinflammatory cytokines such as interferin-1β (IL-1β),
IL-6, IL-12, tumor necrosis factor-α (TNF-α), and matrix
metalloproteinase (MMP) and chemokines, which play a key
role in host defense. Alternative activated macrophages produce
cytokines, including transforming growth factor-β (TGF-β),
IL-10, enzyme arginase-1 in mice (ARG 1) and chemokines,
which are involved in collagen formation and tissue repair.

After myocardial infarction (MI), macrophages are abundant
in the infarcted area. Ly-6CHigh monocytes from the bone
marrow and spleen are recruited to the infarcted zone
and then differentiate into macrophages. The levels of this
inflammatory subtype reach a peak approximately 3 days after
injury (Heidt et al., 2014). Between days 5 and 7, macrophage
populations are at their maximum within the infarct (Nian
et al., 2004; Libby, 2013). Classically activated macrophages
dominate the cell population of the infarcted zone. Classically
activated macrophages produce proinflammatory cytokines,
enhance the proinflammatory response and facilitate the
breakdown of collagen. The reparative phase is characterized
by phenotypic transition from inflammatory monocytes
and macrophages (Ly-6CHigh monocytes and classically
activated macrophages) to the anti-inflammatory subtypes
(Ly-6Clow monocytes and alternatively activated macrophages)
(Nahrendorf et al., 2007). The pool of cardiac macrophages is
replenished as Ly-6Clow monocytes are extensively recruited
to the infarcted area. Ly-6Clow monocytes mainly derive
from pro-inflammatory Ly-6CHigh monocytes (Hilgendorf
et al., 2014). After accumulation, Ly-6Clow monocytes are
thereby differentiated into alternatively activated macrophages.
Alternatively activated macrophages release IL-10, which inhibits
the proinflammatory effects of classically activated macrophages,

and TGF-β, which promotes tissue remodeling and angiogenesis
(Lavine et al., 2014). Fei et al. (2019) demonstrated that
activated macrophages directly connected to cardiomyocytes,
thereby prolonging the action potential duration (APD),
and ultimately led to APD heterogeneity and post-MI
arrhythmias via gap junctions. This finding suggests that
macrophages directly participate in ventricular arrhythmias after
myocardial injury.

MACROPHAGE-RELATED
INFLAMMATION AND VENTRICULAR
ARRHYTHMIAS

Previously, several clinical studies provided evidence that
increased inflammatory cytokines are closely associated with
cardiac arrhythmias (Lewek et al., 2014). These results suggested
that inflammation affects the initiation and progression of VAs.
The proarrhythmic effects involve substrate-triggered cardiac
electrical and structural remodeling. Inflammation contributes to
the occurrence of ectopic-triggered activity and re-entry (Wakili
et al., 2011; Dobrev et al., 2012; Aulin et al., 2015).

Electrophysiological changes (ion channel disturbance,
early and late afterdepolarizations), as well as gap junction
remodeling and enhanced myocardial fibrosis, are immune-
related mechanisms responsible for cardiac arrhythmias.
Macrophage-dependent and macrophage-independent
inflammation, including cytokine processes, serves as the
basis of proinflammatory-induced VAs. Inflammation in the
heart can also directly result in fluctuations in membrane
potential. VAs can be triggered by early afterdepolarizations
(EADs) and delayed afterdepolarizations (DADs). EAD results
from the reduced function of potassium channels or the
increased function of calcium or sodium channels. Abnormal
intracellular Ca2+ handling, such as sarcoplasmic reticulum (SR)
overload and uncontrolled Ca2+ leak, contributes to DAD (Kao
et al., 2010; Chilukoti et al., 2013). Furthermore, gap junctions
(GPs) are cell-to-cell pathways mediating electrical and chemical
signal exchange between adjacent myocytes. GPs can transmit
an orderly wave of electrical excitation. In the ventricles, gap
junction remodeling, including connexin43 (Cx43) reduction,
Cx43 dephosphorylation and Cx43 lateralization in pathological
conditions, produces arrhythmia substrates (Duffy, 2012). The
inflammatory response in the local heart area may play a crucial
role in GP remodeling. Finally, excessive fibrosis or cardiac
sarcoid infiltrated with abundant macrophages produces VAs
not only by the mechanism of triggered substrate but also
by re-entry (Okada et al., 2018). On the one hand, Haider
et al. (2019) showed that cardiac macrophages can develop
a fibroblast-like phenotype and directly contribute to the
formation of fibrosis after myocardial infarction. On the other
hand, macrophage-derived cytokines activate fibroblasts and
produce cardiac fibrosis (Jung et al., 2017; Shimodaira et al.,
2018; Abe et al., 2019). Cardiac fibrosis complicates electrical
impulse propagation, slows conduction velocity, and forms
unidirectional conduction blocks (Rohr et al., 1997; Rohr,
2012). Inflammation is also related to tissue repair after injury.

Frontiers in Physiology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 1113

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-01113 September 23, 2020 Time: 12:10 # 3

Chen et al. Macrophage and Ventricular Arrhythmias

Tissue repair is accompanied by parenchymal cell regeneration
and finally fibrous tissue formation, namely, scar formation
(Klein et al., 2000; Said et al., 2011; Gorenek et al., 2014;
Vonderlin et al., 2019).

MACROPHAGE-INDUCED CARDIAC
SYMPATHETIC REMODELING AND
VENTRICULAR ARRHYTHMIAS

Sympathetic overactivity and structural remodeling play a
critical role in ventricular arrhythmogenesis (Podrid et al., 1990;
Shen and Zipes, 2014; Kalla et al., 2016). In an experimental
study, sympathetic nerve stimulation caused a change in
ventricular electrophysiology, reduced the ventricular fibrillation
threshold and triggered Vas (Mantravadi et al., 2007; Ng
et al., 2009). Although it is difficult to induce VAs in mice,
norepinephrine (NE) injected into the epicardial tissue of guinea
pigs elicits triggered automaticity, and computational modeling
identified a Ca2+ overload mechanism in cardiac ventricular
electrophysiology. This finding supports the hypothesis that
heterogeneity or gradients of sympathetic activation are
proarrhythmic (Vaseghi et al., 2012). A growing body of
work has demonstrated that macrophages can contribute to
sympathetic hyperactivity. Levick et al. (2010) showed that
substance P released by sympathetic afferent fibers could bind
to the neurokinin-1 receptor of macrophages to induce the
production of macrophage-derived angiotensin II. Angiotensin
II could further stimulate the terminus of sympathetic efferent
fibers and then increase the production of norepinephrine. Thus,
macrophages play a critical role in mediating VAs relevant to
sympathetic activity by enhancing the production of angiotensin
II (Levick et al., 2010). Furthermore, peripheral proinflammatory
factors produced by macrophages, such as IL-1β, IL-6, and
TNF-α, can transmit signals to the brain by the circulation or
through afferent fibers, which in turn activate the sympathetic
nervous system (SNS).

A proarrhythmic substrate is usually formed by regional
myocardial remodeling, as well as heterogeneity of sympathetic
innervation (Barber et al., 1983; Tomaselli and Zipes, 2004).
The heterogeneity of sympathetic innervation is called nerve
sprouting (Cao et al., 2000; Chen et al., 2001). Emerging data
have indicated that cardiac sympathetic sprouting and cardiac
electrical remodeling are involved in the post-MI remodeling
process (Zipes and Rubart, 2006; Wang et al., 2012). Sympathetic
nerve sprouting may produce electrical and structural
remodeling following AMI, resulting in electrophysiological
instabilities and finally inducing VAs. In fact, studies have shown
that the inhibition of sympathetic nerve sprouting induced by
MI can exert antiarrhythmogenic effects (Wernli et al., 2009;
Yang et al., 2016; Yin et al., 2016; Hu et al., 2019). Sympathetic
nerve remodeling is a complex pathophysiological process,
and sympathetic nerve sprouting is closely associated with the
inflammatory reaction and is primarily present at the infarct
border zone, where abundant macrophages and macrophage-
derived cytokines are observed. Macrophages could promote
sympathetic hyperinnervation via the regulation of nerve growth

factor (NGF) expression (Yin et al., 2016). Atorvastatin could
effectively improve cardiac sympathetic nerve remodeling by
modulating macrophage polarization (Yang et al., 2016). It was
recently demonstrated that inhibiting miR-155 can downregulate
NGF expression by decreasing M1 macrophage polarization,
subsequently impairing sympathetic nerve remodeling and VAs
induced by acute myocardial infarction (Wernli et al., 2009;
Hu et al., 2019).

Sympathetic nervous system can affect macrophages at both
the systemic and regional levels (Chen et al., 2016). SNS
fibers innervate the primary and second lymphoid organs
(bone marrow, thymus, spleen, and lymph nodes) and are
capable of modulating immune functions. The SNS contributes
to the differentiation, maturation, recruitment, and regulation
of macrophages. Moreover, the SNS directly innervates the
target lesion, plays a proinflammatory role and promotes M1
polarization. Norepinephrine released from sympathetic nerve
endings could bind to α- or β-adrenergic receptors expressed
on immune cells (T cells, B cells, natural killer cells, and
macrophages). This response gives rise to a cascade of events,
including the production of proinflammatory cytokines and
recruitment of leukocytes. Therefore, these changes might form
a vicious circle between SNS activity and M1 polarization, both
contributing to ventricular arrhythmogenesis.

CYTOKINES SECRETED BY
MACROPHAGE AND VENTRICULAR
ARRHYTHMIAS

Macrophages secrete multiple cytokines. Proinflammatory
factors produced by macrophages, such as IL-1β, IL-6, TNF-α,
and matrix metalloproteins (MMPs), can regulate cardiac SNS
activity, form a proarrhythmic substrate and directly affect
myocardial electrophysiology (Hirayama et al., 2017). VAs might
be induced by cytokines derived from macrophages in both
acute and chronic diseases. It was shown that cytokines derived
from macrophages following acute MI could target cardiac
myocytes and induce electrophysiological remodeling, including
a reduction in repolarizing K+ currents, Cx43 expression
and intracellular Ca2+ mishandling (Pinto and Boyden, 1999;
Francis Stuart et al., 2016). These changes could provide the
trigger and substrate for ventricular arrhythmias (De Jesus
et al., 2017). In the case of chronic inflammation, a growing
body of clinical evidence has demonstrated that the serum
concentration of macrophage-derived cytokines was significantly
higher in post-MI patients with ventricular arrhythmias than
in post-MI patients without ventricular arrhythmias (Streitner
et al., 2007, 2009; Francis Stuart et al., 2016). Furthermore,
Monnerat et al. (2016) experimentally demonstrated that IL-β
derived from cardiac macrophages could trigger ventricular
arrhythmias in mice. Even in the absence of cardiac injury,
systemic inflammation was found to be related to an increased
risk for ventricular arrhythmias. Extracardiac injury was also
shown to enhance macrophage-related inflammation in the
heart. VAs are also one of the most critical complications after
renal or brain injury. Renal ischemia reperfusion increased
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susceptibility to ventricular arrhythmias depending on activation
of NLRP3-CASP1-IL-1β; accordingly, this effect was inhibited
by macrophage depletion (Alarcon et al., 2019). Rheumatoid
arthritis is a chronic inflammatory disease, and increased
serum concentrations of macrophage-derived cytokines were
detected. Increased susceptibility to VAs was also found in
patients with rheumatoid arthritis (Lazzerini et al., 2017a).
The role of individual cytokines on VAs is listed below in
detail (Figure 1).

IL-1β and Ventricular Arrhythmias
IL-1, as an activating factor of endothelial cells, could regulate
and initiate inflammatory responses. The IL-1 family is a group
of 11 cytokines. IL-1α and IL-1β are the most studied members
because of their early discovery and significant proinflammatory
effects. IL-1β is synthesized as a precursor protein after
stimulation by activated monocyte-macrophages (Guillén et al.,
1995; Saxena et al., 2013).

IL-1β is a crucial regulator in the inflammatory response after
MI and is involved in the modulation of immune cell recruitment,
cytokine production, and extracellular matrix turnover. Clinical
studies have revealed that the levels of IL-1β in both tissue
and plasma are significantly increased in patients with VAs.
These results suggest that in addition to the above biological
functions, IL-1β might be an important mediator of ion channel
remodeling, thereby producing Vas (Fernández-Sada et al., 2017;
Abbate et al., 2020).

Emerging evidence has demonstrated that IL-1β can directly
affect the electrical properties of cardiomyocytes (CMs). IL-
1β resulted in changes in Ca2+ handling (Alarcon et al.,
2019). Li and Rozanski (1993) found an increase in ICaL in
guinea pig myocytes, inducing the prolongation of the action
potential duration (APD) and the effective refractory period
(ERP). Moreover, Liu et al. observed that IL-1β decreased the
responsiveness of ICaL to β-adrenergic stimulation (Liu et al.,
1999). IL-1β, synergistic with TNF-α application, also affected
SR Ca2+ release and reuptake in rat ventricular myocytes, which
contributed to the depressed Ca2+ transient and contractility
(Duncan et al., 2010). Spontaneous SR Ca2+ release may increase
the susceptibility to arrhythmias, leading to cell depolarization.
Recently, Monnerat et al. (2016) showed that IL-1β produced
by macrophages derived from the hearts of individuals with
diabetes mellitus could directly target cardiomyocytes to induce
VAs. IL-1β then induces a decrease in the Ito current and
an increase in Ca2+ sparks, resulting in increased electrical
vulnerability to arrhythmias. In a mouse model, De Jesus et al.
(2017) found that IL-1β inhibition improved conduction velocity,
reduced APD dispersion, improved intracellular Ca2+ handling,
decreased the transmembrane potential and the magnitude of the
Ca2+ alternans, and thus reduced spontaneous and inducible Vas
(Su et al., 2018).

IL-1β contributes to electrical function not only through direct
effects but also indirect effects on VAs. Wang et al. confirmed that
IL-1β injection into the left stellate ganglion (LSG) could increase
sympathetic activity and the occurrence of VA. IL-1β injection
induced cardiac electrical remodeling, and this response was
attenuated by IL-1Ra preinjection (Wang et al., 2017). Cardiac

fibrotic substrate and Cx43 remodeling are important mediators
responsible for the heterogeneity in ventricular conduction for
reentry. Considerable experimental data have shown that excess
fibrosis promotes ectopic triggers in the hearts of aged rats
and rabbits (Bapat et al., 2012; Wang et al., 2017). This kind
of proarrhythmic substrate produced early afterdepolarizations,
triggered activity and reduced conduction velocity (Bapat et al.,
2012). Previous study has shown that IL-1β plays an important
role in the formation of fibrotic substrates and is implicated in
Cx43 remodeling, induced cell–cell uncoupling, lateralization,
and degradation (Baum et al., 2012).

Thus, macrophage-derived IL-1β during myocardial healing
could induce deleterious electrophysiological consequences.

TNF-α and Ventricular Arrhythmias
TNF-α is one of the most important inflammatory factors and
is mainly secreted by activated macrophages. Myocardial TNF-
α expression was significantly upregulated post AMI (Feldman
et al., 2000). TNF-α has widespread biological effects on
cell proliferation, differentiation, apoptosis and inflammatory
reactions (Libby et al., 2002; MacEwan, 2002). Clinical evidence
confirmed that the elevation of plasma TNF-α in patients with
AMI was closely related to the occurrence of Vas (Halawa et al.,
1999; Eskandarian et al., 2013). Experimental studies also showed
that transgenic animals with TNF-α overexpression are prone to
severe Vas (London et al., 2003; Chen et al., 2010).

TNF-α may alter the electric activity of cardiac myocytes by
different mechanisms and finally induce Vas (Petkova-Kirova
et al., 2006). TNF-α modulates cardiac K+ channels. TNF-α
can induce a significant reduction in Ito density, modify Ito
inactivation, and downregulate Kv4.2 protein expression. TNF-
α could inhibit the cardiac delayed rectifier K current via
the protein kinase A (PKA) pathway (Hatada et al., 2006).
Furthermore, TNF-α appears to have a significant impact on
cellular Ca2+ release and uptake. This molecule disrupted cellular
Ca2+ cycling, which increased the probability of proarrhythmic
spontaneous Ca2+ release from the SR, which may contribute to
the increased incidence of arrhythmia in sepsis in isolated rat
ventricular myocytes (Duncan et al., 2010). It was found that
the regulation of Ca2+ inflow of cardiac myocytes was achieved
by the phospholipase A2/arachidonic acid (PLA2/AA) pathway
(Amadou et al., 2002).

Slowed myocardial conduction velocity (CV) increases the
risk of re-entrant excitation, predisposing patients to cardiac
arrhythmia. CV is determined by the ion channel and cellular
interconnections. George et al. (2017) demonstrated that TNFα

could reduce CV by altering electrical coupling between myocytes
in guinea pig hearts. The effects of TNF-α on gap junction
coupling have been extensively studied. TNF-α alters Cx43
expression, reduces Cx43 phosphorylation, and alters Cx43
redistribution, which is important in modulating Cx43 channel
conductance (Fernandez-Cobo et al., 1999; Sawaya et al., 2007;
George et al., 2017).

IL-6 and Ventricular Arrhythmias
IL-6 is also involved in multiple biological effects, including
cardiomyocyte response to injury (Yang et al., 2004;
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FIGURE 1 | The underlying mechanisms of macrophages or macrophage-related cytokines produce VAs. In the steady state, resident cardiac macrophages
originate from the yolk sac and fetal liver progenitors. Following myocardial inflammation, blood monocytes derives from increased production in the bone marrow
and spleen. Monocyte-derived macrophages generally are divided into M1 “inflammatory” macrophages and “anti-inflammatory” M2 macrophages. M1
macrophages secrete pro-inflammatory cytokines including IL-1β, TNF-α, IL-6, and MMP-9. Macrophages or macrophage-related cytokines induce the occurrence
of VAs through the following four pathways. (1) Inflammation increases afferent nerve traffic and then leads to anatomic remodeling within the left stellates ganglion
remodeling and sympathetic sprouting. NE released from sympathetic terminals changes ventricular electrophysiology. SNS remodeling and over-activated
sympathetic tone increase the propensity for cardiac VAs. However, in turn sympathetic tone aggravates macrophage activation. (2) Arrhythmogenic
electrophysiological remodeling. Cytokines bind to the receptors and lead to ion channel remodeling, finally resulting in APD prolongation and ERP shorting. Altered

(Continued)
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FIGURE 1 | Continued
ionic currents contribute to EAD and DAD increasing the arrhythmogenic substrate. (3) Macrophage-related cytokines induce the scar formation and CV
heterogeneity, resulting in re-entry. Structural remodeling also induces EDA and DAD, producing arrhythmogenic triggers. (4) Inflammation directly changes the Cx43
structural and functional remodeling. However, whether inflammation promotes Cx43 remodeling between myocytes and macrophages still remain unknown. It
needs further study. APD, action potential; Cx43, connexin43; CV, conduction velocity; DAD, delayed afterdepolarization; EDA, early afterdepolarization; IL-1β,
HSPCs, hematopoiesis precursor cells; interleukin 1β; IL-6, interleukin 6; MMP-9, matrix metalloproteinases 9; NE, norepinephrine; TNF-α, tumor necrosis factor-α.

Alí et al., 2018). Serum levels of IL-6 and its mRNA and
protein expression in cardiac tissues are significantly increased
in patients with cardiac diseases, including heart failure,
myocarditis, septic cardiomyopathy, myocardial infarction,
and cardiac myxoma (Ikeda et al., 1992). IL-6 plays a critical
role in the pathophysiology of these cardiac disorders. A study
demonstrated that elevated serum IL-6 levels were associated
with an increase in susceptibility to spontaneous ventricular
tachyarrhythmia in patients with coronary artery disease
(Streitner et al., 2007). Recently, accumulating data obtained
from patients with myocarditis/endocarditis and systemic
autoimmune diseases (Ukena et al., 2011), particularly
rheumatoid arthritis (Lazzerini et al., 2015a) and other
connective tissue diseases, demonstrated that circulating
IL-6 levels are elevated in these patients. Increased IL-6 levels
are correlated with vulnerability to QT interval prolongation,
which contributes prominently to arrhythmic events and torsade
de pointes (TdP) (Adlan et al., 2015; Lazzerini et al., 2015b;
Lazzerini et al., 2017b). A study also indicated that IL-6 possessed
a potential direct electrophysiological effect on ion channels that
can alter the APD and QTc interval (Aromolaran et al., 2018).

Emerging experimental evidence showed that IL-6 could
regulate the electrophysiological properties of cardiomyocytes.
Previous data suggest that IL-6 may play a critical role in
contributing to the modulation of ICa,L and IK currents, and both
factors are active contributors to cardiac instabilities. Hagiwara
et al. (2007) found that IL-6 could regulate ICaL and density.
After acute (30 min) exposure to IL-6 and soluble IL-6 receptor
(IL-6R), the ICa,L density in mouse ventricular myocytes was
significantly increased, which was strongly associated with LQTS.
IL-6 was also shown to cause QT prolongation by suppressing
IKr . Ademuyiwa et al. demonstrated that IL-6 alone or in
combination with soluble IL-6R could inhibit the IKr peak and
result in the prolongation of APD via Janus kinase (JAK) pathway
activation, forming the basis for the observed clinical QT interval
prolongation (Aromolaran et al., 2018). In vitro studies have
shown that IL-6 suppresses peak cytosolic intracellular Ca2+

and cell contraction of cardiomyocytes within minutes due to
activation of Ca2+-dependent nitric oxide synthetase (Kinugawa
et al., 1994; Yu et al., 2003; Monnerat et al., 2016).

MMP-9 and Ventricular Arrhythmias
In hearts, myocardial injury was shown to activate macrophages
to increase MMP-9 secretion. Clinical data have shown that
serum MMP-9 levels are significantly elevated in patients with
cardiac dysfunction (Li et al., 1998; Thomas et al., 1998;
Sivakumar et al., 2008) and are closely associated with increased
VAs and sudden cardiac death (Flevari et al., 2012; Hästbacka
et al., 2012; Turkdogan et al., 2017), while the downregulation

of MMP-9 by gene modification or pharmacological inhibition
significantly reduced the incidence of VAs in a mouse model
(Weng et al., 2016). The above evidence indicates that MMP-9
plays a critical role in the pathophysiology of VAs.

Experimental data demonstrated that MMP-9 was mainly
involved in the regulation of cardiomyocyte electrophysiological
properties via the formation of cardiac fibrosis, gap junction
remodeling and calcium homeostasis (Weng et al., 2016). Cardiac
fibrosis, Cx43 reduction and lateralization are prerequisites of
ventricular conduction heterogeneity for re-entry. MMP-9 is
a key regulator of the reparative phases of post-MI healing
and a necessary modulator for proper scar formation. MMP-
9 could enhance myocardial remodeling, result in excessive
extracellular matrix degradation, increase myocardial fibrosis,
and thus contribute to re-entry and eventually lead to VAs.
MMP-9 might also degrade Cx43, which is required for
proper cell–cell electrical coupling (Fontes et al., 2012; Nguyen
et al., 2014). Mukherjee et al. (2010) demonstrated that
MMP-9 activity corresponded to increased Cx43 lateralization
and reduced conduction velocity. Excessive MMP-9 could
disrupt normal cell–cell electrical communication post-MI.
A recent study showed that MMP-9 could increase Ca2+

leakage from the SR, which could depolarize cardiomyocytes
and trigger fatal arrhythmia. MMP-9 also decreases CD36
and increases PKA activity. Activated PKA subsequently
triggers ryanodine receptor 2 (RyR2) phosphorylation, leading
to a higher probability of RyR pore opening, followed by
increased calcium leakage. An increase in calcium sparks
activates an arrhythmogenic depolarizing inward Na+/Ca2+

exchange current, which causes delayed afterdepolarizations
and triggers VAs and sudden cardiac death (Marx et al.,
2000; Dobrev and Wehrens, 2014; Wehrens et al., 2004;
DeLeon-Pennell et al., 2016).

THE CONNEXINS BETWEEN
MACROPHAGES AND
CARDIOMYOCYTES ON VENTRICULAR
ARRHYTHMIAS

In addition to antigen presentation, phagocytosis and
immunomodulation, cardiac macrophages have been proven
to directly induce cardiac electrophysiological changes. This
finding substantially changed our previous knowledge of
macrophage function. Previous studies have shown that the
transmembrane potential is −26 mV for mouse macrophages
and −18 mV for guinea pig macrophages (Dos Reis et al.,
1979). Macrophages present several different types of K+
and Cl− channels in the membrane. Membrane potential
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and ionic conductance regulate many cell functions, including
transmembrane signaling, phagocytosis, secretion, and motility
(Udagawa, 2003; Pinto, 2017). However, previous data
did not show that macrophages could directly modulate
cardiac electrophysiology.

A recent study reported by Hulsmans et al. (2017)
demonstrated that cardiac resident macrophages are integral
for normal heart rhythm. These researchers found that cardiac
macrophages are highly abundant at the atrioventricular
node (AVN) in mice and humans. They found that
macrophages connect to cardiomyocytes at the AVN via
Cx43, forming punctate junctions between macrophages and
cardiomyocytes. Cx43-mediated macrophage-CM coupling
served as electrical coupling of the two cell types. In
an in vitro study, cocultures of macrophages and mouse
neonatal AVN CMs also established Cx43 coupling between
the two cell types. The researchers further showed that
depolarization of macrophages improved AVN conductance.
However, depletion of macrophages resulted in AVN block,
resulting in arrhythmia.

In the injured heart, the number of cardiac macrophages
is significantly increased compared with that in the uninjured
heart. Considering that resident macrophages might participate
in cardiac electrophysiology through Cx43 between macrophages
and myocytes, it would be interesting to investigate whether
monocyte-derived macrophages recruited to the myocardium
under inflammatory conditions also connect to myocytes by
Cx43, affecting cardiomyocyte electrophysiology and resulting in
VAs. Fei et al. (2019) found that proinflammatory macrophages
formed gap junctions with cardiomyocytes and accumulated
in MI border zones 3 days post-MI. These researchers
further demonstrated that non-inflammatory macrophages
connected with myocardiocytes could shorten APD90, yet
proinflammatory macrophages could prolong APD90 in an
in vitro coculture experiment. This finding indicates that the
Cx43 connection between macrophages and cardiomyocytes
leads to APD heterogeneity and post-MI arrhythmias.
Therefore, targeting macrophage-CM coupling could be a
potential useful target when treating inflammation-associated
conduction abnormalities.

FUTURE THERAPEUTIC DIRECTION
AND CONCLUSION

Macrophages appear to play direct and indirect roles in the
occurrence of VAs. Activation of cardiac macrophages induces
VAs through sympathetic nerve sprouting, proinflammatory
cytokine production, and the direct influence of cardiac
electrophysiology. Previously, inflammation has always been
treated as an epiphenomenon and not suitable as a target
for intervention. However, based on experimental and clinical
evidence, anti-inflammatory therapy targeting the inflammatory
cytokines contributed to a benefit from cardiovascular diseases
(Ridker et al., 2017; Wang et al., 2017). Canakinumab Anti-
inflammatory Thrombosis Outcomes Study (CANTOS) has
been provided the evidence that IL-1β treated as a target and
reduced major cardiovascular events. It opens a landscape
of cardiovascular diseases therapy (Ridker et al., 2017).
Therefore, immunotherapy for therapeutic interventions,
targeting these functional elements of macrophages and
cytokines blockade, are likely to be a promising new research
avenue and might be valuable for the purpose of developing new
therapeutics to reduce VAs.
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