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A B S T R A C T

BACKGROUND AND PURPOSE: Aneurysm hemodynamics play an important role in aneurysm growth and subsequent rupture.
Within the available hemodynamic characteristics, particle residence time (PRT) is relatively unexplored. However, some studies
have shown that PRT is related to thrombus formation and inflammation. The goal of this study is to evaluate the association
between PRT and aneurysm rupture and morphology.
METHODS: We determined the PRT for 113 aneurysms (61 unruptured, 53 ruptured) based on computational fluid dynamic
models. Virtual particles were injected into the parent vessel and followed during multiple cardiac cycles. PRT was defined as the
time needed for 99% of the particles that entered an aneurysm to leave the aneurysm. Subsequently, we evaluated the association
between PRT, rupture, and morphology (aneurysm type, presence of blebs, or multiple lobulations).
RESULTS: PRT showed no significant difference between unruptured (1.1 seconds interquartile range [IQR .39-2.0 seconds])
and ruptured aneurysms (1.2 seconds [IQR .47-2.3 seconds]). PRT was influenced by aneurysm morphology. Longer PRTs were
seen in bifurcation aneurysms (1.3 seconds [IQR .54-2.4 seconds], P = .01) and aneurysms with blebs or multiple lobulations
(1.92 seconds [IQR .94-2.8 seconds], P < .001). Four of five partially thrombosed aneurysms had a long residence time (>1.9
seconds).
CONCLUSIONS: Our study shows an influence of aneurysm morphology on PRT. Nevertheless, it suggests that PRT cannot be
used to differentiate unruptured and ruptured aneurysms.
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Introduction
As patients with ruptured intracranial aneurysms have a high
case fatality, preventive treatment of unruptured intracranial
aneurysms is often considered.1 However, both surgical and
endovascular interventions may cause considerable complica-
tions, such as vessel perforation and thromboembolic stroke.2,3

Thus, a need exists to accurately determine the actual rupture
risk to decide which unruptured aneurysms should be treated.
Currently, the rupture risk is based on morphological indices
and patient characteristics such as size, shape, location, age, hy-
pertension, and a history of subarachnoid hemorrhage.4,5 These
variables are combined into the PHASES score, which calcu-
lates the 5-year rupture risk. As a result, many small aneurysms
and aneurysms in the anterior circulation remain untreated.6

Several studies, however, have shown that a large percentage
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(�60%) of the ruptured aneurysms are small (<7 mm). There-
fore, additional parameters are needed to further improve rup-
ture risk prediction.4,7

Hemodynamics play an important role in the develop-
ment, growth, and subsequent rupture of an aneurysm, and
are frequently studied with computational fluid dynamics
(CFD), which determines velocity and pressure using computer
simulations.8 Various hemodynamic parameters have been ex-
tensively studied, such as the wall shear stress (WSS) and oscil-
latory shear index (OSI).5,9,10 Pathologic flow conditions—either
high or low wall shear stress—lead to degenerative wall remod-
eling and inflammation.11,12 However, the exact mechanisms
are still unclear.

Another way to quantify hemodynamics inside aneurysms
is the particle residence time (PRT), which can be acquired
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Fig 1. Particle tracking. (A) Spherical Point Source placed in the parent vessel containing 1,000,000 particles. (B) The inflow of particles in
the aneurysm and (C) continuing until the top of the dome. (D) Multiple-vortexes distribute in the aneurysm region. (E) Most particles entered
the normal vasculature but a proportion is trapped in the intra-aneurysmal vortices and (F) the aneurysm region gradually empties. The red
dot on the electrocardiogram-signal in the bottom right corner marks the approximate time of the snapshot.

through postprocessing of CFD data.13 The PRT reflects the
time blood spends inside a specific region, such as an aneurysm.
It has been shown that an increased PRT is associated with
thrombus formation.14,15 Longer PRTs likely result in aneurysm
instability as it facilitates the activation of inflammatory cells and
leukocyte transmigration into the aneurysm wall.8,16,17 Hereby,
the PRT influences the balance between repair and degradation
of the aneurysm wall. However, it is unclear whether there is
an association between PRT and rupture. We therefore evalu-
ated the association between PRT, rupture, and aneurysm mor-
phology in a prospectively collected cohort of ruptured and
unruptured intracranial aneurysms.

Methods
Patients and CFD Data

This study used the CFD data set of the HEROICA study.10

This study evaluated 102 patients with 117 saccular intracra-
nial aneurysms, both ruptured (n = 55 [47%]) and unruptured
(n = 62 [53%]). The study was approved by the institutional re-
view board and written informed consent was obtained from all
patients. Three aneurysms (one unruptured and two ruptured)
were excluded because CFD data were missing or incomplete.
The ruptured aneurysms were identified by the presence and
location of the subarachnoid hemorrhage on admission Com-
puted Tomography (CT). In 6 patients with multiple aneurysms,
two experienced neuroradiologists (C.B.L.M.M. and R.v.d.B)
inspected all clinical and radiologic data to select the most likely
source of hemorrhage. The other aneurysms were classified as
unruptured.

All patients underwent 3D rotational angiography (3DRA)
as part of the standard clinical workup. These 3DRAs were used
to segment the aneurysm and parent vasculature and create a

mesh with tetrahedral elements. Segmentation was done semi-
automatically using a level-set method and manual correction.
Additionally, the neck size was reviewed by two neuroradiolo-
gists. Subsequently, CFD was performed for intra-aneurysmal
flow calculations. Patient-specific velocity profiles obtained with
Phase Contrast MR were used as inflow boundary condition,
and the inflow profiles for specific locations can be seen in previ-
ous work.18 Zero pressure boundary conditions were prescribed
at all outlets. Blood was assumed to have an attenuation of
1,040 kg/m3 and a dynamic viscosity of .004 Pa/seconds. Three
cardiac cycles were simulated, but only the third complete cycle
was used. All simulations were performed with Fluent (Ansys,
Canonsburg, PA).

PRT Calculation

We defined PRT as the time needed for 99% of the particles that
entered the aneurysm to leave the aneurysm. This number is
selected as slower particles are more likely to cause alterations
to the vessel wall and thrombus formation. To acquire this num-
ber, we simulated the particle tracks over time. First, the CFD
velocity fields were imported into ParaView 5.1.2 (Kitware,
Clifton Park, NY). To acquire a high temporal resolution, linear
temporal interpolation was done with an interval of .01 second.
Hereby, the particles could be tracked more accurately. A
spherical source containing one million massless fluid particles
was positioned in the inflow parent vessel of the aneurysm, see
Figure 1A. The radius of this sphere was equal to the inflow ves-
sel radius. For each interpolated time-step, the location of the
particles was calculated through Lagrangian particle tracking
using the particle tracer filter available in ParaView. Particles
were tracked for at least four cardiac cycles. An example of the
tracking is shown in Figure 1. The resulting data contain the
position of all particles at each time-step, see Figure 2.
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Fig 2. Normalized number of particles at each time-step during one cardiac cycle. The first dotted red line shows the particle half-life, and the
second dotted red line shows the selected value for the particle residence time. The left plot shows data of a ruptured aneurysm, and the right
plot shows data of an unruptured aneurysm.

We isolated the aneurysm from the vasculature to evaluate
whether a particle was inside the aneurysm by positioning a
plane at the aneurysm neck and cutting the 3D model along
this plane (G.R.). The position of the neck plane was checked
by a second observer (E.L.). In case of disagreement, the final
neck plane was selected in consensus.

The position of all the particles at each time-step and the
location of the aneurysm volume were imported into Matlab
2016a (Mathworks, Natick, MA). Subsequently, we calculated
the number of particles within the aneurysm at each time step.

Statistical Analysis

Patient characteristics were expressed as mean ± standard de-
viation for normal distributions. Non-normally distributed vari-
ables were expressed as median and interquartile range (IQR,
25-75%). Normality of the data was tested using a one sample
Shapiro-Wilk test.

The association between rupture status and PRT and con-
ventional rupture risk determinants—namely, type, age, high-
risk location (based on the phases score6), multiple lobulations,
maximum diameter—was evaluated using univariable logistic
regression analysis.

Differences in PRT between aneurysm configurations were
tested using a T-test in case of normal distribution and a Mann-
Whitney U test in case of a non-normal distribution. We com-
pared bifurcation versus sidewall aneurysms and aneurysms
with versus without blebs or multiple lobulations. Additionally,
a Spearmen’s rank correlation was done to determine the rela-
tionship between OSI, average and maximum WSS and PRT.

A P-value smaller than .05 was considered statistically signif-
icant. All analyses were performed by using the SPSS version
24, (IBM, Armonk, NY).

Results
This study included 99 patients (61 [54%] women) with 114
aneurysms. The mean age was 54.9 ± 12.0 years. Although a
trend was seen toward more ruptured aneurysms at the commu-
nicating and posterior arteries, no significant differences were
found (P = .08), see Table 1. In 13 (11%) of the 114 aneurysms,
more than four cycles were needed for 99% of the particles

to leave the aneurysm and in 10 of these cases, more than six
cycles were needed. The median PRT for the total population
was 1.19 seconds (IQR: .41-2.21).

Association of PRT with Rupture Status

Median PRT was 1.14 seconds (IQR: .39-2.04) and 1.20 sec-
onds (IQR: .47-2.31) for unruptured and ruptured aneurysms,
respectively. No significant difference was seen in PRT between
unruptured and ruptured aneurysms, P = .79. The distribution
of the PRT for both groups is displayed in Figure 3A. As shown
in Table 1, only the presence of blebs or multiple lobulations
was significantly associated with rupture status P < .05.

The correlation between PRT and OSI was not significant
(.17, P = .07). However, a significant negative correlation was
seen between PRT and WSS (−.47 and −.28, P < .001 and
P = .002 for average and maximum WSS, respectively).

Association of PRT with Morphology

As shown in Figures 3B and C, PRT is influenced by aneurysm
morphology. PRT is significantly longer in bifurcation
1.27 seconds (IQR: .54-2.40) compared to sidewall aneurysms
.49 seconds (IQR: .14-1.62), P = .01 (Fig 3B). A significantly
longer PRT was also seen in aneurysms with blebs or multiple
lobulations: 1.92 seconds (IQR: .94-2.75) versus .82 seconds
(IQR: .25-1.42) in regular aneurysms, P < .001 (Fig 3C). The
PRT inside the bleb—the time it takes for 99% of the particles
that entered the bleb to leave again—was .5-10 seconds. Figure 4
shows the remaining particles within an aneurysm with multi-
ple blebs after four cardiac cycles. In this aneurysm, most par-
ticles that remain are inside one of the blebs. Five aneurysms
were partially thrombosed (two ruptured), including four side-
wall aneurysms and one bifurcation aneurysm. Four out of five
thrombosed aneurysms had a long PRT (>1.9 seconds).

Discussion
We found no significant association between the PRT and rup-
ture status. However, PRT was associated with aneurysm mor-
phology. Longer PRTs were seen in bifurcation aneurysms,
aneurysms with blebs or multiple lobulations, and partially
thrombosed aneurysms.
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Table 1. Univariable Analysis for the Relation Between PRT and Conventional Risk Factors and Rupture Status

Univariable

Characteristic Unruptured N = 61 Ruptured N = 53 Odds ratio (95% CI) P-value

PRT (second) Median (IQR) 1.1 (.39-2.0) 1.2 (.47-2.3) 1.03 (.81-1.32) .79
Age (years) 55 ± 11 55 ± 13 1.01 (.98-1.04) .70
Location:

ICA 12 (20%) 8 (15%) Ref
MCA 27 (44%) 8 (15%) .44 (.14-1.47) .18
AcomA/PcomA/Posterior 22 (36%) 37 (70%) 2.52 (.89-7.12) .08

Presence of blebs or multiple lobulations 17 (28%) 23 (46%) 2.21 (1.00-4.85) .05
Size (mm) Median (IQR) 6.6 (4.6-9.1) 6.4 (4.3-7.9) .93 (.83-1.05) .26
Aneurysm type (bifurcation) 39 (64%) 41(77%) .52 (.23-1.19) .12

Abbreviations: N = number; IQR = interquartile range; ref = reference; PRT = particle residence time; ICA = internal carotid artery; MCA = middle cerebral artery;
AcomA = anterior communicating artery; PcomA = posterior communicating artery.

In this study, both PRT and the conventional risk factors
(age, size, and location)6 showed no significant association with
rupture status. Our study created the CFD-models based on
3DRA. In patients with ruptured aneurysms, 3DRA was part
of standardized clinical workflow, while for patients with un-
ruptured aneurysms 3DRA was only done when treatment was
considered. Therefore, a selection bias is present as treatment
is only considered in patients with a higher rupture risk, based
on conventional criteria such as size and location. A prospec-
tive trial is needed to examine the relation between PRT and
rupture more thoroughly.

A relation between flow conditions and rupture has been
shown in several studies,5,19,20 as pathologic flow conditions lead
to degenerative wall remodeling and inflammation.11,12 How-
ever, recent studies showed that degeneration and inflamma-
tion occur in both high and low flow conditions.8,21 Therefore,
the relation between PRT and rupture might not be straightfor-
ward. Flow stagnation could lead to thrombus formation and a
hypertrophic vessel wall.14,22 This might reflect ongoing repair,
reducing the risk of rupture.

We observed significant longer residence times in
aneurysms with blebs or multiple lobulations. This finding is
in line with the study of Epshtein and Korin, who show that
particles linger in the aneurysm vortex and stasis regions.23 A
slower flow is often present within the bleb or lobulation, result-
ing in higher PRT. Previous studies showed that bleb formation
occurs at regions of high wall shear stress, but that the resulting
bleb has a thin degenerated wall and a low wall shear stress.24,25

A long residence time likely gives inflammatory cells more
time to adhere to the wall. This assumption could be ex-
plored by simulating monocyte deposition as proposed by
Hardman et al, who developed a method for abdominal aor-
tic aneurysms.16 The method combines particle tracking and a
model for macrophage adhesion to the wall to find hotspots of
monocyte deposition. The model could be adapted to match
the intracranial aneurysm pathology. Concurrently, such simu-
lated regions of monocyte deposition can be correlated to other
imaging markers such as vessel wall thickness,26 wall enhance-
ment, or histology.27 Combining these parameters with the PRT
will further improve our understanding of growth and rupture.

In line with previous studies,14,15 our study showed a pro-
longed PRT in the lumen of partially thrombosed aneurysms.
Based on our data, it cannot be concluded that PRT contributes
to thrombus growth and development as we only looked at a

single snapshot in time and only included a few patients with
partially thrombosed aneurysms. However, this finding sup-
ports the assumption that PRT is closely related to thrombus
formation.

Our study also showed a significant longer PRT in bifurca-
tion aneurysms compared to sidewall aneurysms. A previous
study also reported differences between bifurcation and side-
wall aneurysms when examining maximum diameter, size ra-
tio, inflow angle, and nonsphericity index.28 Both findings indi-
cate that bifurcation aneurysm varies from sidewall aneurysms
in shape and hemodynamics. As a consequence, the process
of growth and subsequently rupture may differ between these
aneurysm types. However, aneurysm type was not significantly
associated with rupture status in our analysis.

The used method for the calculation of PRT has limitations.
Tambasco and Steinman showed that the quality of Lagrangian
particle tracking also depends on the used mesh elements.29

They have proposed to use adaptive meshes with small near
wall elements. In our CFD-models, we did use a boundary layer
with small elements near the vessel wall. However, the mesh
might need further improvement especially in the regions with
complex flow patterns.

This study used a single injection of particles in the parent
vessel. With this method, we were able to track the general pat-
terns within the aneurysm and the intra-aneurysmal vortices.
However, the overall PRT might be even longer as tracking
near the wall can be challenging due to the slow velocities in
these areas. Furthermore, aneurysms often have a chaotic flow
pattern,30 with changing flow directions during the cardiac
cycle. Continuous injection compensates for the differences
in flow patterns during the cardiac cycle. Additionally, other
tracking methods might improve the accuracy of the particle
tracking;30,31 however, these more sophisticated methods
also have higher computational times which limits clinical
implementation.

To determine the PRT, we selected a threshold, therefore
the PRT reflects the slowest 1% of particles. This number is
selected as slower particles likely cause alterations to the vessel
wall. However, we did not test for the effect of other thresholds
on the results. We did see that the half-life of particles inside
the aneurysm (the time it takes for 50% to leave the aneurysm)
was very fast and only small differences could be seen between
aneurysms. Lowering the threshold might therefore reduce the
differences between the analyzed aneurysms.
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Fig 3. (A) Distribution of particle residence time (PRT) per rupture
status, the large dots represent individual cases. (B) Distribution of
PRT per aneurysm type and rupture status, the large dots represent
individual cases. (C) Distribution of PRT for aneurysms with and
without blebs or multiple lobulations and rupture status. The large
dots represent individual cases. ** = significant difference (P = .01)
*** = significant difference (P < .001).

To conclude, in our population, there was no significant
association between PRT and rupture status. However, PRT
was influenced by aneurysm morphology as longer residence
times were seen in bifurcation aneurysms, aneurysms with blebs
or multiple lobulations, and partially thrombosed aneurysms.
Further research should focus on determining the PRT in a

Fig 4. Distribution of particles after four cardiac cycles within an
aneurysm with two blebs (red squares).

prospective cohort, focusing on the association between PRT
and growth and rupture. Such a prospective trial helps to elu-
cidate the usability of PRT to predict growth and rupture.
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