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Pharmaceutical Drug Discovery:
Designing the Blockbuster Drug

David Jesse Cummins

Twenty years ago, drug discovery was a somewhat plodding and scholastic endeavor; those
days are gone. The intellectual challenges are greater than ever but the pace has changed.
Although there are greater opportunities for therapeutic targets than ever before, the costs
and risks are great and the increasingly competitive environment makes the pace of pharma-
ceutical drug hunting range from exciting to overwhelming. These changes are catalyzed by
major changes to drug discovery processes through application of rapid parallel synthesis of
large chemical libraries and high-throughput screening. These techniques result in huge vol-
umes of data for use in decision making. Besides the size and complex nature of biological
and chemical data sets and the many sources of data “noise”, the needs of business pro-
duce many, often conflicting, decision criteria and constraints such as time, cost, and patent
caveats. The drive is still to find potent and selective molecules but, in recent years, key
aspects of drug discovery are being shifted to earlier in the process. Discovery scientists are
now concerned with building molecules that have good stability but also reasonable prop-
erties of absorption into the bloodstream, distribution and binding to tissues, metabolism
and excretion, low toxicity, and reasonable cost of production. These requirements result
in a high-dimensional decision problem with conflicting criteria and limited resources. An
overview of the broad range of issues and activities involved in pharmaceutical screening
is given along with references for further reading.

1 Introduction

The pharmaceutical industry is rapidly approaching a crisis situation. Epidemics,
such as AIDS, increasing rates of cancer, the threat of biological warfare agents,
and an increasing elderly population, mean that the demand for useful therapeutic
drugs is greater than ever. At the same time, pressure is increasing to reduce costs
in the face of the daunting challenge of discovering and developing therapeutic
agents. Approximately 50% of drugs in development fail due to safety issues and
25% fail due to efficacy issues. Most researchers estimate that the process of
developing a new drug from early screening to drug store shelves costs $600 to
$900 million and takes 8 to 15 years.

In this chapter, a screen refers to a biochemical test (or assay) to see if small
molecules bind to a target. The usual sense of this term suggests an experiment
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performed on some (physical) experimental unit. There is a hierarchy of results:
human clinical trials are the ultimate answer, which are approximated with animal
testing, animal testing is approximated with in vitro testing (cell cultures, enzyme
studies), and any of the above can be approximated in silico by the use of predictive
models (a virtual screen).

Although the greatest expenses in drug discovery and development are incurred
in the clinical trials phases, this chapter focuses on the early screening stage,
before the first human dose. Well-planned studies at this stage have great potential
to reduce expenses at later stages of the process. If it were possible to weed out the
toxic molecules prior to the clinical trials phase, fully 40% of the expenses incurred
in clinical trials would be eliminated! Even a small dent in this expensive process
would result in enormous savings. If this could be done through virtual screens
using predictive models, then additional savings would be achieved through less
animal toxicity testing and this would also reduce the overall drug development
time.

Drug discovery is a multidisciplinary endeavor with critical work at the interface
of biology, chemistry, computer science, and informatics. In biology, a major ac-
tivity is to make the linkages between what can be assayed and a disease response,
but activities also include design and validation of animal models, cell cultures,
biochemical screen design, and assay variability studies. Another important area
in biology, the pace of which has especially intensified in the last decade, is the
assessment in vivo of the extent of absorption into the blood stream, distribution
and binding to tissues, and the rates of metabolism and excretion. This is denoted
by ADME and is discussed in Section 11. In chemistry, the major responsibility
is to provide the creative spark to navigate effectively the large space of possible
compounds (another word for molecules) towards the blockbuster drug. Other ac-
tivities include synthesis of new molecules, analytical characterization of existing
molecules (including purity of batches, pKa, logP, melting point, and solubility)
and construction of libraries. Important issues in computer science include data
storage and extraction, implementation and scale-up of algorithms, management of
biological and chemical databases, and software support. Activities in informatics
or chemoinformatics (Leach, 2003) include design of experiments, development of
new chemical descriptors, simulation, statistical analysis, mathematical modeling,
molecular modeling, and the development of machine learning algorithms.

The successful development of a new drug depends on a number of criteria. Most
importantly, the drug should show a substantial beneficial effect in the treatment
of a particular disease (efficacy). This implies that, in addition to intrinsic activity,
the drug is able to reach its target (a biological gateway that is linked to a disease
state—a large organic molecule that may be a receptor, a protein, or an enzyme)
and does not produce overwhelming toxic effects. Many active drugs fail in later
phases of the development process because they do not reach their intended target.

The main challenges in drug discovery fall into four categories:

1. Potency: the drug must have the desired effect, in the desired time frame, at a
low dosage.
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2. Selectivity: the drug should produce only the desired activity and not cause
side effects. There are so many possible targets in the body that achieving high
selectivity is difficult. Side effects may be caused by metabolites of the drug,
by-products produced when the body uses enzymes to break down the drug in
the elimination process (Section 11.1).

3. ADME and pharmacokinetics (or PK ): the drug must reach the site of action. If
taken orally, it must be water soluble, survive the stomach, be absorbed through
the intestine, survive attack by many enzymes, and be transported into the target
cells across the cell membrane. It must not be metabolised too quickly, but also
must not be so stable or protein bound that it accumulates in the body. Another
important factor to control is whether a compound crosses the blood–brain
barrier (or BBB).

4. Toxicity: there are many mechanisms by which a compound can be toxic.
Toxicity issues may arise from PK or ADME or selectivity issues, depending
on the mechanism. Alternatively a compound may simply react harmfully with
tissues or organs in a direct manner.

One may think of an iterative model for the preclinical discovery screening
cycle. A large number of compounds are to be mined for compounds that
are active; for example, that bind to a particular target. The compounds may
come from different sources such as vendor catalogues, corporate collections,
or combinatorial chemistry projects. In fact, the compounds need only to ex-
ist in a virtual sense, because in silico predictions in the form of a model
can be made in a virtual screen (Section 8) which can then be used to de-
cide which compounds should be physically made and tested. A mapping from
the structure space of compounds to the descriptor space or property space
provides covariates or explanatory variables that can be used to build predic-
tive models. These models can help in the selection process, where a subset
of available molecules is chosen for the biological screen. The experimental
results of the biological screen (actives and inactives, or numeric potency val-
ues) are then used to learn more about the structure–activity relationship (SAR)
which leads to new models and a new selection of compounds as the cycle
renews.

The relationship between the biological responses and the changes in chemical
structural motifs is called SAR or QSAR (quantitative structure–activity relation-
ship). Small changes to the chemical structure can often produce dramatic changes
in the biological response; when this happens, chemists and biologists will often
describe the SAR as nonlinear, by which they mean that the SAR has a “sensi-
tive” or “rough” or “unstable” response surface. Often the chemical compounds
are considered to be the experimental unit even though, in actual experiments, an
animal or cell culture is the unit and the compound is a treatment. This is because
the important asset to the pharmaceutical company is the compound. The vast size
of the set of potential experimental units (potential compounds), coupled with the
high dimensionality of the response being optimized (potency, selectivity, toxicity,
and ADME) and the “roughness” of the response landscape make drug discovery
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a challenging arena. The level of noise in biological data can be extremely high
as well.

This chapter covers a selection of problems and case study examples. Perspec-
tives specific to Eli Lilly and Company (or Lilly) are distinguished from broader
perspectives believed to be shared by most companies across the industry. The
chapter covers both design and analysis issues, and touches on topics such as
simulation, computer experiments, and pooling. Section 2 gives an overview of
drug design. In Section 3 the issue of false negatives and false positives in drug
screening is addressed. Molecular diversity is discussed in Section 4, and machine
learning is the topic of Section 6. Section 7 describes a lower-throughput itera-
tive approach to screening and virtual screening in drug discovery projects in an
iterative Active Learning strategy. A brief mention of pooling strategies is made
in Section 9 and Section 10 discusses expectations for rare events. Section 11 de-
scribes aspects of a molecule that determine its ability to be safely transported
to the area of the body where it can be of therapeutic benefit. Finally, in Sec-
tion 12 the problem of multicriteria decision making in drug discovery is ad-
dressed.

2 Overview of Drug Design

2.1 Process Overview

The entire process of drug discovery and development can be depicted as a
rocketship with stages, an image that portrays the “funneling” effect as fewer
compounds are under consideration at successive stages of the process. The focus
of this chapter is screening issues in lead generation (the first stage of the rocket)
which begins with the chemical entity and the biological target. The chemical en-
tity (compound) may be a small molecule, a peptide, or a large protein. Typically,
chemical entities are purchased from external providers or synthesized within a
company. The compound can be viewed as binding or docking to the biological
receptor or target in order to competitively inhibit, or else to induce, some biolog-
ical signal such as the production of a protein or hormone, resulting in a specific
response. The number of molecules tested is dependent on reagent costs and other
practical factors. This chapter adopts the following paradigm for drug discovery
and development.

1. A target is validated to establish a direct link (such as a gene or a process
in the body, or a virus or a parasite) to the disease state of interest and the
feasibility of controlling the target to obtain the desired therapeutic benefit.
This stage involves scientific study that can be catalyzed by genomic and pro-
teomic technologies. Target validation requires careful scientific experiments
designed to explore how a target influences a biological response or disease
state.

2. A high-throughput screen (HTS) is designed, optimized, calibrated, vali-
dated, and run to obtain biological response data at a single concentration for
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200,000 compounds (Section 4). This may involve whole cells, enzymes, or
other in vitro targets. Reducing variability is crucial. Sittampalam et al. (1997)
introduced the concept of signal window, a method whereby two controls are
used to diagnose the ability of the assay to distinguish between actives and
inactives in the presence of background noise.

3. The most promising compounds, or actives, typically numbering from 1000
to 5000, are then tested in a secondary screen which involves testing each
compound at 5 to 10 different concentrations. These results are modeled with
a nonlinear dose–response curve and for each molecule a summary measure is
computed such as a 50% inhibitory concentration (IC50) or a 50% efficacious
concentration (EC50).

4. The secondary assay reduces the set of actives to those for which potency
reaches at least 50% of the maximum potency of a reference compound, at
some concentration. Typically there are 500 to 1000 of these compounds, and
they are called hits. Many hits may be nonspecific or for other reasons may
offer no prospect for future development. (In subsequent sections the distinction
between active and hit is blurred.)

5. The hits are examined in a series of careful studies in an effort often called hit
to lead. Chemists look at the hits and classify them into four to eight broad
series and, within each series, they try to find a structure–activity relationship.
The chemists characterize these SARs by testing (in the secondary assay) a few
hundred or a few thousand more molecules, thus expanding each SAR. Out of
these SARs, the chemists and biologists choose a few hundred compounds to
be tested in cell-based or enzyme in vitro screens. These screens require careful
design and validation. From the molecules run through the in vitro testing, 100
or so may go through in vivo single-dose tests using a rodent or some other
animal model. Some 10 to 40 of these molecules are finally tested for in vivo
efficacy in a full dose–response experiment performed on the animal of choice.

6. The lead compounds undergo careful studies in an effort known as lead op-
timization. At this point any remaining issues with metabolism, absorption,
toxicity, and so on, are addressed through molecular modification.

Some research groups contend that the HTS step should be eliminated and replaced
with a number of rounds of iterative medium-throughput screening (Section 7). It
is an issue of quantity versus quality. The lower-throughput screens tend to have
lower variability (“noise”) and less dependence on the single concentration test
as an initial triage. The iterative approach is closely akin to a strategy in machine
learning (Section 6) known as Active Learning.

In a successful project, the steps outlined above will lead to a First Human Dose
(FHD) clinical trial. How well those prior steps are done will, in part, determine
the success or failure of the human clinical trials. The adoption of high-throughput
screening and combinatorial chemistry methods in the early 1990s offered promise
that a shotgun approach to drug discovery would be possible. It was soon learned
that simply increasing the volume of screening results cannot be the answer. The
number of potential chemical entities is staggering, being estimated to be between
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1020 and 1060. The efficient exploration of a landscape of this magnitude requires
prudent use of machinery, human expertise, informatics, and, even then, an element
of fortuity. On average, for every 5000 compounds that enter a hit-to-lead phase,
only five will continue on to clinical trials in humans, and only one will be approved
for marketing. It is analogous to searching for a small needle in a whole field of
haystacks. In these terms, the future of drug design lies in no longer searching for
the needle but, instead, constructing the needle using available clues.

3 False Negatives and False Positives

In primary screening, compounds are tested at a single concentration; those whose
response exceeds a prespecified threshold are labeled as “active” and the rest as
“inactive”. Typically, 200,000 compounds are screened, giving numeric potency
results for each, then, based on exceeding a threshold, about 2000 are labeled as
active and 198,000 as inactive. The actives are studied further at multiple con-
centrations and the inactives are henceforth ignored. A false positive error occurs
when a compound labeled as active is, in fact, inactive when studied in the more
careful multiple concentration assay. The false positive rate can be lowered by
raising the decision threshold, or “hit limit”, but at the cost of increasing the false
negative error rate. In most HTS screens, of those compounds flagged as active
in a primary screen, roughly 30% to 50% are found to be inactive in the multiple
concentration–response follow-up study.

A false negative error occurs when a compound that is actually active is not
labeled as active. Biological noise, for example, and the choice of hit threshold
can affect the false negative error, as well as mechanical failures such as a leaking
well. Mechanical failure errors are unrelated to the true potency of the molecule.
The false negative rate is unknowable because the vast majority of compounds
are not studied further, but it can be estimated from small studies. From past HTS
screens at Lilly, we have estimated that a mechanical failure false negative occurs
in roughly 7% to 12% of compounds in an HTS screen, with a total false negative
error rate ranging from 20% to 30%. Aside from the mechanistic type of false
negative, the false negative rate can be viewed as a function of the activity level—
the greater the activity of the molecule, the lower the chance of a false negative
error.

Experimental results from an HTS assay are not the “truth” but merely an
estimate of the true potency of a molecule. Because molecules are only measured
one time in the HTS setting, there is a high degree of uncertainty. One thing that can
be done is to look for highly similar molecules and treat them as pseudo replicates
of the same “parent” molecule. See Goldberg (1978) for further discussion on
estimating the error rate.

One effective way of dealing with experimental errors is to build a predictive
model and score the screening results through the model, then to look at discrep-
ancies between the experimental screening result and the model prediction. Often
the highly potent but mechanical failure type of false negatives or false positives
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Table 1. Breakdown of hit rates from the
screening follow-up results.
Compound source Hit rate

150,000 original compounds 3%
2050 new compounds 34%
250 potential false negatives 55%

can be identified. In practice, the false positives will be tested in the secondary
screen and found to be inactive when that screening result is observed. Some re-
searchers favor raising the threshold to reduce the number of compounds labeled
as active. The false negatives can then be identified by a statistical or predictive
model and rescreened. In one recent project at Lilly we followed up a 150,000
compounds HTS with a small library (that is, a small collection of molecules) of
2300 compounds. A predictive model was trained (or fitted) using the 150,000
primary results and used to select 2050 molecules that had not yet been tested.
The same model was used to identify 250 molecules that were screened in the
150,000 and found to be inactive, yet scored by the model as highly active. These
250 were the potential false negatives that were to be retested. Fully 55% of these
false negatives were active upon retesting. The breakdown of hit rates is given in
Table 1.

The 3% hit rate in the primary screen was a concern, as such a high number
suggests a problem in the assay. It was found that there was a carryover problem
in which sticky compounds were not being completely washed from the robotic
tips. Such a trend can be found easily by analysis of hit rate as a function of well
location. This problem was resolved before the secondary runs (rows 2 to 3 of the
table) were made.

A computer experiment was done to confirm and further explore the above
findings. An iterative medium-throughput screening operation was simulated with
different levels of false negative rates, reflecting historical error rates seen across
past screens. For each level of false negative rate, the appropriate proportion of true
actives was randomly chosen (from a nonuniform distribution that is a function of
the “true” activity level of the molecule, based on historical data) and relabeled
(incorrectly) as inactive. The model was trained on this “polluted” data set and
used to select the set of compounds for the next round of testing. Computer exper-
iments of this type can be run many times to explore the behavior of the predictive
models under realistically stressed circumstances. For this particular experiment,
the model was able to find 25 times more false negatives than a random (hyperge-
ometric) search would produce, up to a false negative rate of 30% at which point
the enrichment over random decreases from 25-fold to about 15-fold higher than
random.

In both screening and predictive modeling, the relative cost of false negatives
versus false positives is an important component of decision making. From a
business standpoint, false negatives represent lost opportunities and false posi-
tives represent wasted efforts chasing down “red herrings.” The resources wasted
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chasing false positives is particularly troubling. The current trend is to reduce
the false positives and to tolerate the increased number of false negatives that
results.

4 Molecular Diversity Analysis in Drug Discovery

In the last two decades, three technologies have been co-developed that enable a
significant shift in the process of lead generation:

Combinatorial Chemistry ⇒ Large libraries of molecules

High-Throughput Screening ⇒ Many biological data points

Cheminformatics ⇒ Many molecular descriptors

The adoption of high-throughput screening and combinatorial chemistry meth-
ods in the early 1990s led to an immense interest in molecular diversity. It was
widely expected that making diverse libraries would provide an increase in the
number of hits in biological assays. It took a while to realize that this was the
wrong expectation. Molecular diversity designs do offer great benefits, but more
in the enhancement of the quality, rather than quantity, of information from a
screen. It became clear that other properties of molecules, beyond mere structural
novelty, need to be considered in screening. This led to extensive work on “drug-
likeness” and an attempt to achieve a balance between diversity and medicinal
reasonableness of molecules.

4.1 Molecular Diversity in Screening

Molecular diversity analysis is useful in several contexts:

� Compound acquisition: this avoids purchasing a compound very similar to one
that is already owned.

� General screening for lead identification: screening a diverse library is a sensi-
ble approach when little or nothing is known about the target or possible lead
compounds.

� Driving an SAR effort away from prior patent claims.

The second context, general screening, involves selecting subsets of molecules
for lead generation. Experimental designs are considered because it is not feasible
to screen all molecules available. Even with the application of high-throughput
screening, the demand for screening outpaces the capacity. This is due to the
growth of in-house chemical databases, the number of molecules synthesized
using combinatorial chemistry, and the increasing number of biological targets
fueling discovery projects. In addition, novel screens that are not amenable to
HTS automation may be attractive from a competitive standpoint but the gap be-
tween screening capacity and screening opportunities in this case is particularly
daunting. Given this imbalance, methods for selecting finite subsets of molecules
from potentially large chemical databases must be considered. Possible selection
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Blockbuster Molecule
Active Analog
Inactive

Figure 1. SAR paradigm. Fictitious two-dimensional projection of the property space of
feasible druglike molecules.

strategies include: random, diverse, and representative selection, each of which
may be performed as a biased or directed analysis if information such as a drug-
likeness score is available to weight the analysis in favor of certain classes of
molecules. A requirement of every selection method considered here is its com-
putational feasibility for the databases of hundreds of thousands to millions of
compounds that are now common with the application of combinatorial synthesis.
For example, many distance-based selection strategies involve computation and
storage of all pairwise distances for molecules in a database. If the number of
molecules n is 300,000, then there are approximately 45 × 109 (calculated from
( n

2 )) distances to compute and/or to store. This is a formidable task, necessitating
creative computational solutions.

Figure 1 illustrates a modern paradigm of drug hunting processes. In this ficti-
tious two-dimensional projection of the space of feasible druglike molecules, open
circles represent compounds that are not active relative to a specific target, solid
circles are active compounds, shown in one contiguous series of related molecules,
and the star is the blockbuster drug that is still undiscovered. In a primary screen,
finding a single solid circle is all that is needed. The medicinal chemistry teams
can follow up by making systematic changes to any one of the active compounds
to explore the whole series and find (or invent) the blockbuster drug. An important
point is that the blockbuster may not exist in the corporate collection. A typical
lead generation or lead optimization project involves not only testing molecules
in current libraries, but also synthesis of new molecules. Molecular modification
and subsequent testing is the way the trail gets blazed, through characterizing the
SAR.
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In recent years there has been strong dogma contending that, in filling a fixed
screening capacity, it is important to screen “backups”, that is, molecules that are
closely related. This argument is motivated by the high rate of false negatives
in primary screening. Thus screening two or more compounds from the same
related series effectively gives pseudo replicates. If one compound turns out to
be a false negative, it is likely that another from the same series will screen as
positive and thus, the active series will not be missed. This rationale is popular in
the industry. However, at Lilly we have demonstrated, through both simulations
and retrospective analysis, that it is better to tolerate the false negatives in favor
of sampling a larger number of different series. The motivating principle for this
position is that testing two closely related compounds (or analogues) is often
equivalent to testing the same hypothesis twice, which comes at the expense of
testing a different hypothesis; see Wikel and Higgs (1997).

Optimizing molecular diversity has the potential to maximize the information
gained about an SAR in the early stages of screening. Suppose a random screening
gives the same number of hits as a diverse screening. Then one would favor the
diverse set of hits, because this increases the chance of at least one structural lead
with a favorable ADME and toxicity profile. In fact, for primary screening, it is
often better to have 10 novel hits than 200 hits that are analogues of each other.
The proper focus, in our view, is quality of information gleaned from the screen.

Most pharmaceutical companies have clusters of compounds (for example, Lilly
has many SSRIs, cephalosporins, and so on). There are many analogues clustered
tightly in local subregions of chemical space, reflecting historical SARs inves-
tigated around related targets. A random sample will reflect the densities of the
compound classes in the collection; thus testing a random sample of molecules
for a certain biological activity will be equivalent to testing the same hypothesis
many times over.

4.2 Descriptors

Computationally, a structure space (represented as a set of two-dimensional graphs
of molecule structures) is mapped to property (or chemical) space (Rp) (for ex-
ample, Figure 2), where each point is a vector of values of each of p variables,

Poor Feature Set(a) (b) Good Feature Set

X2

X1

X4

X3

Figure 2. Descriptor validation example: (a) poor feature set; (b) good feature set.
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called descriptors, or sometimes properties. The descriptors can be binary, integer
counts, or continuous variables. A descriptor may be as simple as a count of the
number of oxygen atoms in a molecule, or as sophisticated as an estimate of the
three-dimensional polar surface area around the molecule. Molecules are assigned
positions in this high-dimensional descriptor space through their properties. The
relationships defining their molecular diversity are, therefore, represented through
their coordinates or positions in this space. The distance metrics most often used
are Euclidean and Mahalanobis for properties, and Tanimoto (Jaccard) for binary
bit strings; see Section 4.5.

Prior to selecting a set of molecules from a database, it is often necessary to
preprocess the molecular descriptors to replace missing descriptor values and to
scale the descriptors. Although it is possible to develop distance metrics that are
tolerant to missing values, at Lilly we have focused on imputing (replacing) missing
values and using distance metrics that assume all descriptor values are present.

A set of molecules is commonly described with anywhere from 4 to 10,000 de-
scriptors. It is also possible to represent molecules with sparse descriptors number-
ing up to 2 million. Variable selection, or descriptor subset selection, or descriptor
validation, is important, whether the context is supervised or unsupervised learning
(Section 6).

4.3 Molecule Selection

Discussions about molecular diversity involve the concepts of “similarity” and
“dissimilarity” and may be confusing as their meanings are content related. Sim-
ilarity is in the eye of the beholder. Chemists may find similarity hard to define,
but they generally are quick to identify it when they see it and at times are will-
ing to debate the similarity of one structure to another. Similarity is not abso-
lute, but relative to the space in which it is defined. In chemistry, this means the
definitions must always be held in context to the property space used to define the
structures.

If characteristics are known about the biological target then this target-specific
information may be used to select a subset of molecules for biological testing.
Various database searching methods, molecular similarity methods, and molecu-
lar modeling methods could be used to identify a favored (or biased) subset of
molecules for biological testing. This corresponds to the second row of Table 2.
One example of this situation is the case of neuroscience targets. If very little

Table 2. Subset selection strategies for primary screening at Lilly.
Situation Strategy

No target information Diversity Selection
Expert judgment or literature Directed Diversity Selection

information about target
Experimental results related to target, QSAR, Predictive Modeling

or structure of target known
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is known except that the receptor of interest is in the brain, a biased diversity
selection would be more useful than an unbiased one. For example, one might
construct a weight function based on the number of positively charged nitrogen
atoms in a molecule, because this is often observed to be present in desirable
neuroscience drugs. If there are no positively charged nitrogen atoms, or if there
are more than two, the weight function is very low and otherwise very high.
Other factors related to toxicity, solubility, and other aspects of medicinal viability
of molecules could be included in the weight function. Then a weighted diver-
sity selection could be performed to construct a reasonable starting set for initial
screening.

4.4 Descriptor Validation and Variable Selection

The concept of molecular similarity is strongly linked with the “SAR Hypoth-
esis” of Alexander Crum-Brown (Crum-Brown and Fraser, 1869) which states
that compounds that are similar in their structure will, on average, tend to display
similar biological activity. A modest extension holds that one can build mathemat-
ical models from the numerical descriptors to describe a relationship between the
chemical structure and the biological activity. When chemists discuss similarity
of two molecules, they often make arguments about the biological effects or bind-
ing potential of the compounds. There is a concept of bioisostere which says that
some chemical fragments function in the same way as other chemical fragments
(for example, a sulfur may behave like a methyl group). An ideal set of molec-
ular descriptors would be one that contains properties characterizing all aspects
important to potency, selectivity, ADME, and toxicity. Because our understanding
of any one of these processes is limited, expert judgment is needed. Descriptors
considered generally important include those describing lipophilicity, molecular
shape, surface area and size, electronic properties, and pharmacophoric elements
such as hydrogen bond donors and acceptors.

Just as with variable subset selection in linear regression, there are risks akin
to over-fitting a training set. (A training set is the subset of data used to fit the
model.) The topic of how best to do descriptor validation has been hotly debated,
and numerous ideas have been proposed, but the general goal is to select that
subset of descriptors that best achieves some sense of separation of the classes
of compounds, as illustrated in Figure 2. This figure illustrates three structural
series in two hypothetical two-dimensional configurations. Descriptors x3 and x4

are more useful because they separate the different structural classes.
There are dimensionality issues. Later we propose Mahalanobis distance

(Section 4.5) as a good metric for diversity analysis. With p descriptors in the
data set, this metric effectively, if not explicitly, computes a covariance matrix
with

( p
2

)
parameters. In order to obtain accurate estimates of the elements of the

covariance matrix, one rule of thumb is that at least five observations per parameter
should be made. This suggests that a data set with n observations can only investi-
gate approximately

√
2n/5 descriptors for the Mahalanobis distance computation.

Thus, some method for subset selection of descriptors is needed.
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In the case of molecular diversity, there is no response to guide the variable subset
selection (unsupervised learning) and hence creative ways to do subset selection
are needed. Ideally, chemical similarity is defined by the target or receptor. If one
has information about the target/receptor then it is more useful to do QSAR (last
row of Table 2). If such information is lacking, then one must impose an arbitrary
definition on chemical similarity in order to avoid testing duplicate, or very similar,
hypotheses in screening. Thus, at Lilly, our molecular diversity tools are generic
and depend on a generic notion of similarity that is relatively independent of
biology (rows 2 and 3 of Table 2).

4.5 Distance Metrics

Distance-based methods require a definition of molecular similarity (or distance)
in order to be able to select subsets of molecules that are maximally diverse with
respect to each other or to select a subset that is representative of a larger chemical
database. Ideally, to select a diverse subset of size k, all possible subsets of size k
would be examined and a diversity measure of a subset (for example, average near
neighbor similarity) could be used to select the most diverse subset. Unfortunately,
this approach suffers from a combinatoric explosion in the number of subsets that
must be examined and more computationally feasible approximations must be
considered, a few of which are presented below.

Given two molecules a and b, let x and y denote their vectors of descriptors.
The Mahalanobis distance between a and b is defined as:

d(a, b) =
√

(x − y)T V−1(x − y),

where V−1 denotes the inverse of the covariance matrix, V, of the vectors of the
descriptor values of all the molecules. If V = I the result is Euclidean distance:

d(a, b) =
√√√√ p∑

i=1

(xi − yi )2,

where xi and yi are the ith elements of x and y, respectively.
The effect of the V−1 is to divide each descriptor by its standard deviation, so that

some descriptors do not dominate others due to mere differences of scale. Many
cheminformaticians compute the standard deviations explicitly, but this alone is
not sufficient. The off-diagonal elements of the inverse covariance matrix adjust
for overweighting (due to high correlations between descriptors) of latent aspects
of a molecule, such as size.

A common practice is to scale each descriptor to have standard deviation of 1.
Another is to compute principal components and confine the analysis to the first
h components, where h may range from 1 to 20. This is an ad hoc form of dimen-
sion reduction that does not remove irrelevant information from the analysis. At
Lilly, we prefer a careful descriptor validation to avoid including many irrelevant
descriptors into the analysis, combined with a dimension reduction criterion using
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the
√

2n/5 rule of thumb, followed by a Mahalanobis distance computation using
all the descriptors that remain.

For presence or absence of features in the molecules, represented by binary bit
strings x and y as descriptors, the Tanimoto coefficient is a popular metric for
similarity:

sim(a, b) = (bits on in both x and y)

(bits on in x) + (bits on in y) − (bits on in both x and y)
.

Then

d(a, b) = 1 − sim(a, b).

Now consider d(a, b) to be a generic distance metric of which Tanimoto, Euclidean,
and Mahalanobis are three cases. Then, the distance between molecule a and the
set of molecules B is defined as follows,

d(a, B) = min
b∈B d(a, b),

and the overall dissimilarity of a set of molecules M is defined as

dis(M) = 1

n

∑
a∈M

d(a, M\a), (1)

where M\a denotes the set M with the molecule a removed.
These metrics are used by design algorithms for selecting dissimilar molecules

for chemical analysis (see Section 5.2).

5 Subset Selection Strategies

A requirement for any subset selection method is the ability to accommodate a set
of previously selected molecules, where augmentation of the pre-existing set is
desired. For example, when purchasing compounds, the goal is to augment what
is already owned so that the current corporate collection would be used in the
analysis as the pre-existing set of molecules. The goal then is to select a subset of
the candidate molecules that optimizes a specified criterion with reference to the
molecules in both the candidate set and the previously selected set.

In the case of iterative medium-throughput screening, at any given point in
the process, the set of molecules that have been screened thus far is the pre-
viously selected set for the next round of screening. In choosing molecules for
the next iteration, one may have a selection criterion such as predictive model
scores but a diversity criterion may also be applied: it is not desirable to screen
something identical, or nearly identical, to that which was screened in previous
rounds.
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There are two main strategies developed to select diverse and representative
subsets of molecules, namely, cell-based methods and distance-based methods.

5.1 Cell-Based Methods

Cell-based methods divide the space defined by a set of molecular descriptors into
a finite set of “bins” or “buckets”. Each molecule is then assigned to one of the
bins. Structurally similar molecules will occupy the same or adjacent bins and
dissimilar molecules will occupy bins that are spatially well separated. A diverse
subset of molecules can be identified by selecting a single molecule from each
of the occupied bins. Databases can be compared by examining the occupancy of
bins with molecules from different sources. For example, commercial databases
such as Comprehensive Medicinal Chemistry (2003), World Drug Index (2002),
and Maccs Drug Data Report (2003) contain molecules that can be used to define
the historically medicinally active volume (bins) of chemical space. Compounds in
another database, or collection, that fall within the bins defined by these databases
can then be selected for biological testing.

Cell-based methods have the advantage that they are intuitive and computa-
tionally more efficient than many distance-based methods. However, cell-based
methods suffer from a problem known as the “curse of dimensionality.” Consider
a database with each molecule described by 20 molecular descriptors. Subdividing
each molecular descriptor into merely 5 segments (or bins) will result in 520, or
approximately 1014 bins. Even with large chemical databases, most of the bins will
be empty and many bins will contain a single molecule. Outliers wreak havoc. Just
one molecule whose molecular descriptors take on extreme values will cause the
majority of molecules to be allocated to a small number of bins. In either case, a
cell-based method will present problems in selecting a diverse subset of molecules.
Thus, cell-based methods require a significant reduction in dimensionality from
the many possible molecular descriptors, attention to outliers, and careful con-
sideration of how to subdivide each dimension. An application to drug discovery
screening, which addressed the issues of outliers and dimensionality, was applied
to large databases by Cummins et al. (1996).

5.2 Distance-Based Methods

Statistics has a long-standing role in design of experiments. There is a long history
of the use of information optimal designs (for example, D-optimal designs), which
consist of the most informative points and are useful in designed experiments
where the “true” model is known. Space filling designs are used in numerous
contexts including geographical modeling (literal space filling), modeling response
surfaces, multivariate interpolation, and chemical library design.

A more in-depth discussion of three selection methods that are computationally
feasible with very large chemical databases is now given to highlight the issues
that must be considered when applying many of these molecular diversity selection



84 David Jesse Cummins

methods. The three design methods described here are edge, spread, and coverage
designs. Each design method optimizes a specific objective.

� Edge design objective: obtain minimum variance estimates of parameters in a
linear model.

� Coverage design objective: select a subset of molecules that is most represen-
tative of the entire library. Heuristically, the distance from the chosen subset
to the remaining candidate points should be small. One might imagine a set of
umbrellas positioned to cover as many candidate points as possible.

� Spread design objective: select the maximally dissimilar subset of molecules.
This requires maximizing the distance of points within the subset from each
other. One analogy for this is electron repulsion.

Edge designs are often constructed using D-optimal design algorithms.
Molecules selected using D-optimal designs populate the edge of descriptor
space by first filling in the corners and then moving around the boundary. Edge
designs are appropriate when one intends to fit a linear regression model where
the descriptors are the predictors in the model, for example, if biological activity
is modeled as a function of the descriptors. This is usually the situation in lead
optimization, rather than lead generation.

Spread and coverage designs are space-filling designs. Let C be the candidate
set, that is, the set of possible design points. Once the criterion (space filling) is well
defined, selecting the points M ⊂ C to be space filling is simply an optimization
problem.

The objective of a spread design is to identify a subset of molecules in which
the molecules are as dissimilar as possible under a given similarity metric. For a
given metric to measure the similarity of a subset, all subsets of size k (plus any
molecules previously selected) could be evaluated and the subset that produces
the lowest similarity measure chosen. In practice, simple non-optimal sequential
algorithms are often used to approximate the maximally dissimilar subset: two
such algorithms are described below.

1. Maximum Spread Algorithm

The goal: out of all
( n

k

)
subsets of k molecules from a candidate set C , find the

subset M∗ where dis(M∗), defined in (1), is largest. The problem is that it is not
feasible to enumerate and evaluate all possible subsets. The solution is to use a
sequential approximation (greedy algorithm).

a. Select the first compound from the edge of the design space.
b. Select the second compound to be most distant from the first.
c. Select subsequent compounds in order to maximize the minimum distance to

all previously selected compounds.

This is the algorithm proposed by Kennard and Stone (1969). At Lilly we have
focused on an efficient implementation of this approach applied to large chemical
databases and have not implemented design optimization due to the marginal
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Figure 3. Spread design for fictitious example. (Reproduced from Higgs et al., 1997 with
permission.)

design improvements and increased computational time. To illustrate, the SAS
(2003) OPTEX (CRITERION = S ) procedure was used to select 20 points from
the 1400 two-dimensional points shown in Figure 3 using a modified Fedorov
optimization algorithm (Cook and Nachtsheim (1982)). The OPTEX procedure
seeks to maximize the harmonic mean distance from each design point to all other
design points. Eighty different designs were generated using the sequential method
of Kennard and Stone and compared with those obtained by the modified Fedorov
optimization method. On average, the Fedorov optimization generated a design that
was 8.5% better than that obtained from the simple sequential selection method
but required eight times more computational time. In larger data sets of 200,000
or more compounds this can mean a choice of eight hours versus three days to find
a design.

2. Maximum Coverage Algorithm

Define the coverage of a set M, where M ⊂ C as:

cov(M) = 1

n

∑
α∈M

d(a, C\M),

where C\M is the set C with the set M removed. The goal: out of all
( n

k

)
subsets

of k molecules with descriptor vectors in C , find the subset M∗ where cov(M∗)
is smallest. This is often approximated using cluster analysis (see Zemroch,
1986).

In Section 5.3 the different design types are compared.
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5.3 Graphical Comparison of Design Types

Figures 3–5 show a fictitious two-dimensional data set reproduced from Higgs
et al. (1997) with permission. The data set contains 1400 hypothetical molecules
and is constructed to illustrate the differences between edge, spread, and cov-
erage designs. The data set was constructed to have five tightly packed clusters
(bivariate normal), two loosely packed clusters (bivariate normal), and molecules
uniformly distributed over the two-dimensional design space. For illustrative pur-
poses, eight molecules were randomly chosen and labeled with an “X” as having
been selected in a previous design. Future selections should complement these
eight molecules. The data were simulated in two dimensions to depict how a
pharmaceutical compound collection might appear in some two-dimensional pro-
jection. Certain regions are sparse with low density whereas other regions are
highly clustered, reflecting the synthetic legacy of the company.

Figure 4 shows 20 molecules selected using an edge (D-optimal) design to
augment the previously selected molecules. Two quadratic terms and one linear
interaction term were included in the model used to select this design in order to
force some interior points into the selection. Figure 5 shows 20 molecules selected
using a k-means clustering approximation to a coverage design to augment the
previously selected molecules. Figure 3 shows 20 molecules selected using the
Kennard and Stone approximation to a spread design (see, for example, Johnson
et al., 1990) to augment the previously selected molecules.

Although not shown in the figures, a random selection is often considered the
baseline method of subset selection. Random sampling typically selects many
molecules from the dense clusters, and several molecules near the previously
selected molecules. Spread designs select the most diverse subset of molecules

Figure 4. Edge design (D-optimal with interactions) for fictitious example. (Reproduced
from Higgs et al., 1997 with permission.)
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Figure 5. Coverage design for fictitious example. (Reproduced from Higgs et al., 1997
with permission.)

(relative to the other methods presented here), including molecules near the edges
as well as throughout the design space. Spread designs ignore the density of the
candidate points and focus rather on efficient exploration of the space populated.
Coverage designs select molecules near the center of clusters. Molecules near the
edges of the design space are naturally avoided because they are unlikely to be
near the center of a cluster.

5.4 Combinatorial Chemistry Example

This example illustrates the usefulness of a tool that assigns a rank ordering to
molecules in a set. A combinatorial chemistry collection at Lilly consisted of a
number of separate libraries. The question arose as to which of the libraries was the
most diverse. To answer this question, a spread design was used to rank the combi-
natorial molecules. We pooled 22 combinatorial libraries (105,640 molecules) with
a set of 32,262 corporate library molecules. We rank ordered the combinatorial
molecules relative to the corporate library molecules; that is, the corporate library
molecules were marked as pre-selected and the task was for the combinatorial can-
didates to augment them as well as possible. The spread design chose molecules
from the pool irrespective of which library they came from—the only criterion
was their diversity. We examined the cumulative number of molecules selected
from each combinatorial library as a function of spread design rank, as follows.
The first molecule chosen was the one most dissimilar to the corporate collection
and received a rank of 1. The next molecule was that which was most dissimilar
to both the corporate collection and the first molecule, and received a rank of 2,
and so on. Libraries that were drawn from most frequently by the algorithm in
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(a) (b)

Figure 6. Combinatorial libraries comparison: cumulative number of molecules selected
versus the rank of the spread design for each of 10 random orderings of molecules within
(a) Library A; (b) Library B.

the early stages (early ranks) were taken to be the most diverse libraries. In the
case of Figure 6, library A was far better than library B at augmenting the current
collection.

This example shows how spread designs can be used to solve practical problems.
There is always a descriptor selection problem, as chemists continue to invent new
molecular descriptors. Which should be used? Which molecular similarity measure
performs best? Controlled experiments are expensive. Simulation can be used as
a guide.

All of this effort is invested in the first of a number of iterations in the drug
discovery cycle and the later stages are much more rewarding. At Lilly, we move
as quickly as possible into the predictive modeling stages.

6 Machine Learning for Predictive Modeling

Machine learning is defined as the use of algorithms to generate a model from
data, which is one step in the knowledge discovery process, applied in the context
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of QSAR (last row of Table 2). The last decade of machine learning advances has
seen tremendous increases in prediction accuracy, largely due to model averaging
techniques. A good starting point for reading about such ensemble methods is
the paper of Breiman (1996) and a valuable discussion about algorithmic versus
parametric modeling approaches is provided by Breiman (2001b). Hastie et al.
(2001) gave a broad overview of statistical learning (see, especially, the figures on
pages 194 and 199). Predictive models can serve as useful tools and have made
substantive contributions to many disciplines.

6.1 Overview of Data Handling and Model Building Steps

Figure 7 gives a brief layout of sequential steps for a typical data modeling exercise.
The first step, which is by far the most time consuming, starts from a representation
of the structures of the molecules and ends with a “training set” of descriptors to
be used in the model selection step. Medchem filtering, in step 1, is an application
of expert judgment to chemical structural data. Certain fragments of molecules are
known to be highly reactive, or carcinogenic, or unstable, or otherwise undesirable,
and these molecules can be eliminated at this first step with a simple rule-based
algorithm. Data cleaning is, by far, where most of the time is spent.

The data cleaning steps may involve the removal from the data frame of columns
(of descriptor values) that are constant or nearly constant, imputing missing values
and eliminating columns that are redundant due to a strong relationship with other
columns. All these steps are easily automated. Approximate algorithms can easily
be developed that are more than 100-fold faster than those available in commercial
packages.

The next step of data cleaning is to perform a replicate and pseudo replicate
analysis of the experimental values. When replicate data are available, highly
discrepant results can point to problems with the experimental data. When replicate
results are not available, pseudo replicates are almost always present in the data.
Often the same chemical structure exists more than once in the results file, where
the different identifiers refer to different batches of the same material. Thus, a

Predictive Modeling Tool Architecture

Figure 7. Steps involved in predictive modeling.
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large discrepancy in the biological response for two such identifiers suggests that
a follow-up meeting with the appropriate biologist is needed in order to resolve
the experimental discrepancies.

Another aspect of data cleaning arises when data come from different labo-
ratories. Then one is faced with the task of placing the results in a reliable and
consistent context (a sort of “metaanalysis”). Another data cleaning task involves
the imputation (estimation) of missing values. Often the programs that compute
descriptors will fail on unusual molecules and then those molecules are usually
removed from further consideration. However, sometimes a failure is not a reflec-
tion of the desirability of the molecule and imputation of the missing values is then
a reasonable strategy.

The final portion (the sampling step) of the first step of Figure 7 is to create a
training set which is the set of data to be used for fitting the model in the model
selection stage. This may be done in several different ways. The simplest is merely
to take random subsamples of the data and to split the data into training and test data.
A more rigorous approach involves splitting the data into a training, validation,
and test set (Hastie et al., 2001, pages 195–196), where the test set is used only
once for assessing the error of the final model (after the model selection studies
have finished) and the training and validation sets are used for model selection to
compare competing modeling methods.

The “design” question of what proportion of the data to use for training, relative
to the test set, is an important one. If the test set is too small, the estimates of error
will be unreliable, highly variable, and likely to have a high downward bias. On
the other hand, if the training set is too small the estimates of error will have high
upward bias.

The second step shown in Figure 7 lists the actual model training steps. These
typically involve a model selection exercise in which competing modeling methods
are compared and a choice of one or more modeling methods is made. Listed in
the figure are four of the many popular classes of modeling approaches. We use
all of the methods listed; see Section 6.3.

6.2 Error Rates

Some of the examples and discussion in this chapter draw on the two-class classi-
fication problem, which here is “hit” versus “inactive”. The word “active” refers to
a validated hit, that is, a molecule that truly does exhibit some level of the desired
biological response. A key point is that an assay is itself an estimator. With this in
mind, definitions and a discussion of error rates are given in the context of predic-
tive models. Borrowing from the terminology of signal detection, the “sensitivity”
of a model refers to the fraction of observed hits that are classified as (or pre-
dicted to be) hits by the model, and “specificity” refers to the fraction of observed
inactives classified as inactives by the model. An observed hit is not necessarily
an active molecule, but simply a molecule for which the primary screening result
exceeded a decision threshold. Whether such a molecule turns out to be an active
is a problem that involves the sensitivity of the assay, but the task at hand is for
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a model to predict accurately the primary screening outcome and to assess the
accuracy of the model for that purpose.

Let Î denote “predicted by the model to be inactive” and I denote “observed
to be inactive in the assay by exceeding the decision threshold”, with analogous
definitions for Â, “predicted to be a hit”, and A, “observed to be a hit”. With the
null hypothesis that a compound is inactive, we have:

specificity = P( Î | I ) = P(model prediction − | observed −)

P(Type I error) = P( Â | I ) = P(false positive) = 1 − specificity.

Similarly, 1 minus the sensitivity gives the probability of Type II error or the
false negative rate:

sensitivity = P( Â | A) = P(model prediction + | observed +)

P(Type II error) = P( Î | A) = P(false negative) = 1 − sensitivity.

The complementary rates are obtained from the opposite conditioning: the frac-
tion of model-predicted hits that are observed hits (A | Â) and the fraction of
model-predicted inactives (I | Î ) that are observed inactives. We call these the
“positive discovery rate” and “negative discovery rate”. It is important to look at
these conditional probabilities; a very clear example is in the analysis of gene chip
microarray data where the false discovery rate is 1 minus the positive discovery rate
as defined above and in Chapter 6; an excellent discussion is given by Benjamini
and Hochberg (1995).

An example in the context of blood–brain barrier (BBB) predictions (see
Section 6.5) is shown in Figures 8 and 9. Data from different laboratories at Lilly
and from various literature sources were pooled together and molecules were as-
signed binary class labels, BBB+ and BBB−, depending on whether they crossed
the blood–brain barrier. A random forest model, defined in Section 6.3, was trained
on this data set and molecules that were not part of the training set (called “out-of-
bag” in the bagging or random forest terminology) were predicted to be hits BBB+
or inactive BBB− according to a particular score/decision threshold. These pre-
dictions were evaluated and three rates were examined: sensitivity, specificity, and
positive discovery rates—shown as a function of decision threshold in Figure 8,
where the scores are multiplied by 10. If the goal is to obtain equal sensitivity and
specificity rates (a common practice), then the optimal threshold is 0.778. Because
both sensitivity and specificity are conditioned on the observed class labels, we
feel it is important to include a rate that conditions on the predicted score or class
label. Thus we include the positive discovery rate in our analysis.

Balancing these three rates equally yields an optimal threshold of 0.846. Both
thresholds are indicated by vertical lines in Figure 8. Figure 9 shows the actual
predicted scores for the molecules that do cross the blood–brain barrier (BBB+)
as well as those that do not (BBB−). The false positive and false negative rates
are, of course, direct consequences of which threshold is chosen. The appropri-
ate threshold depends on the goal. For example, if the project is a neuroscience
project where BBB+ is the goal, it may be that the team wants to find and reject
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Figure 8. Sensitivity, specificity, and positive discovery rate as a function of deci-
sion threshold; the two reference lines correspond to two decision thresholds. The
rates are estimated from predictions made for molecules not in the training set of the
model.

compounds that are BBB− at an early point. Then, the goal would be to maxi-
mize sensitivity or to maximize the negative discovery rate (while realizing that
going too far with this means losing a number of “good” compounds as well),
and an appropriately large weight could be given, say, to specificity in computing
the weighted average of the three rates to obtain an optimal threshold for that
purpose.

6.3 Machine Learning Methods

Some of the more popular predictive modeling methods used in drug discovery
include linear methods, tree-based methods, k-nearest neighbors, and kernel meth-
ods. In this section, a brief outline of these methods is given, together with refer-
ences for reading and further details.

Linear methods include simple linear regression, multiple linear regression,
partial least squares, logistic regression, and Fisher’s linear discriminant analysis;
see Hansch et al. (1962), Frank and Friedman(1993), and Hastie and Tibshirani
(1996b). Tree-based methods are some of the most widely used methods today;
see Breiman et al. (1984) and Rusinko et al. (1999). Bagging is a generic strategy
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Figure 9. Random forest BBB predicted scores for molecules assigned as BBB+ and
BBB−; horizontal reference lines correspond to two decision thresholds. All predictions
(scores) are for molecules not in the training set.

that is useful in many contexts including tree-based methods. It was introduced
by Breiman (1996) who motivated the strategy through the concept of unstable
predictors. The bias and variance properties of aggregated predictors were further
studied by Breiman (1998). Random forests is an improvement to the strategy of
tree-based models combined with bagging. Details are given by Breiman (1999,
2001a). This is currently the top-rated algorithm in our project work at Lilly.

A simple, yet useful, and often highly accurate method is that of K-nearest
neighbors described, for example, by Fix and Hodges (1951) and Dasarathy
(1991). A notable recent advance in this method is given by Hastie and Tibshirani
(1996a,b). In the case of a single descriptor, kernel regression and smoothing
splines are useful methods of model fitting. However, far more general is the re-
cent development known as support vector machines. This method is based on a
particular hyperplane in the descriptor or property space that separates the active
from the inactive compounds. This plane has the largest possible distance from
any of the labeled compounds and is known as the maximum margin separating
hyperplane. Support vector machines avoid overfitting by choosing the maximum
margin separating the hyperplane from among the many that can separate the pos-
itive from negative examples in the feature space. Good starting points for reading
about this topic are Burges (1998), Weston et al. (2002), and Vapnik (2000).
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Transduction is another generic strategy that is an important recent advance.
Standard practice in machine learning is to use inductive learning, that is, taking
known molecules and, through training or fitting a model, generating a general un-
derstanding of the underlying relationships and then applying that general knowl-
edge to make a prediction about a new molecule, for example, whether it will cross
the blood–brain barrier. If the ultimate goal is to make predictions for a finite set of
observations, then the rationale behind transduction is that the inductive learning
step is not necessarily needed. Transduction skips the inductive learning step and
goes directly to the prediction of the future examples. A nice heuristic explanation
of this is given by Vapnik (1998, page 355). The general model that is best when
applied to a universe of observations may not be the model that is best for the
specific subset of observations under current scrutiny.

6.4 Model Selection and Assessment

Usually a variety of different models can be applied to the same data set, each
model capturing part of the structural information relating explanatory variables
to responses and also part of the noise. The objective of model selection may be
considered, in a general sense, to be that of optimizing the quality of inference.
In practice this can take several forms including discovering the “true” model,
interpreting or understanding what natural process is driving a phenomenon, or
simply choosing the model that gives the most accurate predictions on new data. In
the QSAR drug discovery context, this latter objective is most often the appropriate
one.

It is important to distinguish between algorithms and models. An algorithm
creates a model, given data and tuning parameters as input. The model is a static
entity. At Lilly we perform studies to select the best algorithm for a data set as
well as the best model for a given algorithm, and finally to assess the error for a
given model. A crucially important issue in model selection is the issue of model
complexity, because training set error tends to decrease and test set error tends to
increase with increasing model complexity; see, for example, Hastie et al. (2001),
pages 194–199.

For the example of variable subset selection in multiple linear regression, the
R2 statistic increases monotonically as the number of variables added to the re-
gression model increases, leading to the situation dubbed as overfitting. Various
methods have been devised for avoiding an overfitted model. Some methods are
simple adjustments to the familar R2 statistic, such as the adjusted R2 (R2

adj ) which
adds a simple penalty for the number of covariates included in the model. Other
popular methods include the Bayesian Information Criterion (BIC), the Akaike
Information Criterion (AIC), and Mallow’s Cp; see, for example, Burnham and
Anderson (2002). In the context of high- or medium-throughput screening, when
little is known about a target or an SAR, and designed experiments are not possible,
there are no a priori models that can be assumed and, in any case, the key interest
in early stage screening is in predictive accuracy of models rather than inference
about model parameters.
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Table 3. Size of the model space for multiple
linear regression (MLR) with h descriptors and
for binary tree models.
k MLR Tree model

1 2 2
2 4 9
3 8 244
4 16 238,145
5 32 283,565,205,126

When the model space is large, the problem becomes extreme. One solution is
model averaging, in line with Breiman (1996). One good use for this approach is
in recursive partitioning or tree-based models. The model space for recursive par-
titioning is huge. Consider the special case of binary descriptors and an algorithm
that iteratively partitions data into two parts, depending on descriptor values. Once
a descriptor is used to split the data, it can never be used again. Thus the model
space is much smaller than when the descriptors have more than two values. For
binary descriptors, the number of possible tree models T (h) for a data set with h
descriptors can be computed from a simple recursive formula:

T (h) = 1 + h · [T (h − 1)]2, (2)

where h = 0 corresponds to the case of no descriptors where the tree model is the
null model composed of the overall mean. For multiple linear regression and a
simple additive model, there are 2h possible models for h descriptors. There is a
rough analogy between the choice of parameters in the regression model and the
choice of cutpoint along each descriptor in recursive partitioning. Table 3 shows
the size of the model space for multiple linear regression and for binary descriptor,
two-way split tree models, for up to five descriptors.

With great flexibility in model choice comes great power but also great danger
of misuse. As the model space spanned by tree models is huge for h ≥ 4, there is
need for both a computationally feasible way to search the space and for some way
to guard against finding spurious relationships in the data. The bagging method of
Breiman (1996) was a key advance in this area.

For regression models, one metric that we use for sorting the molecules by
their predicted activity, which is considered proprietary at Lilly, is similar to a
weighted variant of Spearman’s ρ. This metric, labeled S, ranges from −1 to +1
and compares the predicted and actual responses. The weights are higher earlier in
the sorted list to emphasize that, in practice, it is the top of the sorted list that will
identify the molecules selected for testing, and that accuracy farther down the list
is not nearly as important. We have very little interest in accurately distinguishing
the relative activity levels of molecules that are all considered inactive, but a great
deal of interest in the degree to which actives will rise to the top of a sorted list
of molecules. Quality assessments have been assigned to various values of S, but
these levels in isolation are not meaningful; a very high value of S (or R2, or any
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other metric) can easily be obtained for observations that are in the training set of a
model, but does not predict how the model will perform on untested molecules. The
thresholds established are based on appropriate test hold-out results, as described
below. With this in mind, a value of zero is equivalent to random (the mean value
resulting from scrambling the predicted responses and computing S many times). A
value of 0.40 is considered a minimum standard for a model to be used for decision
making at Lilly. Such a model would be considered weak and would not be used
at all by some scientists. A model with an S value of 0.60 is considered a solid and
useful model and an S value above 0.80 indicates a very good model. A difference
in values of less than 0.05 is not considered to be meaningful. Thus, if one were
doing model selection and two competing models were statistically significantly
different but the difference in mean S were below 0.05, the two models would be
treated as equivalent. At Lilly, we couple the concept of significant differences
with the concept of meaningful differences.

6.5 Example: Blood–Brain Barrier Penetration

We examine a data set of 750 molecules with blood–brain barrier penetration
measurements. An important aspect of drug design is the consideration of the
potential for penetration of the blood–brain barrier by any new candidate drug
molecule. Whether the goal is for the potential drug to cross or not to cross the
blood–brain barrier, the ability to estimate the blood–brain ratio is an essential part
of the drug design process. Determination of this aspect of a molecule is a low-
throughput operation and thus having the ability to prioritize molecules in silico
through the use of predictive models adds considerable value to the drug discovery
process.

The penetration of a compound across the blood–brain barrier is measured
experimentally as the ratio BB of the concentration of the compound in the brain
to that in the blood. This ratio is thought to be related to local hydrophobicity,
molecular size, lipophilicity, and molecular flexibility (Crivori et al., 2000), but
no explicit mathematical relationship has been given. The 750 available results,
from an in situ experiment with rats, are responses known as Kin values. These are
intended to be related to the BB ratio of these compounds in humans. The current
goal of the analysis is to select a subset of descriptors (covariates) from about 1000
possibilities and a modeling method that gives good predictive accuracy of the Kin.
At Lilly, the modeling methods used do the subset selection intrinsically. In this
example we compare just two methods: one is based on partial least squares (PLS)
with a model-averaging strategy, and the other is the random forest algorithm of
Breiman (1999).

We split the data set into two equal parts at random. We train our algorithms
on one half and score the other half as test data. The idea is to study how the
methods behave on new untested molecules. Whether a 50/50 split is the best
choice is discussed shortly; here we consider the question of how many repetitions
are needed. We started with 200 repetitions, each a random 50/50 split of the 750
data points into equal-sized training and test sets, where after each split the model
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was retrained and the test hold-out set was scored. The conclusion favored the
random forest model over partial least squares, and a natural question arises as to
whether smaller tests would lead to the same conclusion.

6.6 Training and Test Set Sizes

Two key questions in model selection are what proportion of molecules to use
for a training set versus a test set when doing random splits of the data, and how
many different training/test splits should be analyzed to obtain reliable inferences
about model performance. The number of repetitions needed is surprisingly low
and often the same decisions are made whether the number of training/test splits
used was 200 or 20 or 10.

Miller (2002, pages 148–150) recommended fivefold to tenfold validation, so
that effectively 80% to 90% of the data should be in the training set. Another
recommendation is that n3/4 of the data should make up a training set (randomly
selected) and the rest predicted as test hold-out data; see Shao (1993) for details.
However, it is easy to show that use of the n3/4 rule does not perform well in
settings such as drug discovery where prediction accuracy, rather than selection of
the true model, is the objective. We are sometimes better off with a model that is
not the true model but a simpler model for which we can make good estimates of
the parameters (leading to more accurate predicted values).

In order to choose the model that predicts most accurately for the test data, we
need a new rule or a new information criterion. The usual criteria, the Akaike
Information Criterion (AIC), the Bayesian Information Criterion (BIC), Leave
One Out (LOO or Qsquared), and so on, are all insufficient for our needs. This
motivated Kerry Bemis to propose a new measure which he called predictive R2

or pR2 (described below).
Although this is an area of ongoing research, the current opinion at Lilly is that,

when comparing candidate modeling methods in a model selection exercise, it
is best to look at the entire learning curve (leave 90% out up to leave 10% out)
and make a judgment about learning algorithms based on the performance across
the whole curve. This we call a learning curve (but note that the phrase is used
in other contexts with other meanings). Figure 10 shows the performance of the
two candidate modeling methods applied to the BBB data set of Section 6.5. We
generated 20 sampling runs for each level of Ptrain, where Ptrain is the proportion
of the data assigned randomly to the training set, and used the two methods over a
broad profile of training set sizes. The two lines connect the means of the values
of S obtained for the two methods at each Ptrain level. The same train/test splits
were used for both the PLS and the random forest methods. Thus a paired or block
analysis was done. Here, we could ask whether the random forest method is supe-
rior over all Ptrain levels and use a test such as Tukey’s HSD (Honestly Significant
Difference; see Tukey, 1997, Kramer, 1956). This is perhaps conservative in that
we are not interested in all of the pairwise comparisons but, as we can see from
simply looking at the plot, any formal comparison is going to give an unambiguous
result for this data set.
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Figure 10. Model selection and assessment diagnostic: performance measure S for ran-
dom forest and partial least squares (PLS) methods applied to the BBB data for various
percentages of the data (Ptrain) in the training set.

There is a minimum size of training set necessary for a statistical model to be able
to reveal links between vectors of descriptor values and biological activity. This
has been called “statistical traction” by Young et al. (2002). Suppose a particular
pharmacophoric feature is important for the binding of molecules to a receptor.
Having one molecule that binds and has that feature is not sufficient for that feature
to be detected as significant. Several examples of molecules that bind and contain
that feature are needed before the statistical algorithm can detect it. In the model
selection stage, it is possible to place a downward bias on the estimate of the
predictive power of an algorithm by selecting for the training set a subset of the
data that is too small. There may be a lack of “statistical traction” in the training
subset that would not exist when the model is trained on all the available data. On
the other hand, when the proportion of data selected for the training set is very
large, and the test set is correspondingly small, it is more likely that a given test set
molecule has a very similar “neighbor” in the training set and this gives an upward
bias to the estimate of predictive power of the model.

Once the choice of modeling method has been made, all available data are
used to train a final scoring model (to be used in the third step of Figure 7).
Sometimes sampling issues arise here; for example, the data sets can be very
large, and for classification data there is usually a huge imbalance in the number
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of examples of one class compared with another. In drug hunting, there may be
400,000 examples of inactive compounds and as few as 400 active compounds.
If the available modeling methods do not deal well with this situation, there may
be motivation either to create a training set that alleviates such a mismatch, or to
create a smaller training set to reduce the computational burden. Either of these
issues may or may not be related to the problem of model selection. One strategy
for selecting a subset of available data for training a model is as follows.

1. Select all the active compounds.
2. Select a small subset of the inactive compounds whose nearest neighbor among

the active compounds is a relatively short distance (by some distance measure
such as those of Section 4.5). The motivation here is to preserve the boundary
between classes.

3. From the remaining inactive compounds, select a maximally diverse subset (as
described in Section 5). This augments the space beyond the boundary with an
optimal exploration of the chemical space represented by inactives.

At Lilly we have focused on predictive accuracy in most of our project work.
Predictive accuracy and interpretability tend to be inversely proportional. An active
area of research at Lilly is an investigation of the question of ways in which the
model can help us design a better molecule. This may involve interpretation, and
there are excellent tools that can be used for this, such as partial dependence plots.
It can also be approached through virtual screening—a scientist proposes a scaffold
or series and the model provides an evaluation of the prospects of that idea.

6.7 The Predictive R2 of Bemis

In the area of linear models, Bemis has proposed a “predictive R2” or pR2. Until
2004 this criterion was treated as a trade secret at Lilly. The pR2 does not in-
volve training/test split cross-validation, but rather uses an information-theoretic
criterion motivated by ideas of Shi and Tsai (2002). For a model with h parameters,

pR2
h = 1 − exp

[
RI Ch

k − h − 1
− RI C0

k − 1

]
,

where RI C0 corresponds to the Shi and Tsai RIC (residual information criterion)
for the null model. To give more clarity, we give an alternative notation of the pR2,
building up from the familiar R2 to the adjusted R2 and finally to the pR2. For a
linear model with h parameters:

R2
h = 1 − SSEh
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0
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Figure 11. Performance of competing criteria: the number of descriptors in the model, for
various criteria versus the root mean squared prediction error (RMSEP) in forward selection.
(Reproduced with permission from the author.)

where

biash = h + 1

k − h − 1
[log(k) − 1] + 4

(k − h − 1)(k − h − 3)
.

Figures 11 and 12 illustrate the performance of the pR2 compared with several of
the currently popular criteria on a specific data set resulting from one of the drug
hunting projects at Eli Lilly. This data set has IC50 values for 1289 molecules.
There were 2317 descriptors (or covariates) and a multiple linear regression model
was used with forward variable selection; the linear model was trained on half the
data (selected at random) and evaluated on the other (hold-out) half. The root mean
squared error of prediction (RMSE) for the test hold-out set is minimized when the
model has 21 parameters. Figure 11 shows the model size chosen by several criteria
applied to the training set in a forward selection; for example, the pR2 chose 22
descriptors, the Bayesian Information Criterion chose 49, Leave One Out cross-
validation chose 308, the adjusted R2 chose 435, and the Akaike Information
Criterion chose 512 descriptors in the model. Although the pR2 criterion selected
considerably fewer descriptors than the other methods, it had the best prediction
performance. Also, only pR2 and BIC had better prediction on the test data set
than the null model.

6.8 Common Errors

Predictive modeling, statistical modeling, and machine learning are very open
areas in the sense that the barrier to admission is very low. All that is needed to
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Figure 12. The Bemis pR2 for an example data set. The “true” observed R2 based on the
test set, and the pR2 estimated only from the training set. (Reproduced with permission
from the author.)

start experimenting in this area is a PC and a data analysis package. Below is a list
of the most frequent errors as they occur in this field.

1. Belief that a very small p-value for a predictor (for example, a biomarker)
is more likely to occur with high predictive accuracy. The multiple testing
problem must not be ignored, and the false discovery rate (FDR) controlled;
see also Chapter 6.

2. Failure to pre-process and clean the data. Sometimes even data with missing
values are jammed through a learning algorithm with little thought.

3. Use of an unsupervised algorithm to do the job of a supervised algorithm. For
example, a cluster analysis or self-organizing map is used in combination with
a post hoc analysis to do prediction.

4. Failure to evaluate a method on test data.
5. Test data set too small, with these consequences:

a. Prediction error cannot be accurately estimated on each hold-out part.
b. The test sample and the training sample are likely to be similar in their

descriptor values.
6. “Cheating” in model assessment: using the whole training set to select descrip-

tors, and then splitting the data into train and test sets, and training the model
on the descriptor set selected from the whole training set.
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7. Comparison of methods with the same type of feature selection forced on all
methods, rather than letting each method do what it does best.

8. Confusion of model selection with model assessment. If one chooses the model
with the lowest cross-validated error among competing models, that error is not
a valid estimate of the prediction error of that model (selection bias).

7 Iterative Medium-Throughput Screening

Researchers who use high-throughput screening (HTS) methods are troubled with
many obstacles such as poor data quality, misleading false-positive and false-
negative information, and the need to confirm and expand the SAR of the identified
lead candidates. Additionally, HTS strategies lead to the large-scale consumption
of valuable resources such as proteins and chemicals from the inventory, and may
not be applicable to all targets (Major, 1999). The problem is fueled, in particular,
by the prospects of expanding universes of targets—an increase by a factor of 10 is
expected (Drews. 2000)—that will lead to an explosion of costs. As a consequence,
there is a need not only to increase the scope of screening, but also the efficiency of
each screening experiment. Hybrid screening strategies have been suggested that
unite in silico and in vitro screening in one integrated process.

Iterative medium-throughput screening (MTS) starts with a small (200 to
20,000) and “diverse” subset of compounds. This initial sample is subjected to
a primary screening where the main objective is to gather SAR data for predic-
tive model building. This is a key distinction from the older paradigm where
the primary objective is to obtain an initial set of screening hits, and any subse-
quent model building is an added bonus. Based on this first SAR, the corporate
inventory is screened in silico in order to identify a further, more focused set
of compounds, the focused library, for a second round of MTS. Several cycles of
testing–analyzing–testing can be applied aimed at either refining the SAR model(s)
or the identification of more active compounds. Abt et al. (2001) studied the influ-
ence of the size of the focused sample and the number of cycles on the effectiveness
of the computational approaches.

One factor that plays a role in the decision on how compounds are chosen
in a given cycle is the stage of a project. An early stage project may require
more diversity to be built into the selection process, whereas a later stage lead
optimization effort would draw much more heavily on predictive modeling and
expert judgement.

Active learning is a strategy that is iterative and where the selection of com-
pounds to test in the next iteration is based on all the currently available data (see,
for example, Warmuth et al., 2003 and Campbell et al., 2000). A key distinction
between active learning and other modeling strategies is that, in active learning,
the primary objective for selecting the next batch of compounds for testing is to
improve the model optimally, whereas in drug screening programs the primary
goal is to find as many potent (and usually novel) compounds as possible. This
distinction and the consequent effects are dramatic. In active learning, the most
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interesting compounds are the ones for which the model has had difficulty in the
assignment of a clear classification whereas, in a typical drug hunting program,
the most interesting compounds are the ones that are scored the most unambigu-
ously as active. This has downstream implications on what will come out of future
iterations of screening. The traditional business-driven approach will find good
compounds faster, but the active learning approach will generate better models
faster, and eventually lead to better exploration of chemical space, resulting in
finding the best compounds.

There is also an analogy with ancillary efforts such as toxicity testing. A drug
hunting project tends to focus on finding compounds with potency and selectivity
for the target of interest. When interesting compounds are found, they are submitted
for toxicity testing so that a small set of structurally related compounds is tested
for the toxic endpoint of interest. This places a handicap on any toxicity modeling
effort. If the goal is to develop a good toxicity model (which would reduce the
need for animal testing and reduce cycle time in the project), then compounds that
are not interesting from a potency standpoint would need to be tested for toxicity.
This would mean that the interesting potent compounds must wait their turn due to
limited capacity in toxicity testing. The long view, both in terms of active learning
for potency and for toxicity, might be to strike some balance between immediate
and future gains.

8 Virtual Screening and Synthesis

Virtual screening is a simple concept, arising from the need to break out from the
confines of the currently available set of in-house chemical libraries. It is a simple
matter to construct representations of molecules using computers, and this can
be done in a combinatorial manner. Usually one or more “scaffolds” are chosen—
these are the “backbone” of the molecule. Then a number of “substituents” are
chosen; these can be thought of as the “appendages” that gets attached to the back-
bone at various (preselected) locations. All (reasonable) combinations of scaffolds
and substituents can be made in silico and these structures form a virtual library.
The library may contain millions of molecules but it is more typical to see some-
thing of the order of 500,000 structures. This is because most virtual screening
efforts are knowledge driven; something is known about the SAR before the vir-
tual screen is attempted. Most of the molecules in the virtual library will not
exist in the corporate molecular stores. This virtual library is then the subject
of a modeling effort whereby the virtual library is prioritized and rank ordered,
with the most promising structures at the top of the list. The biological screening
is done virtually through the use of the predictive models applied to the virtual
library.

Some of the high-ranking structures may be very similar to structures that have
already been tested. These are removed from the list using molecular diversity
methods such as a Leader algorithm (Hartigan, 1975). In this context, the Leader
algorithm is not providing a cluster analysis, but simply a post-processing of a rank
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ordered list. From what is left, a relatively small number of molecules are then
synthesized and tested for biological activity. Because this is a relatively expensive
part of the process, it is usually important that some knowledge about the SAR
has been gained before the virtual screening is done. That knowledge could come
from literature sources or from prior early-stage screening.

9 Pooling

Pooling strategies can take numerous forms, as discussed in Chapter 3. In the drug
hunting screening context, chemical compounds can be pooled. Ten compounds
may be pooled together in a well and tested as a mixture. If the mixture is potent, the
individual components can then be tested. If the mixture shows no potency, it might
be assumed that the individual components are each inactive. This assumption may
sometimes be incorrect, as compounds may exert an antagonistic (or conversely,
synergistic) effect on each other. For the use of orthogonal arrays in the design of
a pooling study see Phatarfod and Sudbury (1994; and also Dorfman, 1943).

The design and deconvolution of pools in drug discovery screening has been
approached in different ways by a number of companies. In a highly specialized
experiment at Merck, Rohrer et al. (1998) pooled a staggering 2660 compounds per
well. The deconvolution of these results was done using chemical technology rather
than the informatics approach one might use following Phatarfod and Sudbury
(1994).

An interesting informatics strategy involves pooling covariates in a variable
subset selection context. Suppose one has a data set with hundreds of thousands
of covariates (descriptors), as happens in the drug discovery setting, and perhaps
one does not have a data analysis package capable of handling so many columns
of data. If the covariates are sparse binary, meaning that each column is mostly
zeros with a few ones (a typical scenario), one strategy for data reduction is to
pool columns together. One could take batches of, say, 100 columns and simply
add them, creating a “pooled covariate.” This data set is now 100-fold smaller, and
a forward selection method might be run to fit a model on the reduced data set.
Variables selected by such a procedure can then be collected and the individual
covariates unpacked and a second stage of variable selection performed on this
reduced data set.

10 Expectations for Discovery of Rare Events

The hit rate within a set of molecules selected by a virtual screen is primarily
determined by two parameters: the unknown proportion of p hits that exist in the
set of molecules scored and the false positive error rate (α) of the classifier used
for virtual screening. To a large extent, the statistics of rare events (true hits within
a large compound collection) leads to some initially counterintuitive results in the
magnitude of a hit rate within a set of molecules selected by a model.
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Most pharmaceutical companies expect to see hit rates in the 0.1% to 1%
range for a high-throughput screen. In the virtual screening context, when the
hits are a rare event (of the order of 0.1%) even very good predictive models can-
not be expected to lead to arbitrarily high hit rates for the molecules selected. It
is quite likely that marginal to good virtual screen models will result in no hits
identified in a subset of molecules selected by virtual screening.

The virtual screen can be considered as a classifier that makes a prediction about
whether a molecule is likely to be active or inactive in a biochemical assay. It can
be constructed from training data (for example, a QSAR model) or constructed
from a model of a binding site. For a given molecule in a virtual library, let the
null hypothesis be that the molecule is not a hit. Then, using the notation of
Section 6.2,

P(A) = p, P(Â | A) = 1 − β, P(Â | I) = α,

P(A | Â) = P(Â | A)P(A)

P(Â | A)P(A) + P(Â | I)P(I)
(3)

= (1 − β)p

(1 − β)p + α(1 − p)
. (4)

Equation (3), which is an application of Bayes theorem, is referred to as the
“Positive Predictive Value.” The parameter p is unknown but believed to be very
small (<0.01) for large virtual libraries. 1 − β is the power (or 1 – type II error,
where β is the false negative error rate) and α is the type I error, also called the
“size” of a test in the hypothesis testing context, or the false positive error rate.
The last equation defines the probability that a molecule is determined to be a hit
in a biochemical assay given that the virtual screen predicts the molecule to be a
hit. This probability is of great interest because it is valuable to have an estimate of
the hit rate one can expect for a subset of molecules that are selected by a virtual
screen.

The values of parameters p, α, and β can be varied to observe the effect on
equation (3). It is straightforward to verify that the “power” of the classifier (1 − β)
has relatively little effect on the hit rate observed in the subset of molecules selected
by a virtual screen. The influence of power is greatly reduced as the probability of
a hit existing in the set of compounds being scored decreases (the low prevalence
effect) and, for rare events, the relative importance of α is greatly intensified. Even
for less rare events, say a hit rate of 10% (disturbingly high in drug discovery,
suggesting nonspecificity in the assay), the effect of α dominates.

11 Drugability of Molecules: ADME, Solubility, Toxicity

The word drugability is often used to cover all aspects of a molecule beyond initial
potency. A potential drug compound must overcome many challenges in order to
be a successful therapeutic. Critical components of drug design include absorption,
permeation, distribution, metabolism, stability, specificity (does it do more than
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intended?), and toxicity (related but not identical to specificity). In this section,
some of these issues are discussed in more detail.

11.1 ADME

Many of the compounds entering clinical trials are discontinued, often due to issues
directly related to ADME: absorption, distribution, metabolism, and elimination/
excretion of a drug. Absorption is of paramount importance, being the extent to
which an intact drug is absorbed from the gut lumen into the portal circulation.
Distribution is important because the drug will not work if it is not transported to
the intended site. A compound may have potent effects in vitro screens involving
cells or enzymes, but in a living organism the compound may have no effect
because of a distribution problem. This can be due to a number of things; for
example, the compound may bind so tightly to proteins in the bloodstream that
it does not leave the bloodstream until it is eliminated by the liver. The opposite
extreme can be a problem as well, because proteins in the blood can be important
as transport mechanisms. In addition, the unbound drug may penetrate the wall
of the blood vessel so that a certain amount of protein binding is desirable. Most
pharmaceutical companies have models that predict the protein binding affinity
of compounds. Distribution is only one problem that can confound an SAR effort
when transitioning from in vitro to in vivo screens.

Two endpoints important to distribution are oral bioavailability and first pass
clearance; see Birkett (1990, 1991). Oral bioavailability is particularly important
because a drug that has, say, only 10% oral bioavailability would require a 10-fold
higher dose when given orally as compared with being given intravenously. Orally
administered drugs, after absorption through the gut lumen into the portal circu-
lation, must then pass through the liver before reaching the systemic circulation.
Pre-systemic or first pass extraction refers to the removal of drugs during this first
pass through the liver. First pass clearance is the extent to which a drug is removed
by the liver during its first passage from the portal blood on its way to the systemic
circulation. Oral bioavailability is the fraction of the dose that reaches the systemic
circulation as intact drug. It is apparent that this will depend both on how well the
drug is absorbed and how much escapes being removed by the liver. In fact, the
simple equation for bioavailability is

Ba = fraction absorbed × (1 − extraction ratio),

where the extraction ratio is the proportion removed by the liver. Thus if drug A
has 80% absorption and 75% extraction ratio, then the bioavailability of A is 20%.
The 20% alone does not tell us anything about the metabolism or the absorption
of the drug.

Because there are many ways to achieve a given level of bioavailability, it
makes sense to consider using a compartmental model to predict bioavailability
rather than simply training a model on a set of bioavailability results. The role
of metabolism tends to dominate most often and variability in drug response is
greatly influenced by this. Drugs that are efficiently eliminated by the liver often
have high variability in the plasma levels both within and between individuals
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because, in that case, slight changes to the extraction ratio can cause large changes
to the resulting bioavailability.

Treated as a special case of distribution is the ability of a molecule to cross
the blood–brain barrier (BBB). This fact is important to know, both for central
nervous system (CNS) drugs and for drugs that do not target the central nervous
system. There has been a flurry of research attempts to model and/or predict the
BBB propensity of molecules. Many of these efforts are statistically destitute; for
example, a research group may examine only a set of molecules that do cross the
BBB. Proper inference must involve examples of compounds that do not cross
the BBB as well as compounds that do and this falls in the domain of predictive
modeling and machine learning (see Section 6). The BBB is formed by the highly
selective capillaries of the central nervous system. Passage of drugs through the
BBB may occur by passive diffusion or from various specific uptake mechanisms,
many of which are there to supply nutrients to the brain. There are also mechanisms
for transporting substances out of the brain. P-glycoprotein (or Pgp) is an efflux
pump that removes many drug compounds from the brain. Thus BBB transport is
a complex phenomenon and modeling this is a challenging and ongoing research
topic in most pharmaceutical companies.

Metabolism is another critically important aspect for determining the fate of a
drug. If a drug is metabolized quickly, it may be excreted in the urine before it has
a chance to reach the intended site, but the full story is much more complicated
than this. Most successful drugs are lipid-soluble and are reabsorbed from the
kidney back into the bloodstream. These compounds undergo metabolism, which
is a way for the body to break down and ultimately eliminate a substance. The
liver uses a number of different enzymes to break a compound down into smaller
parts, called metabolites. A metabolite may either be pharmacologically similar
to the parent compound or harmless, but not pharmacologically active, or may
possess life-threatening toxicity. Thus it is essential to know into which of these
categories a drug falls and it is desirable to control this aspect in a favorable way.
Ideally a compound would metabolize at a moderate rate, neither too slowly nor
too quickly. Because humans are genetically diverse, the same compound will be
metabolized differently in different people. All of these issues are interdependent
and are illustrated in the following examples.

A major group of enzymes, not just in the liver but also in the intestines, lung,
kidneys, and brain, is known as the Cytochrome P-450 isoenzymes, often abbre-
viated as CYP450. Some drugs interact with these enzymes. A drug with a high
affinity for an enzyme will slow the metabolism of any low-affinity drug; for ex-
ample, grapefruit juice inhibits a number of CYP450s which results in higher than
expected levels in the body of the drugs that are metabolized by those CYP450s.

The inhibition of CYP450 isoenzymes by grapefruit juice lasts about 24 hours
and occurs in all forms of the juice—fresh fruit and fresh and frozen juice. There is
the potential for dangerous arrhythmias for patients taking cisapride, astemizole,
and terfenadine. Other substances may induce the opposite effect, that is, upregulate
the levels of the enzymes and result in faster metabolism, for example, smoking and
the ingestion of charbroiled meats may induce isoenzymes, resulting in increased
clearance of drugs (such as theo-phylline). The herb known as St. John’s wort
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causes an increase in the Cytochrome P450 enzymes, especially CYP 3A4, which
are responsible for the metabolism and elimination of many drugs. This is why the
birth control pill is rendered less effective by St. John’s Wort. But in addition to
being an inducer of CYP 3A4, St. John’s Wort is also an inhibitor of CYP 2D6.
Hence patients taking St. John’s wort are likely to experience an increase in blood
levels of therapeutic drugs that are metabolized by the 2D6 family (this includes
beta blockers, antidepressants, antipsychotics, cough suppressants, codeine, and
others) as well as a decrease in blood levels of drugs that are metabolized by the
3A4 family of CYP 450s (which includes antibiotics, HIV protease inhibitors,
antihistamines, calcium channel blockers, and others).

Just two decades ago, the FDA was uninvolved in issues regarding CYP450
metabolism, but currently there are stringent guidelines that must be met to ensure
that the metabolic fate of a drug is under control. There are genetic polymorphisms
in some of the genes expressing CYP450 subfamilies. For example, 5 to 10 percent
of Caucasians have polymorphic forms of the 2D6 subfamily; such individuals are
called “slow metabolizers.” There is a large list of drugs metabolized by 2D6 that
can pose a risk to slow metabolizers and dosing must be done carefully.

11.2 Solubility

Solubility plays a critical role in the absorption of a drug. A compound with poor
solubility may not achieve high enough levels in the stomach and intestine to be
absorbed well. However, it is generally true that highly soluble compounds lack
sufficient lipophilicity to cross the blood–brain barrier and so, if the compound is
an intended CNS drug, a balance must be maintained; see Amidon et al. (1995).

11.3 Toxicity

Toxicity is often related to ADME; for example, when a compound cannot be bro-
ken down and eliminated by the body it builds up toxic levels in the system. Some
other toxicity issues that have recently received heightened attention are discussed
below. Phospholipidosis (an adaptive storage response to drug administration) and
cardiomyopathy (a pathologic condition of the heart muscle) have been reasons
for the recent FDA withdrawal of drugs. Another issue concerns the need for addi-
tional assurance of the absence of any potential for QT prolongation (an effect on
electrical impulse conduction in the heart). Many classes of drugs induce QT pro-
longation, including antihistamines, antibiotics, antipsychotics, and macrolides.
QT prolongation can lead to sudden death. At least four drugs have been taken
off the market due to QT prolongation alone: Terfenadine, Sertindole, Astemizole,
and Grepafloxacin. Acquired long QT syndrome (LQTS) occurs as a side effect of
blockade of cardiac HERG K+ channels by commonly used medications. These
issues have inspired modeling efforts aimed at predicting these effects and using
those predictions to filter compounds in the early screening stages. Because these
models are less than perfect, false negative and false positive rates are an issue.
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A common approach to lead optimization is now parallel optimization, which
is discussed in the following section. This is an extremely challenging undertak-
ing because it requires the simultaneous control of several medicinal chemistry
components. Furthermore, many of these components are not independent and,
in fact, may even be negatively correlated. To do parallel optimization, it is also
necessary to generate drugability related information in the early stages of lead
optimization.

12 Multi-Objective Optimization Methods

Decisions in drug discovery are almost always multidimensional. Numerous cri-
teria must be managed in order to develop a successful drug: potency, selectivity,
toxicity, and ADME characteristics, and these tend to have conflicting trends so that
difficult decisions are forced on scientists. For example, Zyprexa is an excellent
antipsychotic drug but it causes weight gain in most people, a side effect of almost
all antipsychotic drugs. Why this happens is still being investigated and there are at
least six different hypotheses given in the literature. It is possible to modify an
antipsychotic drug so that it does not produce weight gain, but such modifications
may reduce the potency of the drug or introduce other side effects which may be
even worse. A common side effect, for example, of many antipsychotic drugs is
“extrapyramidal side effects” (EPS) which produce symptoms such as tremors,
rigidity, and slowness of movement. These are deemed by most to be worse than
weight gain. Less clear-cut trade-offs might involve the propensity for a molecule
to cross the blood–brain barrier versus the therapeutic effect desired. For example,
Benadryl is still a popular drug because, in spite of its tendency to induce a feeling
of somnolescence, it is an extremely potent histamine (H1) blocker. Specificity
is a problem faced by virtually every project team in drug discovery. Potency is
desired at one receptor but not at another.

The old paradigm in drug discovery, which might be labeled “sequential search,”
generally fails. With this paradigm, one would optimize each objective indepen-
dently and in succession. Finding a lead compound corresponds to searching on
one landscape. Optimizing the lead corresponds to searching additional landscapes
starting with the results of searching the first. With more than two objectives, the
likelihood of failure increases exponentially. What is needed is a holistic approach
with a mathematical framework for considering trade-offs between objectives. A
variety of algorithms exists for finding the best possible trade-offs; these are used
surprisingly seldom despite their utility.

One strategy involves restricting a search to only those solutions that are Pareto
optimal. A solution is Pareto optimal if there is no other solution that is better
under one criterion without being worse for the other criteria. It is often true
that not every response has the same importance; for example, avoiding EPS
symptoms might be 50-fold more important to a team than avoiding weight
gain. Although Pareto optimality provides more than one solution, it does not
allow different weightings on different criteria, as this is difficult to manage with
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more than two dimensions. Another useful approach is Derringer’s desirability
function which does allow weights to be assigned to each criterion (Derringer,
1980). The desirability function involves transformation of each criterion to a de-
sirability value d, where 0 ≤ d ≤ 1. The transformation is done in such a way
that the value of d increases as the “desirability” of the corresponding crite-
rion increases. This transformation may be linear, quadratic, step function, and
so on. In the terminology of decision theory, these are monotonic utility func-
tions. The individual desirabilities are then combined using a geometric mean,
which is an overall assessment of the desirability of the combined response levels.
It can be a weighted mean where the weights reflect relative importance of the
criteria.

13 Discussion

Drug discovery is a challenging endeavor that involves many disciplines in the
life sciences and informatics. There are a great many interesting and diverse prob-
lems that need to be solved. This chapter has given an overview of a number of
them while omitting many others. Areas that are increasing in research intensity
include the areas of genomics, gene chip microarrays (see Chapter 5), proteomics,
metabolomics, and other technologies that involve spectral analysis. There are a
host of interesting and challenging problems in these areas and, currently, there
is great interest in merging these disciplines with the cheminformatics-related
disciplines that have been the focus of this chapter.

The future will see dramatic changes in drug discovery and development pro-
cesses. Within the next decade, researchers will almost certainly find most hu-
man genes and their locations. Explorations into the function of each one is
a major challenge extending far into the next century and will shed light on
how faulty genes play a role in disease causation. With this knowledge, com-
mercial efforts will shift towards developing a new generation of therapeutics
based on genes. Drug design will be revolutionized as researchers create new
classes of medicines based on a reasoned approach using gene sequence and
protein structure information rather than the traditional trial-and-error method.
The drugs, targeted to specific sites in the body, will not have the side ef-
fects prevalent in many of today’s medicines. Over 150 clinical gene therapy
trials are now in progress in the United States, most for different kinds of
cancers.

The road map of human biology generated by the human genome project will
supply an enormous store of genes for studying, and ultimately curing, the ills
that beset us. As the factors underlying the maladies of the human condition
slowly come to light, the challenge will be to use the information effectively and
responsibly.
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Appendix
Tools of the Trade

Robots: Used in a number of processes: screening compounds for biological ac-
tivity, inoculating microbial cultures, and filling compound libraries.

High-throughput screening (HTS): Technology where robotics is used to test many
compounds rapidly in an effort to identify novel inhibitors of receptors or en-
zymes. Usually 100,000 to 200,000 compounds are screened.

Medium-throughput screening (MTS): Similar to HTS but with only modest
throughput requirements which implies more careful usage of robotics and
higher quality of data. Typical MTS throughput is 1000 to 10000 compounds.

Combinatorial chemistry (Combi Chem): Used to make thousands of variants of
a compound. Consider a compound with a six-membered aromatic ring and
a chlorine atom attached at a certain position. One might change the location
of the chlorine to any of the other five positions, or change the chlorine to
a fluorine or a bromine, and/or make the same changes at all the other five
positions. To enumerate all the possible combinations is to make a combinatorial
library.

Genomic information: Used to identify possible protein therapies and targets, to
develop biomarkers, and to understand more deeply how a given compound
interacts with a complex living system.

X-ray crystallography, nuclear magnetic resonance (NMR): Used in exploring the
physical properties/shape of a molecule and/or a receptor target. If the structure
of the target is known, docking studies can be done to assess how well a molecule
may “fit” in one of the receptor’s binding sites.

Bioinformatics tools: Used to search enormous volumes of biological informa-
tion, for instance, to find the best genomic match of a nucleotide sequence or
learn the chromosomal location and disease linked to a particular gene. We
may know that a compound evokes a biological response but with genomics
and bioinformatics tools we can examine which proteins are affected by the
compound.

Cheminformatics tools: Used to explore the relationship between the structure of
a compound and the biological response it evokes (the SAR), with a view to-
ward predicting what will happen with new, as yet untested compounds. Also
used to model the docking of a small molecule (or ligand) to a protein or
receptor.
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