Journal of Experimental Psychology:

Human Perception and Performance

2017, Vol. 43, No. 1, 18-29

© 2016 The Author(s)

0096-1523/17/$12.00  http://dx.doi.org/10.1037/xhp0000282
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The combination of reward and potential threat is termed approach/avoidance conflict and elicits specific
behaviors, including passive avoidance and behavioral inhibition (BI). Anxiety-relieving drugs reduce
these behaviors, and a rich psychological literature has addressed how personality traits dominated by BI
predispose for anxiety disorders. Yet, a formal understanding of the cognitive inference and planning
processes underlying anxiety-like BI is lacking. Here, we present and empirically test such formalization
in the terminology of reinforcement learning. We capitalize on a human computer game in which
participants collect sequentially appearing monetary tokens while under threat of virtual “predation.”
First, we demonstrate that humans modulate BI according to experienced consequences. This suggests an
instrumental implementation of BI generation rather than a Pavlovian mechanism that is agnostic about
action outcomes. Second, an internal model that would make BI adaptive is expressed in an independent
task that involves no threat. The existence of such internal model is a necessary condition to conclude
that BI is under model-based control. These findings relate a plethora of human and nonhuman
observations on BI to reinforcement learning theory, and crucially constrain the quest for its neural
implementation.

Keywords: approach/avoidance conflict, reinforcement learning theory, goal-comparator theory, behav-

ioral inhibition, septo-hippocampal system

Supplemental materials: http://dx.doi.org/10.1037/xhp0000282.supp

Situations that embody both reward and possible threat are
common in many natural environments, and require an individual
to trade off conflicting goals: avoiding threat and approaching
rewards. Unsurprisingly, the study of such approach/avoidance
conflict has a long history in experimental psychology (Miller,
1944). Across species boundaries and specific task designs, ap-
proach/avoidance conflict elicits particular behaviors (Aupperle,
Sullivan, Melrose, Paulus, & Stein, 2011; Bach et al., 2014;
Calhoon & Tye, 2015; Gray, 1982; Gray & McNaughton, 2000;
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Rodgers, Cao, Dalvi, & Holmes, 1997). This includes passive
avoidance of the situation, behavioral inhibition (BI)—interruption
of ongoing actions and suppression of overt approach or avoid-
ance—and exploratory actions for risk assessment. Drugs that
relieve human anxiety—anxiolytics—consistently attenuate these
behaviors (Geller & Seifter, 1960; Pellow, Chopin, File, & Briley,
1985; Vogel, Beer, & Clody, 1971). Gray’s theory of a behavioral
inhibition system (BIS) conceptualized these observations on a
neuropsychological level (Gray, 1982; Gray & McNaughton,
2000). According to the BIS theory, interindividual differences in
the workings of this system relate to anxiety disorders. This has
inspired a large psychological literature on the relation of anxiety
disorders and personality traits. Relevant traits are anxious tem-
perament dominated by BI and assessed via behavioral observation
in children (Fox & Pine, 2012) or nonhuman primates (Kalin &
Shelton, 1989), and differential reinforcement sensitivity, assessed
by self-report questionnaires in adults (Carver & White, 1994;
Corr & Cooper, 2016). Beyond interindividual differences, how-
ever, the cognitive architecture of actual anxiety-like behaviors is
still poorly understood. At the same time, a large neuroscience
literature has focused on their neural implementation in nonhuman
animals (Adhikari, Topiwala, & Gordon, 2010; Likhtik, Stujenske,
Topiwala, Harris, & Gordon, 2014; McHugh, Deacon, Rawlins, &
Bannerman, 2004). Crucially, and different from inhibitory control
tasks, anxiety-like behavior requires cognitive inference on the
statistics of the situation, for example, utilities and costs. Inhibitory
control theory in contrast deals with situations in which clear
instructions to act or to not act after certain sensory stimuli are
given to a subject, and the task is to execute or withhold a quick
motor action (Logan, 1981). Individual differences in such tasks
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are linked to trait impulsivity (Logan, Schachar, & Tannock, 1997)
but not to anxiety.

Here, we provide a first attempt to characterize the cognitive
architecture of human anxiety-like behavior in the terminology of
reinforcement learning (RL) theory. In our analysis, we focus on
the inference and planning process underlying BI, not on its
execution. Experimentally, we capitalize on a recent translation of
classical animal approach/avoidance conflict test to humans (Bach,
2015), in which we measure BI as a temporary suppression of
approach responses, resulting in increased action latencies. This is
based on previous work in nonhuman primates and rodents using
operant conflict tests (Amemori & Graybiel, 2012; Friedman et al.,
2015).

We have previously shown that in environments in which the
occurrences of reward and threat are correlated in space and time
(Prevedello, Dickman, Vieira, & Vieira, 2013; Sofaer, Sillett,
Peluc, Morrison, & Ghalambor, 2013), anxiety-like BI is adaptive
in a decision-theoretic sense—it maximizes the expected overall
outcome of a situation (Bach, 2015). This is in line with Gray’s
proposal that the BIS serves an adaptive function (Gray, 1982;
Gray & McNaughton, 2000). Furthermore, we demonstrated that
the pattern of human BI under different levels of threat probability
and threat magnitude replicates the theoretically adaptive pattern
in such an environment (Bach, 2015). This did however not
address how Bl is controlled from the perspective of an agent. BI
may well appear adaptive for an external observer, but still the
agent may not know or evaluate this.

Hence, in the current study, we first addressed whether BI
happens to be adaptive in particular environments (something that
may possibly have favored its evolution), or whether this adap-
tiveness is also evaluated by the agent (Gray & McNaughton,
2000). In the terminology of RL theory and cognitive psychology,
such distinction can be related to the difference between “Pavlov-
ian” and “instrumental” mechanisms (Dayan & Balleine, 2002;
Dayan & Berridge, 2014; Dickinson & Balleine, 1994). Pavlovian
actions are tied to particular eliciting stimuli, independent of their
actual consequences. This may be adaptive if the actual conse-
quences are favorable most of the time in the natural habitat of the
organism. In contrast, instrumental actions are selected by the
agent to yield the most favorable outcome in a specific situation.
Pavlovian actions do not change if the action/outcome contingen-
cies become unfavorable in experimental circumstances, a phe-
nomenon termed “negative automaintenance” in the RL literature
(Schwartz & Williams, 1972). In contrast, instrumental actions
adapt to changes in action/outcome contingencies (Dickinson &
Balleine, 1994). The fact that in natural environments, rodent
anxiety-like behavior can change over time (Fonio, Benjamini, &
Golani, 2009) may suggest that it is at least partly under instru-
mental control. This motivates our hypothesis in Experiment 1 that
human BI would at least gradually attenuate when action/outcome
contingencies are unfavorable, that is, when the degree of BI
negatively influences the expected outcome.

If anxiety-like BI is under instrumental control then a second
and related question is how the outcomes are evaluated. Two
general classes of cognitive algorithms have shown to exist in
humans, to solve different problems (Daw, Niv, & Dayan, 2005).
Model-based reasoning requires a detailed model of the environ-
ment, enabling a prospective and explicit (although not necessarily
conscious) evaluation of all possible future outcomes and their

probabilities; action is then selected to maximize the expected
future outcome (Daw et al., 2005; Dickinson & Balleine, 1994).
This algorithm allows fast adaptation when changes in the envi-
ronment are detected because the model can be altered almost
instantaneously. However, it presumably requires computation
time and memory resources. In contrast, model-free control cor-
responds to RL algorithms (Mackintosh, 1975; Pearce & Hall,
1980; Rescorla & Wagner, 1972) in which the value of possible
actions in a given situation is learned retrospectively after out-
comes are experienced, without prospective evaluation of future
outcomes (Sutton & Barto, 1998). In any given state, the agent
then chooses the action that has in the recent past maximized the
expected future outcome. Such algorithms are simple and do not
require many resources in terms of time or working memory. But
because learning takes place gradually and retrospectively, an
agent using such control mode cannot quickly adapt to local
changes in the environment. We have previously demonstrated that
human BI is consistent with the use of explicit Bayesian models
that incorporate subjective assumptions on threat/reward correla-
tions (Bach, 2015), which may suggest model-based cognitive
control. However, this did not prove that humans actually com-
puted such models. Indeed, simple model-free heuristics can often
be used to approximate model-based reasoning (Gigerenzer &
Gaissmaier, 2011). Here, we speculated that if humans use a
model-based strategy to control anxiety-like BI, it should be pos-
sible to access the model they use even in an independent task, not
involving any threat (Houlsby et al., 2013). Hence, we created a
safe predator exposure task for Experiment 2. We hypothesized
that in this task, humans express subjective beliefs on threat/
reward correlations of the sort that would make anxiety-like BI
adaptive in an approach/avoidance task.

Experiment 1

This experiment addressed the question whether anxiety-like BI
is reduced when it leads to negative consequences, and therefore,
whether it is under Pavlovian or instrumental control. To this end,
we adapted a previously developed operant approach/avoidance
conflict paradigm, embedded in a “scoop-and-run” computer game
(Bach, 2015). This task affords analysis of individual actions, and
thus differs from our previous “stay-and-play” approach/avoidance
conflict task (Bach et al., 2014). One group played the game in a
version in which BI had no influence on threat probability, as in
our previous work. In this version, participants started each trial in
a safe place where the predator could not reach them. In the second
group, participants would start outside the safe place. The predator
could thus catch them if they hesitated to make a response; thus, BI
would increase threat probability. We hypothesized that partici-
pants in Group 2 would show reduced BI after experiencing the
unfavorable consequences. We expected to find this both in an
overall group difference, and also in a Group X Time interaction,
that is, participants in Group 2 would reduce approach latency over
time. A between-subjects design was used because behavior in
approach/avoidance conflict tasks has been described to become
stereotypical with extended practice (Gray & McNaughton, 2000).

Method

Participants. We recruited 38 participants from the student
and general population (19 female, mean age * standard devia-
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tion: 23.7 = 3.7 years), and assigned them to two gender-balanced
groups. The sample was independent from Experiment 2 and from
a previous study using the same setup (Bach, 2015). State anxiety
values for all but one participant, and trait anxiety for all but three
participants, were within 2 standard deviations around the refer-
ence sample mean (586 individuals between 15- and 29-years-old,
both sexes; Laux, Glanzmann, Schaffner, & Spielberger, 1981).
State anxiety values were comparable to the reference sample
(35.07 vs. 36.8, p = .13, Welch’s 7 test) and trait anxiety values
slightly higher than the reference sample (39.25 vs. 35.1, p =
.002). All participants gave written informed consent after being
fully informed about the purpose of the study. The study protocol,
participant information, and form of consent, were in full accor-
dance with the Declaration of Helsinki and approved by the
competent research ethics committee (Kantonale Ethikkommission
Zurich).

Design and procedure. The experiment followed a 2 X 3 X
6 factorial design with the between-subjects factor starting place
(inside/outside safe place) and the within-subjects factors threat
level (low/medium/high) and possible loss (05 tokens). Threat
level corresponds to wake-up rate of the predator, and thus, to loss
probability. Potential loss corresponds to number of already col-
lected tokens which would be lost if the player got caught. A
modified version of a previously developed approach/avoidance
computer game (Bach, 2015) was presented on a standard LCD
monitor (see Figure 1) in six blocks of 45 epochs. In each epoch,
a sequence of six reward tokens appeared at random time points;
the player could decide each time whether or not to approach and
collect the token. The primary dependent measure was approach
latency on those trials on which participants chose to approach.
Participants received a fixed payment and an additional reward for
the number of retained tokens of one randomly drawn epoch at the
end of the experiment. A “sleeping predator” was waiting above
the token and could become active with a probability that was
constant over time. Once active, if the human player was inside the
safe place, it deactivated itself. If the human player was outside the
safe place (regardless whether or not a reward token was present),
it revealed itself and moved to the human player’s grid block. The
human player was “eaten” and all previously collected reward
tokens from this epoch were removed. Once the predator was
active, the human player had no possibility to escape if he or she
was in the neighboring grid block. In order to remove any time
benefit (opportunity cost) from getting caught by the predator, the
active predator staid visible on the screen for the remaining time of
the epoch while the human player had to wait.

Stimuli and task statistics. The game was presented ona 1 X 4
grid in vertical orientation (~1.5° horizontal visual angle). The player
was placed on the starting position, confined by one (Group 1) or
two (Group 2) “barriers” to prevent the player from moving.
Starting position was in the safe place for Group 1, and in the grid
block above the safe place for Group 2. A token was visible in the
grid block above the player.

After a variable interval drawn from an exponential distribution
with a mean of 1.25 s, the barriers were removed, and the player
was free to move and collect the token, under risk of getting
caught. Note that the presence of barriers, and of the token in the
delay period, is different from Experiment 2 and from a previous
report (Bach, 2015). The reason for making the token visible in the
delay period in this version of the game was to simplify the
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Figure 1. Experimental setup. (A) In Experiment 1 a human player
(green triangle) rests in a safe place on the bottom of grid, while a
“predator” is sleeping at the top (gray circle). On each epoch, six succes-
sive reward tokens (yellow rhombi) appear. The colored frame indicates
the threat level of the sleeping predator with color/threat association
balanced across subjects. (B) Tokens are separated from the player by
barriers that disappear at a random time point. Once they have disappeared,
the time until the token is removed is exponentially distributed. The player
can press a key to collect the tokens, and thus accumulate up to six tokens
over any given epoch. At any time during the epoch, the predator becomes
active with equal probability, but once active it will only reveal itself if the
player is currently outside the safe place and outside barriers; the predator
can never reach the safe place or cross the barriers. (C) If the player is
caught by the predator, it loses all tokens already collected in this epoch,
and no more new tokens appear. Magnitude of potential loss therefore
corresponds to the number of already collected tokens. Threat level is
defined as the wake-up rate, which was different for the three predators.
(D) In Group 1, the starting safe is protected from the predator. For Group
2, starting place is outside the safe place. Participants played 270 epochs,
thus making up to 1,620 choices. (E) In Experiment 2, participants played
the same approach/avoidance Task 1 on a 2 X 2 grid. (F) Following
approach/avoidance Task 1, participants in Experiment 2 were instructed to
press a key to “expose” the status of the predator in safe predator exposure
Task 2. See the online article for the color version of this figure.

graphical setup such that only one visual event (barrier removal)
occurred to signal the possibility for token collection. The interval
during which the reward token was present and could be collected
was also drawn from an exponential distribution with a mean of
1.25 s. If not collected, the token disappeared at the end of this
interval. Whether or not it was collected, the player was moved to
the starting position 250 ms after the token disappeared, and the
barrier above the player put in place. The next trial within the
epoch started 250 ms later. The wake-events of the predator
followed a homogenous Poisson process, independently deter-
mined in successive time bins of 20 ms duration. The wake-up rate
was set such that the probability of getting caught was p, = 0.1,
p» = 0.2, and p; = 0.3, respectively for the three threat levels, if
the player stayed outside the safe place for 100 ms (Group 1) or
600 ms (Group 2). These latency values approximated values
found in previous experiments. Thus, the event rate for the three
threat levels was, respectively, A, = 1.0536, A, = 2.2314, and
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Ny = 3.5667 for Group 1, and was divided by 6 for Group 2.
Actual catch rates depend on participants’ response latencies and
turned out to be 0.08/0.18/0.25 for Group 1, 0.05/0.10/0.17 for
Group 2 when making an approach response, and 0.02/0.03/0.04
for Group 2 when making an escape response. The human player
was controlled with the up/down cursor keys on a standard com-
puter keyboard. The player could move between grid blocks at all
times unless restricted by barriers or caught by the predator, but it
could never reach the top grid block occupied by the sleeping
predator.

Data analysis. All data are necessarily unbalanced because
the number of data points for each cell in the design depends on
behavioral choices and on chance.

When the participant approached the token, we extracted the
approach latency as main dependent variable. We also analyzed
return latencies, that is, time passed between approaching the
token and moving back. In Group 2 the player had to make two
movements to go to the safe place; hence there are two return
latencies. For escape choices in Group 2 we extracted escape
latency. To avoid response latencies being biased by extreme
values, they were only analyzed if they fell into response windows
of 150 ms < approach/escape latency < 2,000 ms and 0 ms <
return latency < 2,000 ms, as in a previous study (Bach, 2015).
This excluded, in Group 1, 1.7% of approach latencies and 3.5% of
return latencies. In Group 2, this excluded 4.5% of approach
latencies, 5.7% of escape latencies, and 1.5% or 7.6% of the first
or second return latencies, respectively. Choices were recon-
structed by creating six data points for each epoch, corresponding
to the possibility of collecting six tokens. For each of these six
tokens, we recorded 1 if the individual chose to collect up to, or
more than, this number of tokens on this epoch, and 0 if the
individual chose to collect less than this number of tokens on this
epoch. Choices in epochs on which the player was caught cannot
be reconstructed and were therefore not analyzed. The resulting
data are serially correlated by design. Most players rarely collected
the sixth token such that some design cells were empty and the
parameters could not be estimated reliably. Therefore, the sixth
token was excluded for all reaction time (RT) analysis. The re-
sulting model followed a 2 (Group) X 3 (Threat Level) X 5
(Potential Loss) factorial design, and for choice dataa 2 X 3 X 6
design. To analyze changes in approach latency over time, we split
the data into the 6 blocks and added the main effect of block and
the Block X Group interaction to the model. Finally, in addition to
the full factorial model, we also analyzed data from both groups
separately in 3 X 5 or 3 X 6 factorial models, in order to facilitate
comparison with previous publications.

The Ime4 package in the software R (www.r-project.org) was
used for all inference statistics as it provides meaningful parameter
estimators for unbalanced data sets. Choice data were analyzed
using a generalized linear mixed effects model (glmer) for bino-
mial data, and RTs in linear mixed effects models (Imer). We did
not transform RTs, as we had no a priori reason to do so and a
previous report demonstrated that analysis of transformed RTs
replicates analysis of raw RTs (Bach, 2015). All models included
a random subject intercept. Fixed-effects F-statistics were ex-
tracted using unpartitioned error variance and the R function
ANOVA; p values were calculated by using a (conservative) lower
bound on the effective denominator degrees of freedom as df =
N — K, where N is the number of observations, and K is the

number of all modeled fixed and random effect parameters. No p
values were computed for the choice data as they are autocorre-
lated across the “potential loss” factor by construction, and there-
fore have reduced effective numerator degrees of freedom. Mean
RTs were reconstructed from the linear mixed effects model using
the function Ismeans. In a nutshell, this function averages the data
for each subject and experimental condition separately, and then
averages over subjects, while correcting for missing values in
individual subjects.

Results

Approach latency in Group 2 was around 150 ms shorter than in
Group 1, a highly significant difference (Figure 2, Table 1). While
threat level increased approach latencies in both groups, this in-
fluence was smaller in Group 2, as indicated by a significant
Group X Threat Level interaction. Additionally, the effect of
potential loss on approach latencies was different between the
groups, and there was a significant three-way interaction. Next, we
analyzed how BI developed over time, in both groups, by splitting
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Figure 2. Results from Experiment 1. The graphs show responses to the
possibility of collecting the nth token after already having collected (n — 1)
tokens, which constitutes the potential loss. L = low threat; M = medium
threat; H = high threat; Action = Proportion of epochs in which the player
chose to collect at least the nth token. Because the players rarely ap-
proached after collecting five tokens, approach latency is only shown up to
a potential loss of four tokens. As the data are unbalanced, mean approach
latencies were estimated in a linear mixed effects model with random
intercepts. Approach latency is markedly shorter in Group 2 than Group 1.
See the online article for the color version of this figure.


http://www.r-project.org

22 BACH

Table 1

Approach/Avoidance Experiment 1: Statistical Analysis of
Approach Latencies From a Linear Mixed Model With Random
Intercepts, Both in a Full Model and Separately for Either of
the Two Groups

Factor df F P

Full model

1,35748 35.72 <.001
2,35748 47.28 <.001
4,35748 10.11 <.001
2,35748 49.31 <.001
4,35748 4.69 <.001
8,35748 8.16 <.001
8,35748 2.06 <.05

Group

Threat level

Potential loss

Group X Threat Level

Group X Potential Loss

Threat Level X Potential Loss

Group X Threat Level X Potential Loss

Group 1
Threat level omnibus 2, 15812 59.91 <.001
linear 1, 15812 75.56 <.001
Potential loss omnibus 4,15812 597 <.001
linear 1, 15812 <1 n.s

Threat Level X Potential Loss omnibus 8, 15812 4.14 <.661
Linear X Linear 1, 15812 3.93 <.05

Group 2
Threat level omnibus 2,15094 17.36 <.001
linear 1, 15094 25.42 <.001
Potential loss omnibus 4,15094 2.75 <.05
linear 1,15094 2.14 ns

Threat Level X Potential Loss omnibus 8, 15094 2.18 <.05
Linear X Linear 1, 15094 <1 n.s.

Note. See Figure 2 for descriptive statistics.

the data into six blocks of 45 epochs. We found a significant
Group X Block interaction (see Results in supplemental materi-
als). Approach latency was reduced between Blocks 1-2 from 515
ms to 507 ms in Group 1, and from 404 ms to 358 ms in Group 2.
For comparison with a previous report we analyzed Group 1
separately. Threat level, potential loss and their interaction, influ-
enced approach latencies with a similar pattern as in previous
reports, but there was no linear effect of potential loss (Table 1,
Figure 2, see Results in supplemental materials).

Discussion

We asked whether BI is reduced when it increases threat prob-
ability. We found that in this case, approach latencies were about
150 ms shorter than in a control group in which BI had no impact
on threat probability. This suggests that BI adapts to unfavorable
consequences. Alternatively, this overall group difference could be
explained if participants used a Pavlovian, but model-based strat-
egy (Dayan & Berridge, 2014) to precompute their behavior even
before the experiment started, rather than instrumentally learn
from their actions. In other words, according to this explanation
they would not take into account consequences of BI, but respond
to the Pavlovian cues of being inside or outside the safe place
when they started. To exclude such possibility, we showed that
participants in Group 2 adapted their behavior over time to a
greater degree than in control Group 1. In particular, we observed
a pronounced reduction in approach latencies from Block 1 to
Block 2 in Group 2 (46 ms) but not Group 1 (8 ms). Furthermore,

we note that in spatial approach/avoidance conflict tasks, anxiety-
like Bl is elicited also outside safe compartments in rodents (Fonio
et al., 2009) and humans (Bach et al., 2014). Thus it appears
unlikely that in the current task, BI should depend on the qualita-
tive aspect of being in a protected starting position. Finally, the
starting place in Group 2 was quantitatively no less safe than in
Group 1: In case of an escape response in Group 2, participants
were rarely caught, just as when making no response in Group 1.
In case of an approach response, participants in Group 2 adapted
their approach latency to an extent that overall, they were caught
less often than in Group 1. All in all, it appears that instrumental
consequences of BI lead to its reduction, rather than Pavlovian
cues.

Behavior in the control group was comparable to a previous
report (Bach, 2015), underlining the validity of the modified
experimental setup. Different from the previous report and from
Experiment 2, however, we observed that the influence of possible
loss on approach latency was not linear. A possible explanation is
that the token was already visible before the participant could
make a movement. According to our previous model, BI arises
from subjective assumptions on threat/reward correlations, corre-
sponding to a situation in which a predator is alerted by the
occurrence of his prey’s reward. The influence of possible loss on
approach latency in this model depends on the curvature (second
derivative) of the temporal evolution of threat probability. It ap-
pears possible that the temporal evolution of subjective threat
probability after a reward occurs is different from the evolution
after a barrier is removed, and this would lead to a different impact
of possible loss.

Experiment 2

After having shown that anxiety-like BI is likely under instru-
mental control, we asked whether it is based on an explicit (al-
though not necessarily conscious) model of the environment. Ex-
periment 2 therefore addressed whether possible assumptions
about threat/reward correlations in the approach/avoidance task are
explicitly expressed in a different task, not involving any threat
and thus not involving BI. Such threat/reward correlations exist in
natural environments (Prevedello et al., 2013; Sofaer et al., 2013)
but they are objectively absent from our task. However, we have
previously shown that anxiety-like BI would be adaptive from the
perspective of an agent if the agent subjectively assumed such
correlations. Experiment 2 had two tasks. In approach/avoidance
Task 1, participants were familiarized with the computer paradigm
and collected tokens. Next, they engaged in safe predator exposure
Task 2. Here, they were could expose the status of the predator by
key press, without threat of getting caught. They were rewarded if
they exposed the predator just at the moment when it was awake.
Under a null hypothesis that participants had no assumptions on
threat/reward correlations, the timing of their exposure attempts
should be independent from the occurrence of incidental and
unobtainable tokens. We hypothesized that such assumptions exist,
and that exposure attempts would be more frequent immediately
after tokens.

Method

Participants. We recruited 20 participants from the student
and general population (10 female, mean age * standard devia-
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tion: 23.6 = 3.7 years). The sample did not overlap with Experi-
ment 1 or a previous report (Bach, 2015). State anxiety values for
all and trait anxiety for all but two participants, were within 2
standard deviations around the reference sample mean (Laux et al.,
1981). State anxiety values were slightly lower (33.4 vs. 36.8, p =
.04), and trait anxiety values slightly higher than the reference
sample (38.6 vs. 35.1, p = .05). All participants gave written
informed consent after being fully informed about the purpose of
the study. The study protocol, participant information, and form of
consent, were in full accordance with the Declaration of Helsinki
and approved by the competent research ethics committee (Kan-
tonale Ethikkommission Zurich).

Design and procedure: Approach/avoidance Task 1. This
part realized a 3 X 6 factorial design with the within-subjects
factors threat level (low/medium/high) and possible loss (0-5
tokens). Participants played four blocks (Blocks 1-2, 5-6) of 45
successive epochs of the previously reported computer game
(Bach, 2015). The game was the same as in Group 1 of Experiment
1, with the only difference that the playing field was a 2 X 2 grid
in diamond orientation (~4.0° horizontal angle), there were no
barriers, and the timing was therefore slightly different. Specifi-
cally, at the start of each epoch, the player was in a safe place in
the bottom grid block. A token could appear either to the left or to
the right. The sleeping predator was waiting in the top grid block.
As there were no barriers, the player was free to move during the
entire epoch unless caught be the predator. The interval during
which the reward token was present and could be collected was
drawn from an exponential distribution with a mean of 1.25 s. If
not collected, the token disappeared at the end of this interval.
After this, whether or not the token was collected, a waiting
interval started that lasted 500 ms plus a random sample from an
exponential distribution with mean of 1.25 s, before the next token
came on the screen or the epoch ended. The predator wake-up rates
were the same as for Group 1 in Experiment 1. The human player
was controlled with the left/right cursor keys on a standard com-
puter keyboard.

Design and procedure: Safe predator exposure Task 2. In
Blocks 3—4, participants were given a different task on 36 epochs
per block, randomly interspersed with nine epochs of approach/
avoidance Task 1. The type of task was graphically signaled (gray
rhombus or gray circle under the grid). The graphical setup of Task
2 was exactly the same as in Task 1, but participants could not
move on the grid and always stayed in the safe place. They were
tasked to “expose” the awake predator by pressing the cursor up
key. If the predator was awake at this point in time, it would turn
red, and the next epoch would start. This provided an incentive for
speeded responses. If the predator was sleeping, it would turn
black for 100 ms and the epoch would continue. This feedback
gave participants an opportunity to learn the experimental statis-
tics, according to which the probability of being awake was inde-
pendent of time, or of token appearance. On each epoch, the
human player had 6 attempts to expose the predator, after which
the key was disabled until the epoch ended. Participants were
explicitly informed that the tokens were irrelevant to the task. One
randomly selected epoch from Task 2 was rewarded at the end of
the experiment; if the participant successfully exposed the predator
he or she gained as much as from collecting two tokens in Task 1.
Under this 1/0 loss function, the reward-maximizing strategy is to
press the key at the moment when the participant thinks the

predator is most likely to be awake, that is, at the maximum of the
temporal evolution function of the predator wake-up probability.
The objective wake-up probabilities of the three predators were
p: = 0.1, p, = 0.2, p; = 0.3, and constant over time. Whether the
predator was awake or asleep was randomly determined each time
the participant made an exposure attempt. If the participant (cor-
rectly) assumes that this probability is constant over the epoch,
then from his or her perspective, reward does not depend on the
timing of key presses, there is no need to preferentially press the
key after incidental tokens occur, and key presses could be uni-
formly distributed across the epoch. In fact, all else being equal, if
participants wish to shorten the experiment, then an optimal strat-
egy would be to press the key immediately after the epoch has
started. In both cases there would be no dependency of key presses
on token appearance. If participants however, assumed temporal
threat-reward correlations, the reward-maximizing strategy is to
press a key immediately after an incidental token has occurred, at
the maximum of their subjective threat evolution function.

Data analysis. For approach/avoidance Task 1, the data anal-
ysis was the same as for the control Group 1 in Experiment 1. We
additionally analyzed correctness of response (left/right). For the
safe predator exposure Task 2, we sought to determine whether
participants’ responses depended on the appearance of irrelevant
tokens. To this end, we split the data into key presses made before
the first token appeared, and those made later. For key presses after
the first token, we computed the latency of each response with
respect to the most recent token that preceded it, and analyzed the
ensuing RT distributions. The distribution of these responses was
compared against two null distributions with a Kolmogoroff-
Smirnoff (KS) test. A list of variables and symbols used in the
derivation of these null distributions is included in Method section
of supplemental materials.

Crucially, a key press at time 7 after appearance of a particular
token will only be assigned to that token if the next token has not
yet appeared at time 7: 0 < T < T,, where T, is the interval
between a token and the next one. If 7 > T,, the key press would
be assigned to the next token. To give an intuition, because the
next token becomes more likely to appear as time passes, we are
more likely to observe a key presses early than late after a token,
even under the null hypothesis that they are independent from
token appearance. Hence, it is necessary to quantitatively specify
the RT distribution under the null hypothesis. Because key press
and appearance of the next token are independent events,
Pr—i.1,>1), the probability density of observing a key press at time
t, is

Pr=11,>A0) = pr=1(Opr,> (1),

and the probability of observing any key press after a token is

PHO=11= [ pr-Opr,- (.

Hence, the probability density of observed key presses after a
token has appeared is

pT:t(t)pT2>t(t)

_— (1.1)
[ pr-opr oy

pT:r,T2>r\O:1([) =

If participants distribute their responses uniformly across an epoch,
then pr_ (1) = ¢, cER™, and the above equation reduces to
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¢ pT2>z(t)
Pr=11,>10=1() = J‘oo— = pr,>(0).

0 c pT2>t(t)d[

In other words, under the null hypothesis, observed responses
after a token appeared are random observations from a variable
distributed according to pTZ>,(t). This distribution is given by the
experimental set up and was expressed analytically (see supple-
mental methods for details).

However, participants may distribute their key presses unevenly
across the epoch, but these may still be independent from token
appearance. For example, participants may be more likely to press
early in an epoch and exhaust their allotment of key presses. We
used equation (1.1) to simulate observations from the null distri-
bution in this case. We first gathered all RT expressed wrt. to
epoch start, across all epochs and participants. Then, we simulated
the distribution of RT wrt. token appearance. We went through all
token appearances throughout all epochs, and added to the distri-
bution all key presses that occurred later in the epoch than this
token appearance, expressed wrt. this token appearance. This
approximation to pr—,(f) was then combined with the analyti-
cally derived pr,~,(t), by drawing for each observed value of T
in the RT distribution a random observation from p72>,(t) which
could be true or false, and retaining the RT value only if it was
true. Because of the large number of data points in the RT
distribution (>1e8), this simulation procedure was performed
only once.

We could thus compute a one-sample KS test of observed RT
against an analytical null distribution (under the assumption that RTs
are uniformly distributed over an epoch) and a two-sample KS test of
observed RT against the null distribution of simulated RT (under the
assumption that RT are nonuniformly distributed across the epoch but
independent of token appearance). KS tests were computed in R. The
null distribution shown in Figure 3 is the analytical distribution; the
simulated distribution looks similar.

Finally, a difference between the two blocks of the task was
assessed in a two-sample 7 test of mean RTs for each participant and
block, and in a two-sample KS-test of all responses from each block.

Reaction time models. Under the null hypothesis, participants
would distribute their key presses independent from token appearance
(Model 1). If, on the other hand, participants assume the predator is
more likely to wake up directly after a token occurs, and therefore
press a key as quickly as possible after a token, this amounts to a
simple RT task. RTs in such tasks can well be described by an
exponential Gaussian (exGauss) model, a convolution of an exponen-
tial with a Gaussian distribution (Hohle, 1965; Model 2). However,
some key presses were made very early after a token such that they
must have been initiated before, and a small number of responses
was made even before the first token appeared. Hence, a simple
RT model may not capture the full RT distribution. We therefore
speculated that two different psychological processes could gen-
erate responses on different subsets of trials: first, a process dis-
tributing responses uniformly across the epoch that could be mod-
eled by our null distribution. The second process would be
described by a simple RT Model 2. The relative weight of the two
processes was fitted to the RT distributions (Model 3). Finally, to
capture differences between the two task blocks, individual pa-
rameters were either fitted across both blocks, or for each block

individually. To formally summarize, we fitted the RT distribution
with the following models:

1. Null model: the null distribution based on a uniform distri-
bution of key presses across the epoch (0 parameters).

2. Simple RT model: an exponential Gaussian distribution
(three parameters), describing the sum of a exponentially
and a normally distributed random variable, which has the
following pdf:

A 2
PexGauss() = Z5reMe/ DT erfe (. + N7 = 1/(aV2))

3. Combined RT and null model: a weighted sum of null
distribution and RT model (four parameters) with the
following pdf, and 0 = w = 1:

Pcom = WpexGauss(t) + (1 - W)pT2>t(t)

4.  Model 3 with block-specific parameters for \, w, o, or w
(five parameters).

Model parameters and likelihood were estimated using the in-
built Matlab function mle.m. We quantified model evidence as
Bayesian Information Criterion (Raftery, 1995) and considered an
absolute BIC difference >3 as significant, in analogy to classical
p values (Burnham & Anderson, 2004; Penny, Stephan, Mechelli,
& Friston, 2004). We repeated the procedure under three different
assumptions: (a) that the RT distribution and its parameters are the
same for all participants (fixed-effects parameters); (b) that the RT
distribution is the same for all participants but the parameters are
not (random-effects parameters); and (c) that the RT distribution
and its parameters were different for each participant (random-
effects model structure). Each analysis can lead to a different
result, but in fact they all converged in the current data set such
that the interpretation is unambiguous. Under assumption (a), the
RT distribution was fitted to all data from all participants; under
assumption (b), the RT distribution was fitted to data from each
participant individually, and BIC values added up; and under
assumption (c), the participant’s individual BIC scores were en-
tered into a group level random effects analysis (Stephan, Penny,
Daunizeau, Moran, & Friston, 2009).

Results

When instructed to collect tokens in approach/avoidance Task 1,
participants behaved similar to previous reports and similar to
Experiment 1 (Figure 3, Table 2). Figure 3 shows participants’
responses in the safe predator exposure Task 2. Based on the
Bernoulli probability that the robber was awake upon an exposure
attempt, in which case the epoch would end, we expected partic-
ipants to make on average 271.6 exposure attempts. We observed
243,15 £ 42.8 (mean * SD) responses per participant. Most
(93.2%) of these exposure attempts were made after a first token
had appeared. These were expressed with respect to the time point
of the preceding token. This analysis revealed that responses were
made preferentially just after a token had appeared on the screen
(see Figure 3). The RT distribution was tested against a null
hypothesis that responses are independent from token appearance.
The difference was highly significant (p < .001) in both KS-tests,
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Figure 3. Results from Experiment 2. Top panels: RT distributions for Task 2 in Experiment 2. RT are
expressed with respect to the token appearance that preceded the response. Blue lines: RT distribution expected
under the null hypothesis. Red line: Fit with the winning model, a combination of an ex-Gauss model with the
null distribution. Because the inter-token-interval is a random variable, responses are less likely to be observed
at long latencies than at shorter latencies, even under the null hypotheses. However, responses are much more
frequent than expected directly after a token has appeared. Middle panels show RT distributions split up between
two subsequent blocks. Y-Ticks = Estimated proportion of responses fit by the null distribution in the combined
model. Bottom panels: Results from approach/avoidance Task 1. See the online article for the color version of
this figure.
showing that participants were more likely to make a response tribution with the null distribution had significantly higher
after a token had appeared than otherwise. evidence (smaller BIC values) than the null model (BIC
Next, we were interested in the psychological mechanism BIC,,; = —4,766) or a simple exGauss model (BIC -

generating the RT distribution in safe predator exposure Task 2. BIC

exGauss

—1,062), despite penalizing increased model

Across both task blocks, a model combining an exGauss dis- complexity (see Figure 3). Across the group, individual partic-
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Table 2

Approach/Avoidance Task 1 in Experiment 2: Statistical
Analysis of Approach Latencies in a Linear Mixed Model With
Random Intercepts

Factor Effect df F P
Threat level omnibus 2,10238 22.65 <.001
linear 1, 10238 46.39 <.001
Potential loss omnibus 4,10238 8.99 <.001
linear 1,10238 25.20 <.001

Threat Level X Potential Loss omnibus 8,10238 1.52 n.s.
Linear X Linear 1, 10238 6.67 =.01

Note. See Figure 3 for descriptive statistics.

ipant data were also best fit by this model (BIC_,,,
BIC,,; = —5,761; BIC,_,,,, — BIC . Gauss = —1,162). We noted
that two persons had a qualitatively different RT distribution
(see Results in supplemental materials) such that it may be
justified to regard model structure as a random effect. We
estimated in a random effects analysis the proportion of the
population for which the RT distribution followed the null,
exGauss, and combined model. These were 4.3%, 17.2%, and
78.4%, respectively. The probability that the combined model is
more frequent in the population than the other two models
(exceedance probability) was p, = .9993. In sum, the combined
model provided the best fit both on the group level and for the
individual participants’ data.

Finally, we sought to investigate whether participants adapted
their behavior over time, because they were given feedback on the
predator status and could therefore learn that there was in fact no
relation of threat and reward. Between Blocks 3 and 4, mean RT
across all participants significantly increased (926.9 vs. 999.3 ms,
1(4,838) = 2.5, p = .02), and we found a significant difference
between RT distributions (KS-test, p < .001). Hence, we sought to
determine the underlying psychological process generating this
difference. We compared, on the group level, the combined model
containing parameters across both blocks, with models that split up
one parameter between the two blocks. We found highest evidence
for a model with block-specific parameters for the parameter w, the
ratio of responses controlled by the two processes. Parameters
from this model suggested that participants changed the ratio of
token-independent responses from 35% (Block 3) to 41% (Block
4; Figure 3, y-ticks in middle panels). In keeping with this, we
descriptively also observed a small increase in responses made
before any token occurred (6.4% vs. 7.2%).

Discussion

In this experiment, we probed whether humans express subjec-
tive beliefs on threat/reward correlations in approach/avoidance
conflict task, by giving them a different task not involving actual
threat. We asked them to press a key when they thought a virtual
predator was awake and found that participants were more likely to
make a response just after an incidental and unobtainable reward
token had appeared on the screen. This is in keeping with a
hypothesis that they believe a threat is more likely at a time when
a potential reward has just occurred. Such beliefs would make
anxiety-like BI in the approach/avoidance task optimal from the

agent’s perspective: Bl would then maximize overall expected
utility (Bach, 2015).

RT distributions in the task were best described by the combi-
nation of an exGauss model, which usefully describes RTs in many
simple reaction tasks, with the null distribution. According to this
combined model, some key presses are responses to token appear-
ance, and others are indeed randomly distributed across an epoch.
One may speculate that the latter responses serve the goal of
exploring the statistics of the task, which is a meaningful strategy
even under subjective beliefs on threat/reward correlations. Cru-
cially, these different processes of response generation did not
relate to different participants, but occurred within the same per-
sons, because the combined model provided the best fit even on an
individual subject level. A random-effects analysis revealed that
for a small proportion of the population, RT distributions can
better be described by a single process: either a purely token-
independent process (<5%) or a purely token-dependent process
(<20%). For most individuals (>75%), both processes occur on
different trials.

We gave feedback on the predator status whenever participants
made a response. This gave them an opportunity to learn that
objectively there were no threat/reward correlations in our task,
and that their response timing made no difference to the success of
exposing the predator. We found that participants changed their be-
havior between two task blocks into the direction of more token-
independent responses. However, the majority of key presses were
still made in response to incidental tokens.

Finally, we note that behavior in the approach/avoidance Task 1
was similar to a previous report with the same setup (Bach, 2015).
In particular, and different from Experiment 1, we observed a
linear effect of threat probability and of possible loss on approach
latencies.

General Discussion

Anxiety-like behavioral inhibition is commonly observed in exper-
imental approach/avoidance conflict tasks that build on the coexis-
tence of reward and threat. We have previously shown that this can be
adaptive from an external observer’s perspective in many natural
environments (Bach, 2015). The current study addressed how this
behavior is controlled from the perspective of the agent. Results from
Experiment 1 suggest that BI is at least partly instrumental—it is
reduced when it becomes maladaptive and leads to increased threat
probability. This is in keeping with our previous suggestion that the
adaptive function of BI is to reduce threat under environmental
conditions in which threat and reward are correlated in space and time
(Prevedello et al., 2013; Sofaer et al., 2013). Results from Experiment
2 suggest that agents subjectively also assume such correlations in our
paradigm. Specifically, we show that in an independent safe predator
exposure task, embedded in the paradigm but not involving any threat,
behavior is consistent with the existence of such subjective assump-
tions. While we cannot prove that these assumptions are also used to
control BI, the existence of these assumptions constitutes a necessary
condition to conclude that anxiety-like BI is under model-based
control, something that is often equated with goal-directed behavior
(Daw et al., 2005). The goal, in our case, would be to avoid a threat
encounter, something that BI helps to reduce under the internal
subjective model.



THE COGNITIVE ARCHITECTURE OF ANXIETY-LIKE BI 27

A sufficient criterion for goal-directed control, put forward by
Dickinson and Balleine (1994) in the context of reward-based deci-
sion making, is a precise representation of the goal, something that
was not addressed in the current study. This can in principle be tested
by reinforcer devaluation—changing the desirability of the goal.
Typical experiments of this sort use a particular reward which is made
undesirable by the use of homeostatic principles; for example, food is
becoming less attractive by satiation. In our case, the ultimate goal of
avoiding threat encounter appears more difficult to devaluate although
perhaps not entirely impossible. For example, during foraging for
food, there may be states of resource depletion in which charging a
predator aggressively entails higher survival chances than avoidance
of the encounter, because passive avoidance would likely lead to
starvation. This is a possibility that one could test in future experi-
ments, for example building on virtual foraging scenarios in humans
(Korn & Bach, 2015).

Objectively, there are no threat/reward correlations in our ap-
proach/avoidance task. However, a player assuming such correlations
has little chance to learn this. This is because the player would have
to make early approach responses to find out that the threat probability
is constant over time—but from the subjective perspective, such early
responses would expose the player to harm. The safe predator expo-
sure task was designed to allow such exploration. First, there was no
explicit threat regardless of the predator’s status. Second, unsuccessful
exposure attempts had no negative consequences: participants could
make six exposure attempts per epoch, but only one successful ex-
posure could be rewarded. This made it possible to perform explor-
atory actions and find out the objective statistics of the task. Indeed,
the RT model that best fit our data combined a majority of responses
immediately after tokens with a smaller proportion of responses made
independent of tokens. The former are expected under subjectively
assumed threat/reward correlations, while the latter could possibly
serve exploration. Between the two task blocks, participants increased
the proportion of key presses unrelated to the tokens. However, we
also note that despite extensive training, the majority of responses was
still made immediately after tokens. This may imply that participants
start the task with precise prior assumptions which require many
additional observations to become properly adjusted to objective task
statistics.

We addressed the inference and planning process behind anxiety-
like BI, not its motor execution. That is, we have investigated how an
agent determines optimal approach latency, but not how it controls
withholding the response during this latency period, or how it invig-
orates the motor system to act as soon as the latency period has
passed. Such motor control processes may possibly be described by
inhibitory control theory. Crucially, BI is also necessary in many
cognitive control tasks in which agents are explicitly instructed or
incentivized to inhibit responses after receiving external stop signals,
such as stop signal task, go/no go task or Stroop task (Logan, 1981;
Logan et al., 1997). It has been proposed that these tasks generalize to
more realistic scenarios in which stop signals are not externally
imposed but have an internal, cognitive source. Such internal source
could be learned by repeatedly experiencing external stop signals
(Best, Lawrence, Logan, McLaren, & Verbruggen, 2016). Crucially,
this investigation demonstrated that it is a stop goal that is learned,
rather than an automatic or Pavlovian association of response inhibi-
tion with external sensory stop signals. This resonates with our ac-
count that anxiety-like BI also may be goal-directed. Individual dif-
ferences in inhibitory control, that is, an ability to withhold a prepotent

action, is suggested to relate to personality traits such as impulsivity
(Logan et al., 1997). It may be possible that in our task, some
variability in approach latencies stems from variance in motor pro-
cesses. The execution of these processes in anxiety-like BI will be the
topic of future research. We note that once a response is initiated,
movement patterns do not differ between task conditions and are thus
independent of threat probability or possible loss, as demonstrated
previously in a joystick task (Bach, 2015).

To summarize, we find that anxiety-like BI appears under instru-
mental and possibly model-based control. This crucially constrains
the search for the cognitive or computational algorithms governing
this behavior. Furthermore, it also allows a more thorough under-
standing of the neural implementation underlying anxiety-like BI. The
hippocampus appears a relevant structure for control of BI (Gray &
McNaughton, 2000). Specifically, hippocampus lesions reduce BI in
rodents (Bannerman et al., 2003; Bannerman et al., 2014; McHugh et
al., 2004) and humans (Bach et al., 2014), power increases of ventral
hippocampus theta oscillations are observed in rodent tests invoking
BI (Adhikari et al., 2010; Gray & McNaughton, 2000), and anxiolytic
drugs which reduce BI also reduce frequency (and power) of these
oscillations (Gray & McNaughton, 2000). These descriptive observa-
tions await formalization. In this context, our cognitive model of BI
control may enrich the investigation into underlying neurocomputa-
tional mechanisms.

Finally, BI is also a core feature of clinical anxiety states—as
exemplified by worries that interfere with daily activities in gen-
eralized anxiety disorder (World Health Organization, 2004). Pos-
sible causes for this phenomenon are implausible assumptions on
threat/reward correlations, suboptimal inference based on plausible
priors, variations in instrumental mechanisms that evaluate action
consequences, and also alterations in the execution of BI. Future
work will examine to what extent such mechanisms may contrib-
ute to clinical conditions, and how to alleviate these.
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