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Abstract: Drug repurposing/repositioning, which aims to find novel indications for existing drugs,
contributes to reducing the time and cost for drug development. For the recent decade, gene ex-
pression profiles of drug stimulating samples have been successfully used in drug repurposing.
However, most of the existing methods neglect the gene modules and the interactions among the
modules, although the cross-talks among pathways are common in drug response. It is essential to
develop a method that utilizes the cross-talks information to predict the reliable candidate associa-
tions. In this study, we developed MNBDR (Module Network Based Drug Repositioning), a novel
method that based on module network to screen drugs. It integrated protein–protein interactions
and gene expression profile of human, to predict drug candidates for diseases. Specifically, the
MNBDR mined dense modules through protein–protein interaction (PPI) network and constructed
a module network to reveal cross-talks among modules. Then, together with the module network,
based on existing gene expression data set of drug stimulation samples and disease samples, we used
random walk algorithms to capture essential modules in disease development and proposed a new
indicator to screen potential drugs for a given disease. Results showed MNBDR could provide better
performance than popular methods. Moreover, functional analysis of the essential modules in the
network indicated our method could reveal biological mechanism in drug response.

Keywords: drug repositioning; module network; systems biology; random walk algorithm

1. Introduction

The traditional process of drug development is particularly slow and costly, which
usually takes 12–15 years and billions of dollars [1,2]. In addition, the rate of new drug
candidates being Food and Drug Administration (FDA)-approved has been lessen al-
though the levels of investments in pharmaceutical R&D remarkably increase [3]. At the
same time, this philosophy of rational drug design that “one gene, one drug, one disease”
paradigm overlooks the inherent complexity of diseases [4,5]. In this case, drug repo-
sitioning (or repurposing), which aims to identify novel disease indications for known
safety and pharmacology approved-drugs, is very economical and efficient. Compared
with traditional process of drug development, repositioning a drug may reduce the drug
development period to 6.5 years and costs on average $300 million [6]. Therefore, drug
repositioning should be “the primary strategy in drug discovery for every broadly focused,
research-based pharmaceutical company” [1].

One of the seminal method is connectivity map (CMap) [7], and the assumption of it
was that biological state could be described in terms of a genomic signature. They measured
genome-wide transcriptional expression data across a multiple of cell lines treated with
small drug molecules and matched these profiles with disease perturbation gene expression
profiles to find new associations between drugs and diseases. Although it is difficult to
interpret the meaning of predicted associations, the robust of disease signatures and the
effectiveness of the method has been experimentally validated [8–10]. Inspired by the
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rationale behind the CMap method [7], numerous approaches for drug repositioning based
on gene expression data and connectivity map have been developed. Zhang et al. [11]
proposed a simple method to filter reference gene-expression profiles for the connection
scoring scheme. In addition, more connection methods, such as eXtreme Sum score
(XSum) [12], Xcos [13], was proposed to calculate the similarities between gene expression
patterns of diseases and drugs. Iorio et al. [14] developed a drug repositioning method
that constructed drug–drug similarity networks by comparing drug perturbation gene
expression profiles. Saberian et al. [15] presented a novel machine learning-based method,
which explored the anti-similarity between drugs and diseases to uncover new uses for
drugs. However, these previous methods ignored the fact that both the pathogenesis
of diseases and drug mode of action (MoA) have been revealed to be tightly connected
with gene modules [16]. Chung et al. [17] developed Functional Module Connectivity
Map (FMCM), using functional gene modules as disease signatures to build a connectivity
map and its performance was superior to traditional signature-based drug-repurposing
methods. Jia et al. [18] introduced a new framework incorporating the gene expression data
and pathway analysis. They provided a new approach to explain the drug mode of action
in a disease context. As we know, proteins, nucleic acids, and small molecules could form
a dense network of molecular interactions in a cell, and there may be cross-talks among
different functional modules in the cell [19]. Therefore, in drug repositioning, it may be
helpful to consider the cross-talks among the function modules. However, as far as we
know, there were no drug repositioning methods taking the cross-talks among modules
into consideration.

To fill the gap, we present Module Network Based Drug Repositioning (MNBDR),
a novel computational module for drug repositioning. We applied the module network
to the field of drug repositioning for the first time and proposed two new indicators
to evaluate the expression levels of modules and the score of drug-disease. First of all,
dense clusters in PPI network were detected as modules. After that, as described in our
previous study [20], the cross-talks among modules were identified by testing whether the
connections among the genes in two modules were significantly high. Based on both the
gene expression data of disease samples and the module network, Pagerank [21] algorithm
was applied to rank the important modules in disease. Lastly, the gene expression data
of the important modules in drug stimulation samples were further pooled together to
calculate an overall connectivity score for each pair of drug–disease. In order to validate our
method, we applied MNBDR in 19 cancer datasets and compared it with several popular
signature-based drug repurposing methods. We showed that MNBDR performed better
than previous methods. Finally, we analyzed the function of the important modules in our
module network to investigate the biological meaning of our method.

2. Methods
2.1. Data Set and Preprocessing

The drug stimulation data was downloaded from The Library of Integrated Network-
Based Cellular Signatures (LINCS) program (level 5; accession number: GSE70138), which
contains 118,051 gene expression profiles from multiple human cultured cell lines (treat-
ment and control) treated with 1827 bioactive small chemical molecules at varying con-
centrations. Each expression profile consists of moderated z-score value of 12,328 genes.
LINCS team defined nine touchstone cell lines [22] and we used five cell lines (PC3, A375,
HALE, MCF7 and HT29) which have the sample sizes more than 10,000. The pre-processing
procedure for drug gene expression data was included in the Supplementary Materials and
Figure S1.

Cheng et al. [12,13] showed that the majority of the compounds do not have sufficient
therapeutic effects on cell lines. In our work, we applied the compound filtering procedure
described by Cheng et al. [12] and used expression signal strength (ESS) to filter the
drug stimulation samples. The details were described in Supplementary Materials and
Figure S2. The microarray data for whole-genome mRNA expression of disease samples
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were downloaded from TCGA (The Cancer Genome Atlas) research network [23]. In order
to generate more stable disease features, only data sets with at least three normal and three
disease samples were considered for further processing. Lastly, we obtained a total of 3486
control samples and 60,460 disease samples from 19 cancer data sets. Then, for each cancer
data set, we averaged disease and control samples and calculated the corresponding fold
changes for all the genes.

The PPI data was derived from STRING database [24]. In order to reduce the false-
positive interactions which are probably originated from prediction methods, we followed
the strategy of Zhou et al. [25] and only the interactions with a confidence score of 770 or
above were kept. In total, there were 36,619 unique interactions among 9474 proteins in
the PPI.

2.2. Benchmark Standard

The golden standard of known drug indications were obtained from Quan et al. [26].
They identified the drug-indication relationships through Drug–Gene Interaction database
(DGIdb) [27], Therapeutic Target Database (TTD) [28], and DrugBank [29]. Only the
clinically supported or FDA-approved drug–disease relationships were used. In this study,
we got a total of 2877 associations between 19 cancers and 477 drugs. All the drug and
disease interactions used in this work were shown in Supplementary Table S1.

2.3. Construction of the Module Network

To construct the module network, we adopted a similar strategy as our previous
study [20]. First of all, we used MCODE [30] in Cytoscape [31] to detect dense clusters
in the PPI network and only the clusters containing no less than 5 nodes were retained
as modules. After that, for each pair of modules, the number of edges (PPI interactions)
between the two modules was calculated. Then two random gene sets, which have the same
number of genes with the two modules, were randomly selected, and the edges among the
two random gene sets were counted. The random process was repeated 1000 times and
the 1000 edge numbers were used as null distribution. Then, the p-value of the cross-talks
among the two modules was calculated based on the null distribution. If the number
of edges between two modules was significantly high (p-value < 0.01), then there was a
cross-talk between the two modules. Finally, all the modules and cross-talks among these
modules constituted the module network (Figure 1A).

2.4. Feature Space Transformation

For each disease (or drug), we mapped gene expression data from gene’s feature
space to the module’s feature space. Taking breast cancer as an example, first of all, the
fold-change of all the genes’ expression levels in the breast cancer samples and control
samples was calculated. Then for all the n dense clusters (M1, M2, . . . , Mi, . . . , Mn) in PPI,
the importance (Impi) for module Mi was calculated as follow:

Imp =

{
Fmax− Fmin , Fmax > 0, Fmin < 0

MAX(|Fmax|, |Fmin|) , others

Fmax and Fmin are the maximum and minimum fold-change of all the genes in Mi.
At last, we obtained {Imp1, Imp2, . . . , Impi, . . . , Impn}, which can characterize the difference
of the gene expression levels of all the modules in the disease.
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Our framework includes the following steps: (i) As PPI network exhibit a “scale-free” 
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gether as a functional unit, we mined the communities in PPI as functional gene sets 
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the cross-talks among these modules (Method). As a result, we obtained 486 significant 
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Figure 1. Pipeline of Module Network Based Drug Repositioning (MNBDR). (A) MNBDR detects dense modules in the PPI
networks and captures the cross-talks among the modules by permutation test to form a module network. (B) Based on
the module network and gene expression data of disease samples, MNBDR applies the Pagerank algorithm to rank the
important modules in disease. (C) Using the important modules in disease and the gene expression data of drug stimulating
samples, MNBDR applies a new indicator to infer potential associations between drugs and diseases.

2.5. Module Rank Based on Pagerank

We assumed that the modules with both important topological coefficient in the
module network and significantly differential expression levels would be more essential in
disease. We thus used network propagation algorithms to simulate cross-talks of functional
modules, which was defined as follows:

Pk = λWPk−1 + (1− λ)P0

where W denotes a transition matrix that is the column normalization of the adjacency
matrix. In our work, the nodes of the adjacency matrix are modules, and the edges are the
connections among the modules in our module network. Here, P0 represents our initial,
or prior, information of the modules. In this work, we set P0 as {Imp1, Imp2, Imp3, . . . ,
Impn} of all the modules in the corresponding disease. As we know, if the propagation
process repeated too much times, information will eventually spread out over the whole
network and the local neighborhood of the important nodes will be missed [32]. Therefore,
a damping factor λ (0 < λ < 1) was defined to avoid it. In this study, λ was set as 0.85,
which was typical value for Pagerank [33].



Genes 2021, 12, 25 5 of 12

2.6. Drug Prioritizing

Inspired by the normalized discounted cumulative gain (NDCG) [34], we proposed a
new indicator S to evaluate the drug–disease score between each drug to a specific disease.
The indicator is described as follows:

S =
n

∑
i=1

V(i)
|P(i)− i|+1

For the top n modules (1st, 2nd, . . . , ith, . . . , nth) in disease progression, V(i) is the
imp of the ith modules in drug response and P(i) is the position of the ith module in the
ranked module list in drug response. That is, if the important modules in disease were also
ranked on the top of the module list in drug response, a high score S would be obtained.
At last, for each disease, all the drugs were prioritized based on S.

2.7. Evaluation Metrics

We used the area under the curve (AUC) of the receiver operator characteristic (ROC)
measure to evaluate model performance. The ROC curve can be drawn with the true-
positive rates (TPRs) and the false-positive rates (FPRs) at different cutoffs. TPR is the
proportion of positive samples identified correctly among the total positive samples, while
FPR is the ratio of misidentified negative samples accounting for all the negative samples.
TPR and FPR are defined as follows:

TPR =
TP

TP + FN
, FPR =

FP
TN + FP

where TP and TN are the numbers of correctly identified positive and negative samples,
and FN and FP are the numbers of positive and negative samples that are misidentified. At
the same time, we also used AUC0.1, which is widely used in the field of drug reposition-
ing [12], to evaluate our algorithm. Index AUC0.1 is the area under the curve measured of
the ROC under the condition of FPR ≤ 0.1. It guarantees that indicator can focus on the
early retrieval performance of the model by restricting FPR. It is essential because it is more
realistic in drug repositioning when the candidate drug number is small. Thus, in this work,
we applied AUC0.1 as the main index for module evaluation. To better compare model
performance, we also used the average AUC (AvgAUC) of all the diseases as our evaluation
index. To determine the statistical significance of the results, we calculated non-parametric
p-value by performing 10,000 runs with random permutations of the drug–disease relation.

2.8. Assessment

To assess the performance of MNBDR, we compared the prediction results with several
methods.

In order to investigate the impact of cross-talks between modules on prediction
performance, we compared MNBDR with two other methods (Gene based method and
Module based method). The Gene based method only used the gene’s fold-change to
rank the genes and used the ranked gene list to screen drugs, which is similar with the
traditional CMap. In the meanwhile, Module based method, which ranked the modules
using the gene expression levels (without taking the module networks into calculation)
and screened the drugs based on the ranked module list.

In addition, we also compared the performance of MNBDR with six classic con-
nectivity methods (GASE0Score [35], GASE1Score [35], GASE2Score [35], KSScore [7],
ZhangScore [11], XSumScore [12]).

At last, the performances of MNBDR and three latest published methods (LLE-
DML [15], Cogena [18]) and EMUDRA [36]) were compared.

MNBDR and Module based method are described as above and have been imple-
mented in Python package, which are freely available at https://github.com/nbnbhwyy/
MNBDR. Details about other methods were available in Supplementary Material.

https://github.com/nbnbhwyy/MNBDR
https://github.com/nbnbhwyy/MNBDR
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3. Results
3.1. Framework Overview

Based on the fact that cross-talks among functional modules could play important
roles in drug response and disease progression, we proposed a computational method,
which used module network to identify essential modules in disease progression and
improve CMap drug screening strategy, to do drug repositioning. Figure 1 shows the
pipeline of our method.

Our framework includes the following steps: (i) As PPI network exhibit a “scale-free”
topology [37], communities exist in PPI network. The dense cluster in PPI may work
together as a functional unit, we mined the communities in PPI as functional gene sets
(denoted as modules in this work). After that, a permutation test was applied to identify the
cross-talks among these modules (Method). As a result, we obtained 486 significant pairs
among 116 modules, which were shown in Figure S3 and Supplementary Table S2. (ii) For
each disease, the perturbation of the genes was calculated based on the gene expression
data of disease samples and control samples, and then mapped the perturbation of the
genes to the module’s space through an index Imp (Method) to obtain the initial score
of the modules. Subsequently, we applied a network propagation algorithm to learn the
topology information of the module network to refine the scores of the disease modules.
In the propagation algorithm, λ is an important parameter and we adopted a typical value
(0.85) [33]. In addition, we changed λ in the algorithm and found the result was robust
(Figure S4). At last, we selected the n modules with the highest scores to characterize the
corresponding disease. In this study, n is set to 15, which is about 10% of all the nodes
in the module network. In order to validate the robustness of our model, we also varied
n from 3 to 50 and found the result was stable, and our method could achieve the best
performance with n = 15 (The details are included in Figure S5). (iii) For these modules,
the perturbation scores after each drug’s stimulation was also calculated based on the
gene expression data of the samples stimulated by the corresponding drug and the control
sample (Method). Then, a new indicator S (Method) was proposed to evaluate the effect of
each drug to the specific disease. Finally, all the drugs for each disease could be ranked
based on the indicator.

3.2. Comparing with CMap

CMap is the most famous method to screen drugs using gene expression data [7].
Cheng et al. [12,13] have made a systematic assessment of CMap. In this work, we use
this method as a benchmark (Gene based method). In addition, in order to validate the
hypothesis that the cross-talks information among functional modules could facilitate drug
repositioning, we compared our strategy (MNBDR), which integrating module networks
and gene expression data to rank modules, with a simple expression ranking strategy
which prioritizing modules based on expression data only (Module based method).

Cancer is one of the most serious threats to human health and drug development
for cancer is a big challenge [38]. Here, we applied our method in 19 cancer data sets to
comparing the performance of MNBDR, Gene based method and Module based method.
In this work, we adopted the same index (AUC, AUC0.1 and p-value) in a previous work
to evaluate the performance of drug screen methods [12]. The detail result was shown in
Table 1 and Figure 2.

Table 1. The performances of three methods on the 19 cancer datasets.

Method AveAUC p-Value AveAUC0.1 p-Value

Gene based method 0.520 4.6 × 10−6 0.0055 2.7 × 10−2

Module based method 0.579 3.3 × 10−69 0.0086 2.6 × 10−41

MNBDR 0.602 6.2 × 10−114 0.0101 1.7 × 10−80
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The results showed that MNBDR had the best performance in the two indexes:
AveAUC and AveAUC0.1 (FPR = 0.1, specificity higher than 0.9). In the meanwhile,
the method based on modules performed better than the method using gene as features
(the original method of CMap), which was consistent with the previous report [17]. In ad-
dition, this phenomenon also proved that the communities mined from PPI indeed were
functional modules. Furthermore, because the main difference between our method and
the method based on modules was that MNBDR using the cross-talks information in the
module network, the better performance of our method validated the hypothesis of our
strategy. At last, we also validated the performance by randomly permuted the drug–
disease relations of the benchmark standard and calculated the p-values of the two indexes
(Method). These p-values also proved the power of our method. The detail result was
shown in Table S3.

3.3. Comparing with the Other Methods

The connectivity approach is essential for drug screen using gene expression data
and a previous paper compared several connectivity approaches [39]. In order to evaluate
the power of our method, we compared the performance of our method with all the five
connectivity methods. From this result (Table 2), it can be seen that all the connectivity
approaches can achieve a better performance than random methods (p-value < 0.01).
Among them, XsumScore was the best. Apart from that, in the two indexes, MNBDR
outperformed other connectivity methods.

Table 2. Comparison results of all methods on the 19 cancer datasets.

Method AveAUC p-Value AveAUC0.1 p-Value

GASE2Score 0.534 2.3 × 10−14 0.0065 8.7 × 10−9

GASE1Score 0.532 6.2 × 10−13 0.0063 4.9 × 10−7

GASE0Score 0.520 4.6 × 10−6 0.0055 2.7 × 10−2

ZhangScore 0.518 3.3 × 10−5 0.0055 2.7 × 10−2

XSumScore 0.548 8.2 × 10−27 0.0079 1.4 × 10−27

MNBDR 0.602 6.2 × 10−114 0.0101 1.7 × 10−80

LLE-DML 0.586 1.3 × 10−81 0.0086 2.6 × 10−41

Cogena 0.572 7.7 × 10−58 0.0080 2.3 × 10−29

EMUDRA 0.538 1.7 × 10−17 0.0058 1.1 × 10−3

The results of our method (MNBDR) are bolded.

In addition to comparing with traditional connectivity methods, we also compared
our method with three latest published methods (LLE-DML [15] and Cogena [40] and
EMUDRA [36]) that used gene expression data to screen drugs for diseases. The results
shown in Table 2 indicated MNBDR was more effective than LLE-DML, Cogena, and
EMUDRA. More importantly, the differences of AUC0.1 in the four methods are more
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obvious and AUC0.1 is very valuable for drug development [12], and we find that Cogena
has similar performance with the Module based method. This can prove that our approach
may be useful for different functional modules, which is valuable for further research.
Moreover, LLE-DML achieves the second best performance. It performs as “black boxes”
and it is very hard to investigate the important genes in the modules. In the meanwhile, our
method could reveal the important modules in diseases, and could be used to investigate
the biological mechanisms in disease progression and drug response.

3.4. Function Analysis of the Important Modules in Diseases

We also investigated the function of the important modules to reveal the underlying
mechanisms in disease and drug response. In our study, we selected the modules that are
important in all the 19 cancers and set them as GCF (generalized cancer features). As a
result, 15 modules were selected. Then, we used GSEA to analyze which pathways the
genes, contained by GCF were involved in. Some enriched KEGG pathways for GCF genes
were shown in Figure 3 and all the enriched pathways were shown in Supplementary
Table S4.
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Among the 47 significant pathways (FDR < 1.0 × 10−4), we found that “Pathways in
cancer” was on the top, with an FDR of 2.89 × 10−13. What is more, many sub-pathways
of “Pathways in cancer” were enriched, such as “MAPK signaling pathway”, “PI3K-Akt
signaling pathway”, “FoxO signaling pathway”, “Proteoglycans in cancer”, “Jak-STAT
signaling pathway”, “Regulation of actin cytoskeleton”, “Focal adhesion” and “ErbB
signaling pathway”. In these sub-pathways, “MAPK signaling pathway” is reported to
be essential for cancer-immune evasion in human cancer cells [41]. In addition, “PI3K-
Akt signaling pathway” plays a major role not only in tumor development but also in
the tumor’s potential response to cancer treatment [42]. Recent studies indicate that
numerous components of the phosphatidylinositol-3-kinase (PI3K)/AKT pathway have
more frequent amplification, mutation and translocation than any other pathway in cancer
patients [43]. About “Proteoglycans in cancer”, the available evidence indicates both an
up-regulation of ribosome production and changes in the ribosome structure might causally
contribute to neoplastic transformation [44]. Forkhead box O (FOXO) transcription factors
are involved in multiple signaling pathways and function as tumor suppressors in a variety
of cancers [45]. Apart from this, there were also many pathways in specific cancers, such as
“NON-Small cell lung cancer”, “Prostate cancer”, “endometrial cancer”, and “Basal cell
carcinoma”.
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In a word, module genes are significantly enriched with many cancer-related pathways.

3.5. Case Study in Breast Cancer

Breast cancer is one of the most common cancer and drug screen for breast is essential
for the therapy [46]. As described above, MNBDR could achieve a good performance in
breast cancer data set. The details of drugs identified by MNBDR for breast cancer are
included in the Supplementary Table S5. Among the identified drugs, most of them are
also supported by the literature, in addition to being confirmed by the benchmark data.

Romidepsin is predicted as an efficient drug for breast cancer by our method. In the
meanwhile, Romidepsin is a histone deacetylase inhibitor treatment of adult patients
with cutaneous T-cell lymphoma (CTCL) [47]. It modulates additional targets involved in
cancer initiation and progression such as c-myc, Hsp90 and p53. Romidepsin has shown
anticancer effects by induction of apoptosis, cell differentiation and cell cycle arrest, either
alone or in combination [48,49].

Colchicine has been considered as one of the most effective medications for alleviating
crystal-induced joint inflammation [50]. Inhibition of microtubule polymerization is the
chief mechanism of action. Microtubules are among the main protein filaments that make
up the cytoskeleton, which is crucial to the regulation of many activities [51]. To date,
microtubule-targeting agents (MTAs) remain one the most reliable classes of antineoplastic
drugs in the treatment of BC [52]. Based on this evidence, Colchicine which inhibits of
microtubule polymerization may have a potential therapeutic effect on breast cancer and
the experiment also got a certain degree of verification [53,54], and Colchicine is predicted
as one of the most efficient drugs for breast cancer by MNBDR.

Ciclopirox is also one of the top rank drugs predicted by our method for treating
breast cancer. This drug is a diterpene triepoxide that is able to suppression the cell growth
of breast cancer [55,56].

All the results indicate our method could not only prioritize the drugs which have
been approved, but also find the new adaptation disease for the old drugs.

4. Conclusions

As cross-talks among modules may be important in disease progression and drug
response, we proposed a module network based drug repositioning (MNBDR) method.
We used module network, which is based on a permutation test method, to describe the
cross-talks among the modules in PPI, and then, using the gene expression data of disease
samples and control samples, a network diffusion method was used to rank important
modules in disease. After that, the important modules in each drug were also identified
using gene expression data of samples stimulated by the drug. Finally, a new index, which
could reveal whether the important modules in disease progression were also important in
drug response, was proposed to evaluate the efficiency of a drug to the specific disease.
We evaluated our method using gene expression data of more than 7000 samples from 19
different cancers obtained from TCGA, as well as measurements of around 118,051 drug
instances LINCS databases. The results showed that MNBDR consistently outperformed
the other methods in terms of not only AUC but also AUC0.1, which indicated the proposed
method performed well when the effective drugs are on the top of the ranked lists. Function
annotation of the genes in the modules shows our method indeed could capture the import
genes in disease and drug response. In addition, case study in breast cancer showed our
method could not only prioritize the drugs which have been approved, but also find the
new adaptation disease for the old drugs.

In order to prevent overfitting, we did not train the model and we adopted typical
values for the parameters in the model. As n (the number of important models) in the
model is very important, we also used 10-fold cross-validation to select the best n in training
set and compared the performance between our current strategy (n = 15) and the optimal
model in 10-fold cross validation. We repeated the 10-fold cross-validation 10 times and
the result was shown in Figure S6. We found that the result of optimal model is similar to
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our current strategy, which proves that our model does not have a data leakage problem.
Of course, there are some drawbacks of our work. In this work, we only validated our
method in cancer data sets. In fact, drug repositioning for other diseases are also valuable.
In our future work, we will test our method in more diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/1/25/s1, Supplementary Figure S1—Drug data pre-processing pipeline. Supplementary
Figure S2—Expression signal strengths of all compound expression profiles on five cell lines. Sup-
plementary Figure S3—Module Interaction Network Based on PPI. Supplementary Figure S4—The
performance of MNBDR with different parameters. Supplementary Figure S5—Performance of
Drug–disease association prediction with top n modules as important modules (λ = 0.85). Supple-
mentary Figure S6—The performance of our method using 10-fold cross validation. Supplementary
Table S1—Drug-Indication relationships (benchmark standard). Supplementary Table S2—The genes
involved in the Modules. Supplementary Table S3—The results of each cancer type. Supplemen-
tary Table S4—Functional annotation of module genes. Supplementary Table S5—The score of
disease-drug pairs.
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