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Frequency-phase analysis of 
resting-state functional MRI
Gadi Goelman1, Rotem Dan1,2, Filip Růžička3, Ondrej Bezdicek3, Evžen Růžička3, Jan Roth3, 
Josef Vymazal4 & Robert Jech3

We describe an analysis method that characterizes the correlation between coupled time-series 
functions by their frequencies and phases. It provides a unified framework for simultaneous assessment 
of frequency and latency of a coupled time-series. The analysis is demonstrated on resting-state 
functional MRI data of 34 healthy subjects. Interactions between fMRI time-series are represented 
by cross-correlation (with time-lag) functions. A general linear model is used on the cross-correlation 
functions to obtain the frequencies and phase-differences of the original time-series. We define 
symmetric, antisymmetric and asymmetric cross-correlation functions that correspond respectively 
to in-phase, 90° out-of-phase and any phase difference between a pair of time-series, where the last 
two were never introduced before. Seed maps of the motor system were calculated to demonstrate 
the strength and capabilities of the analysis. Unique types of functional connections, their dominant 
frequencies and phase-differences have been identified. The relation between phase-differences and 
time-delays is shown. The phase-differences are speculated to inform transfer-time and/or to reflect a 
difference in the hemodynamic response between regions that are modulated by neurotransmitters 
concentration. The analysis can be used with any coupled functions in many disciplines including 
electrophysiology, EEG or MEG in neuroscience.

The last two decades have demonstrated that brain functionality and architecture can be better understood not 
only by identifying localized neural activity, but also, and perhaps primarily, by recognizing its connectivity. The 
distinction between functional segregation and integration and the use of network measures gave new means to 
understanding brain functionality. Within functional integration, two main classes of connectivity have emerged 
– functional (directed and undirected) and effective connectivity1. Functional connectivity refers to statistical 
dependencies amongst measured time-series, while effective connectivity rests on an explicit model of how those 
dependencies were caused (e.g., dynamic causal modelling2 and structural equation modelling3). In fMRI, coher-
ent low frequency fluctuations of the blood-oxygenation-level dependent (BOLD) signal during a resting-state 
(rs-fMRI) were shown to contain functional neural network information4,5. This information was derived from 
the correlations between temporal fluctuations of BOLD signals in various brain regions in the absence of exter-
nal stimuli6–8. Multiple resting-state networks were defined6,9,10 on the basis of such temporal correlations, and 
their reliability and robustness were shown at individual subjects and group levels11,12. These networks were 
shown to be in correlation with individual differences in behavioral performance13 and altered in neurological 
and psychiatric disorders14. Several computational models were proposed to link BOLD signal fluctuations to 
neuronal communication15–17.

Pearson’s correlation or independent component analyses (ICA) are the most commonly used methods to obtain 
the level of synchrony between time-series functions. However, these methods lack the ability to distinguish between 
different types of synchrony, such as those that are associated with different oscillation frequencies or those that are 
associated with a phase difference between the time-series. In here, we propose a new analysis method which enables 
to characterize functional connectivity by its frequencies and phases. The analysis is general and can be used in various 
data types and disciplines. In MRI, several approaches were introduced previously to obtain frequency-dependent 
functional connectivity. Those include coherences and partial coherences in frequency space18,19, undirected frequency 
dependent graphs20, spectral coherence matrix of pairwise interactions and cluster analysis21, mutual information in 
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frequency space22,23 and recently nonlinear coherence between multiple time-series24. Other studies have included 
dynamic information by sliding-window analysis25–27, time-frequency analysis28, instantaneous phase synchroniza-
tion29 or spontaneous coactivation patterns analysis30. Several studies have shown frequency-dependency of the BOLD 
signal and that this dependency is spatially dependent23,31. The observation that functional connectivity MRI is fre-
quency dependent is supported by several findings. For example, in Parkinson’s disease patients the resting-state func-
tional connectivity patterns of regions in the sensorimotor system were shown to differ between “OFF” and “ON” 
medication states32. Such differences are in line with known alterations of the frequencies in neuronal firing rates in 
those regions33. Furthermore, dependency of network topology on frequency34 was recently reported. The dependency 
of functional connectivity on phases (besides a phase of π ) however, was not introduced before. In here, a method to 
observe functional connectivity with arbitrary phase-difference is introduced.

We present a unified framework for simultaneous assessment of frequency and latency of coupled time-series 
functions. We refer to latency as the phase difference between time-series functions and describe latency and 
functional connectivity by the same framework and as a function of frequency. Consequently, the latency is cou-
pled in our analysis to the frequency and is represented by the phase-differences between a pair of time-series. 
The proposed analysis method transfers temporal 4D data (space and time) into a connectivity space in which 
each ‘functional connection’ (the relation between a pair of time-series) is represented by a cross-correlation with 
time-lag function. Using the general linear model, the weights of the time-series functions at specific frequen-
cies and phase-differences are estimated. The strength of the proposed analysis is demonstrated on resting-state 
fMRI data of 34 healthy subjects. The main uniqueness of this method relative to other approaches considering 
frequency information in resting-state fMRI data34–37 is by providing means to characterize functional connec-
tions by their phase-differences. This allows identifying types of connections, anti-symmetric and asymmetric, 
that were not obtained by any other method. The paper focuses on the methodological description and not on 
neurobiological findings. We note however that the new functional connections contain important information, 
such as the functional connectivity of the cerebellum that has biological relevance.

Mathematical description
The mathematical description below refers to resting-state functional connectivity MRI but can be modified to fit 
other types of coupled time-series functions in varies disciplines and particularly stimulus-driven fMRI, electro-
physiology, Magnetoencephalography (MEG) or Electroencephalogram (EEG).

Assuming that the BOLD time-series signal can be approximated by a finite sum of weighted cosine and sine 
functions whose frequencies depend on the repetition time (TR) and the number of collected time points (N), it 
can be expressed as:
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where i is a point in space (ROI or voxel), L is the number of functions used in the finite sum; a b,k
i

k
i are the nor-

malized weights of the cosine and sine functions respectively and L ≪  N due to the filter used in the preprocessing 
step. Equation 1 is simply the Fourier transform of the temporal signal where ak

i are the ‘real’ coefficients and bk
i  

the ‘imaginary’ coefficients. The cross-correlation with time-lag function between two BOLD signals equals:
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where l is the time-lag between the two BOLD signals; i,j are space indexes and ∗ denotes complex conjugate. 
Note that due to the normalization used in Equation 1, the Pearson’s correlation coefficient equals CCi, j(0). The 
frequency spectrum of Equation 2 equals:
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where FT denotes Fourier Transform. Combining Equations 1 and 3 provides an expression for the frequency 
spectrum of the cross-correlation function. Representing this function in the time domain (the cross-frequency 
terms are zero for orthogonal basis set) results with a new expression for the cross-correlation function:
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This expression implies that symmetric CCi, j(l) results from ‘in-phase’ weights, i.e., when both BOLD sig-
nals are either cosine or sine functions at the same frequency, antisymmetric CCi, j(l) results from ‘out-of-phase’ 
weights, i.e., when one BOLD signal is a cosine while the other is a sine function at the same frequency and 
asymmetric CCi, j(l) results from any other possible phase difference between the BOLD signals, i.e., when both 
symmetric and antisymmetric weights are significant. Note that the cross-wavelet transform38 and the wavelet 
transform coherence39 as well as our recent derivation24, give a similar expression to Equation 4 while using the 
wavelet space instead of Fourier space. Using Equation 4, the Pearson’s correlation coefficient is approximated by:
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and therefore equals to the in-phase contributions of the cross-correlation function at time-lag zero.
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To reduce the complexity of the analysis by assigning a small number of parameters (≪ 2 L), a general lin-
ear model (GLM) is applied to the CCi, j(l) functions (Equation 4). We chose frequencies for the GLM analysis 
which cover the entire frequency spectrum conventionally used for resting-state fMRI analysis (0.01–0.1 Hz). 
Discrete Fourier Transform theory indicates that the possible lowest frequency is 2π/(N · TR)= 0.0104 Hz and the 
maximum number of terms needed to cover the frequency range is 8. We tested different numbers of basis set 
functions (from 4 to 8) and compared their agreement (goodness of the GLM fit) with Equation 4. A basis set of 8 
functions: 4 cosines and 4 sines, was found to be appropriate. The following frequencies were selected: 0.02, 0.04, 
0.06 and 0.08 Hz. Basis-set functions were multiplied by a window function. Three different window functions 
were tested and the Bartlett window was found to be best (see Supplementary Information Figure 1).

The GLM approach on the cross-correlation functions can therefore be written as:
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where B(l) is the Bartlett window function. Consequently, the new analysis termed hereinafter “Frequency-Phase 
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Equation 6 can be written to explicitly express the phase such that a functional connection with any possible 
phase can be obtained:
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is the phase-difference between two BOLD signals, βk
i j,  and γk

i j,  are given by Equation 6 and ϑk
i  is given by 

Equation 1. Note that by using the GLM (Equation 6) to obtain functional connections with their phases, we 
avoid the need to apply statistics on complex numbers or directly on the phases which simplifies the analysis.

Figure 1 illustrates the proposed analysis method. For each pair of BOLD signals, a cross-correlation function 
is calculated (CCi, j(l)). This process transfers the 4D data (time and space) into “interaction space” that contains 
all pairwise cross-correlation functions. At the next stage, a GLM analysis is performed using a basis set of 4 
cosine and 4 sine functions, each with a different frequency. The GLM analysis results with eight values that are 
the cosine and sine weights of the pairwise cross-correlation function. These values, for a pre-defined seed, are 
used to construct seed statistical parametric maps (SPMs) for each of the eight GLM weight (β /γ  GLM-SPMs).

Results
The Frequency-Phase Analysis (FPA) is applied here on resting-state fMRI data of 34 healthy subjects to demon-
strate its ability to identify unique functional connections. Statistical parametric maps (SPMs) were calculated for 
each of the 8 GLM-weights. These maps, referred hereinafter as ‘GLM-SPMs’, allow to characterize the functional 
connectivity of seed regions according to their phases (β  GLM-SPMs vs. γ GLM-SPMs) and frequencies (βk

i,j  
GLM-SPM vs. βh

i,j GLM-SPM). Figure 2 shows GLM-SPMs of the left thalamus for β 1 and β 4 GLM-weights (SPMs 
for all GLM-weights are shown in Supplementary Information Figure 2). In the figure, positive and negative 
t-values are indicated by red and blue colors, respectively, and the left thalamus seed is shown in white. The aver-
age (across all voxels and all subjects) F-value corresponding to the goodness of the GLM fit was 13.8 ±  0.006 
(mean ±  standard error), indicating high agreement between the GLM weights and cross-correlation functions in 
most of the voxels and demonstrating that 8 parameters are suitable to fit the cross-correlation functions. For the 
thalamus seed, almost no significant volumes were observed for the γ  (antisymmetric) GLM-SPMs. GLM-SPMs 
of β 1–3 (frequencies of 0.02, 0.04 and 0.06 Hz) were similar to each other but very different from β 4 GLM-SPM 
(frequency of 0.08 Hz, Supplementary Information Figure 2). Note that in this figure (and other SPM figures 
below) negative GLM-weights are seen in the CSF, in white matter, around the ventricles, in large veins bordering 
CSF and in brain edges. These negative GLM-weights are thought to result from non-neuronal sources as was 
previously suggested40 and are ignored.

Figure 2 demonstrates the differences between β 1 GLM-SPM and β 4 GLM-SPM: while the functional con-
nectivity of the left thalamus with voxels within the bilateral thalamus was manifested by all frequencies (i.e., 
significant for all betas), the left thalamus →  occipital, cingulate, temporal and sensorimotor cortex functional 
connections were characterized only by the highest frequency (i.e., significant only for β 4). To explore these differ-
ences, we calculated the functional connectivity (cross-correlation with time lag) between the left thalamus seed 
and two preselected regions. These regions were selected based on the GLM-SPMs according to their significant 
connectivity with the seed. Specifically, we calculated the following: (i) average cross-correlation functions, (ii) 
average GLM-weights (betas and gammas) and (iii) average Pearson’s correlation coefficients. All these were done 
across all voxels in the chosen regions, for each subject separately and presented as the group mean ±  standard 
error (N =  34). The fitted GLM functions for the group mean cross-correlation functions (using Equation 6) 
are also shown. Figure 3 shows these calculations for the functional connectivity between the left thalamus and 
two regions in the occipital-temporal cortex and inferior frontal gyrus, indicated by white circles in the figure. 
Figure 3A shows the cross-correlation function between the left thalamus and a region in the occipital-temporal 
cortex (centered at MNI =  42, − 74, 16). The cross-correlation function exhibits a significant symmetric high 
frequency component in addition to a tendency for significance of a symmetric and an antisymmetric low fre-
quency components. Note, that in this case β 4 is significant and β 1 and γ 1 show a tendency for significance while 
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the Pearson’s correlation coefficient is not significant. Figure 3B shows the cross-correlation function between 
the left thalamus and a region in the inferior frontal gyrus (centered at MNI =  − 50, 14, 16). This functional con-
nection was significant both by Pearson’s correlation coefficient and by the FPA. As seen, all γ  (antisymmetric) 
GLM-weights are close to zero and Pearson’s correlation coefficient can be approximated by the sum of the β  
(symmetric) values, in line with Equation 5. Note the good agreement between the cross-correlation functions 
and their GLM-fits.

Figure 1. Flowchart diagram for the proposed analysis. Each pair of temporal time-series functions 
(e.g. BOLD signals) is cross-correlated to produce the cross-correlation function with time-lags. The cross-
correlation functions define the “interaction space”. A general linear model (GLM) is then used with 8 basis 
set functions (4 cosine and 4 sine multiplied by the Bartlett window function) covering the entire frequency 
spectrum. The GLM results with 8 real values corresponding to the GLM weights. These values are used to 
construct seed GLM-SPMs for each weight. The example shown is for the interaction between the left precentral 
gyrus and the left putamen. For this example the strength of the interaction at frequency of 0.02 Hz is 0.08 with 
a phase of 8.4° ; 0.02 for a frequency of 0.04 Hz with a phase of − 9.2°; 0.017 for a frequency of 0.06 Hz with a 
phase of − 31°; and 0.06 for a frequency of 0.08 Hz with a phase of − 18°.

Figure 2. Seed-voxel statistical parametric maps (SPMs) of the left thalamus seed for two symmetric 
GLM-weights (GLM-SPMs). (A) β 1 GLM-SPM (0.02 Hz). (B) β 4 GLM-SPM (0.08 Hz). Voxels with significant 
GLM-weights (p <  0.01 Monte Carlo corrected for multiple comparisons) are shown in colors according to their 
t-value (the color bar is shown on the right). The thalamus seed is shown in white.
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Figure 4 and Supplementary Information Figure 3 show GLM-SPMs of the left supplementary motor area 
(SMA) seed as an example for cortical GLM-SPMs. Average (across all voxels and all subjects) F-value was 
16.01 ±  0.009 (mean ±  SE). For this cortical seed, most of significant connections correspond to symmetric 
cross-correlation functions with positive weights. Antisymmetric connections are mainly with the cerebellum 
and at low frequencies. In the GLM-SPMs of the left SMA seed, SMA functional connectivity is mainly char-
acterized by the lowest (β 1, Fig. 4A) and the highest (β 4, Fig. 4B) frequencies which both show strong connec-
tivity with the sensorimotor cortex. However, some differences are observed between β 1 and β 4 GLM-SPMs. 
For example, SMA-occipital and SMA-thalamic functional connectivity were significant only for the highest 
frequency (β 4, Fig. 4B). Note that most of SMA-cerebellum connectivity is antisymmetric and at the lowest fre-
quency (Supplementary Information Figure 3). Figure 5 shows the average (across voxels and subjects) of the 
GLM-weights, Pearson’s correlation coefficient, cross-correlation functions and GLM fits for the functional con-
nectivity of the SMA with three different regions: a precentral region (centered at MNI =  48, − 16, 36) (Fig. 5A), 

Figure 3. Group mean of cross-correlation functions, their GLM-fits and GLM-weights for the functional 
connectivity between the left thalamic seed and two cortical regions: occipital-temporal region (MNI = 42, 
−74, 16) and inferior frontal gyrus region (MNI = −50, 14, 16). The inserted images (from Fig. 2B) show β 4  
GLM-SPM of the left thalamus seed that contains the selected cortical regions with colors corresponding to 
t-values. The two cortical regions (temporal, frontal) are marked by white dashed lines on the image and the 
thalamus seed is shown in white. Betas 1-4 are denoted by b1-4, gammas 1-4 by c1-4, Pearson’s correlation 
coefficient by r and significant GLM-weights by*. Error bars correspond to the group standard errors. Group 
averaged cross-correlation (CC) functions are shown in blue and their GLM-fits (GLM-Fit) in red. (A) Cross-
correlation between BOLD signals of the left thalamus and right temporal cortical region in which only β4 was 
found to be significant. (B) Cross-correlation between BOLD signals of the left thalamus seed and left frontal 
cortex region in which β2, β4 and Pearson’s correlation coefficient were found significant.

Figure 4. Seed-voxel statistical parametric maps (SPMs) of the left supplementary motor area (SMA) for 
two symmetric GLM-weights (GLM-SPMs). (A) β 1 GLM-SPM (0.02 Hz). (B) β 4 GLM-SPM (0.08 Hz). Voxels 
with significant GLM-weights (p <  0.01 Monte Carlo corrected for multiple comparisons) are shown in colors 
according to their t-value (color bar is shown on the right). The SMA seed is shown in white.
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a cerebellar posterior region (centered at MNI =  32, − 76, − 24) (Fig. 5B) and a region in the precuneus (centered 
at MNI =  22, − 74, 36) (Fig. 5C). These regions were selected from the GLM-SPMs based on their significant β 1,  
γ 1 and β 4 weights respectively. For the SMA-precentral connectivity (Fig. 5A), β 1, β 4 and Pearson’s correlation 
coefficient values were significant. For the SMA-cerebellar connectivity (Fig. 5B), only the antisymmetric γ 1 was 
significant. Note that the SMA-cerebellar connectivity corresponds to a time delay of ~12.5 sec (π /2 of a cycle 
with a frequency 0.02 Hz) in agreement with the maximum value of cross-correlation that is ~10 sec. For the 
SMA-precuneus connectivity (Fig. 5C), β 4 and Pearson’s correlation coefficient values were significant. These 
three connectivity patterns represent the three different types of functional connections whose characterization 
is possible by the proposed analysis. Note again the good agreement between the cross-correlation functions and 
their GLM-fits, indicating the accuracy of the beta and gamma coefficients.

Figure 6 and Supplementary Information Figure 4 show the GLM-SPMs of the left cerebellum crus 1 seed. The 
average (across all voxels and all subjects) F-value was 16.6 ±  0.008 (mean ±  SE). For this seed, almost the entire 
functional connectivity was associated with the lowest frequency. In this low frequency range, both symmetric 
and antisymmetric GLM-SPMs had large, mostly not overlapping, connectivity volumes. The symmetric func-
tional connectivity of the cerebellum crus 1 (β 1 GLM-SPMs, Fig. 6A) was mainly with motor cortical areas (pre-
central gyrus) with negative weights, that corresponds to a time delay of ~25 sec since it is associated with a phase 
of π  in a cycle of 0.02 Hz. The antisymmetric functional connectivity of the cerebellum crus 1 (γ 1 GLM-maps, 
Fig. 6B) was with frontal, precentral, cingulate, SMA and occipital volumes with positive weights, that corre-
sponds to a time delay of ~12.5 sec. Interestingly, almost all of the cerebellum crus 1 functional connectivity has 
a non-zero phase suggesting a significant time delay between cerebellar and cerebral activity. Figure 7 shows the 

Figure 5. Group mean of cross-correlation functions (CC), their GLM-fits and GLM-weights for the 
functional connectivity between the left supplementary motor area (SMA) seed and three regions. Inserted 
images are from Fig. 4 and Supplementary Information Figure 3. Colors in the images correspond to t-values 
and the regions are marked by white dashed lines on the images. Group averaged cross-correlation (CC) 
functions are shown in blue and their GLM-fits (GLM-Fit) in red. Betas 1-4 are denoted by b1-4, gammas 
1-4 by c1-4, Pearson’s correlation coefficient by r and significant GLM-weights by*. Error bars correspond to 
group standard errors. (A) Cross-correlation between the left SMA and a region in the right precentral cortex 
(MNI =  48, − 16, 36). In the cross-correlation, β2, β4 and Pearson’s correlation coefficient were found significant. 
In the right is the β 1 GLM-SPM containing the selected cortical region. (B) Cross-correlation between the left 
SMA and a region in the right posterior cerebellum (MNI =  − 32, − 76, − 24). In the cross-correlation, γ 1 was 
found significant.  In the right is the γ 1 GLM-SPM containing the selected region. (C) Cross-correlation between 
the left SMA and a region in the right precuneus (MNI =  48, − 16, 36).  In the cross-correlation, β4 and Pearson’s 
correlation coefficient were found to be significant. In the right is the β 4 GLM-SPM containing the selected 
region.
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average (across voxels and subjects) of GLM-weights, Pearson’s correlation coefficient, cross-correlation functions 
and their GLM-fits for the functional connectivity of the cerebellum crus 1 with two adjacent cortical regions: a 
precentral region (MNI =  38, − 24, 56) and a frontal region (MNI =  24, − 2, 56). For the cerebellar-precentral con-
nectivity (Fig. 7A), β 1 GLM-weight was significant and also the Pearson’s correlation coefficient, as expected since 
all antisymmetric weights were about zero. The cerebellar-frontal functional connection (Fig. 7B) demonstrates 
the unique type of antisymmetric connectivity with significant γ 1 GLM-weight. Note that the sign of symmetric 
functional connections (such as SMA ↔  cerebellum) is independent of the order of calculation, while for anti-
symmetric functional connections the sign of the GLM-weights depends on the order of calculation. For example, 
connectivity of SMA →  cerebellum (SMA is the seed) is negative while connectivity of cerebellum →  SMA (cere-
bellum is the seed) is positive. This is due to the antisymmetric cross-correlation functions.

To demonstrate that the phase of a functional connection can be different from 0°, 90° or 180°, we chose 
post-hoc the caudate which demonstrates this type of functional connectivity, as a seed region. Figure 8 and  
Supplementary Information Figure 5 show the seed-SPMs of the left caudate. The average (across all voxels and 
all subjects) F-value was 10.03 ±  0.018 (mean ±  SE). As shown, most of the caudate’s significant connections are 
at the lowest frequency with positive and negative symmetric GLM-weights in addition to many antisymmet-
ric GLM-weights. Careful examination of Fig. 8 shows that at the lowest frequency certain voxels have both 
significant symmetric and antisymmetric GLM-weights. To test this further, we searched for voxels within the 
precuneus (MNI =  6, − 54, 56) and paracentral lobule (MNI =  6, − 40, 56) which were significant for both β 1 
and γ 1 (symmetric and antisymmetric GLM-weights for the lowest frequency). Figure 9 shows the average ±  SE 
(across voxels and subjects) of the GLM-weights, Pearson’s correlation coefficient, cross-correlation function 
and its GLM-fit for the connectivity of the caudate with these voxels. As seen, both β 1 and γ 1 are significant and 
the cross-correlation function shows a phase difference between the BOLD signals that according to Equation 8 
equals to |34°| which corresponds to a time delay of 4.7 sec. This demonstrates that the proposed analysis can 
detect any possible phase-difference between a pair of BOLD functions.

Discussion
In this paper we introduce a new resting-state functional connectivity analysis method which we name 
‘Frequency-Phase Analysis’ (FPA). This analysis enables to characterize the functional connectivity between cou-
pled time-series functions with respect to their frequencies and phases. It presents a simple unified framework 
for simultaneous assessment of the frequency and phase of functional connectivity under the assumption that 
the time-series can be expressed by Fourier series. Pairwise cross-correlation with time-lags of the time-series 
functions enables to infer coherent frequencies and phase-differences between the time-series. The mathematical 
framework allows to distinguish between symmetric, antisymmetric and asymmetric functional connectivity 
types. The general linear model (GLM) was used to obtain the weights of symmetric (cosine) and antisymmetric 
(sine) basis-set functions. These weights were used to calculate the phase-difference between time-series at spe-
cific frequencies (Equation 8). The frequency range and resolution of the cosine and sine basis-set functions was 
selected to cover the entire frequency spectrum and in accordance with the discrete Fourier transform theory. The 
excellent agreement between the GLM results and cross-correlation functions (the high F-values of the GLM-fits) 
suggest that the choice of the basis-set is adequate.

The Frequency-Phase Analysis is closely related to previous studies that use time-lags41–45. It was shown that 
the time-lag propagates in space within conventionally known resting-state networks, depends on neuronal state 
(e.g., eyes closed or open) and can be used to infer directionality of neural information flow43,44. On the other 
hand, clinical studies have identified vascular time-lags in patients suffering from hypoperfusion or ischemia46–48, 
suggesting a dependency of the time-lag on cerebrovascular perfusion. It therefore emerges that temporal delays 
can reveal time-lags of neural origin or reflect regional differences in vascular dynamics. Indeed, it was suggested 
that extracting neural propagating information from fMRI data is possible only when the variability of the hemo-
dynamic response function is less than the time scale of information flow49. Efforts were made to characterize the 
differences between perfusion and neuronal contributions to the BOLD signal45 and to remove any confounds that 
can bias the time-lag analysis50,51. It is generally however accepted that for healthy subjects time-lags are related to 
neuronal transfer times with some neuro-vascular mapping, not entirely known. We claim that focusing on the 
time-lags could bias data interpretation and that instead the phases and phase-delays provide better measures of 

Figure 6. Seed-voxel statistical parametric maps (SPMs) of the left cerebellum crus 1 seed. (A) β 1 GLM-
SPM(0.02 Hz). (B) γ 1 GLM-SPM (0.02 Hz). Voxels with significant GLM-weights (p <  0.01 Monte Carlo 
corrected for multiple comparisons) are shown in colors according to their t-value (color bar is shown on the 
right). The cerebellum crus 1 seed is shown in white.
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functional connectivity and information transfer. Since neuronal communication can be transmitted at certain 
frequencies and these neuronal frequencies are encoded in the fMRI signal23,31,32, times of information transfer do 
not necessarily coincide with the volume or efficiency of information transfer. Consequently, equal time-lags could 
correspond to different volumes of transferred information when they are transferred at different frequencies. 
For example, it was hypothesized that cortex-hippocampus functional connectivity during memory consolidation 
occurs at two different frequencies44. Consequently, a certain time-lag in this reciprocal process may correspond to 
different volumes of transferred information depending on the frequency in which it occurred. Thus, this suggests 
that phases or phase-differences provide better measures for information flow or for transfer efficiency.

Our analysis is also related to the cross-wavelet transform38, wavelet transform coherence39 and dynamic 
coherence analysis of Yaesoubi et al.28, with the first two using coherences module and the latter calculating 
phases as well. However, the aims and implications of Yaesoubi et al. and our proposed analysis are different. 
Yaesoubi et al. focuses on time-frequency analysis for dynamic evaluation of resting-state data, whereas here 

Figure 7. Group mean of cross-correlation functions, their GLM-fits and GLM-weights for the functional 
connectivity between the left cerebellum crus 1 seed and two cortical regions. Inserted images are from 
Fig. 6 with colors corresponding to t-values and the two cortical regions marked by white dashed lines. Group 
averaged cross-correlation (CC) functions are shown in blue and their GLM-fits (GLM-Fit) in red. Betas 1-4 
are denoted by b1-4, gammas 1-4 by c1-4, Pearson’s correlation coefficient by r and significant GLM-weights 
by*. Error bars correspond to group standard errors. (A) Cross-correlation between the left cerebellum crus 1 
and a region in the right precentral cortex (MNI =  38, − 24, 56). In the cross-correlation, β1, β4 and Pearson’s 
correlation coefficient were found significant. In the right the β 1 GLM-SPM containing the selected cortical 
region is shown. (B) Cross-correlation between the left cerebellum crus 1 and a region in the right frontal cortex 
(MNI =  24, − 2, 56). In the cross-correlation, γ 1 was found significant. In the right the γ 1 GLM-SPM containing 
the selected region is shown.

Figure 8. Seed-voxel statistical parametric maps (SPMs) of the left caudate seed. (A) GLM-SPM of β 1 
(0.02 Hz). (B) GLM-SPM of γ 1 (0.02 Hz). Voxels with significant GLM-weights (p <  0.01 Monte Carlo corrected 
for multiple comparisons) are shown in colors according to their t-value (color bar is shown on the right). The 
caudate seed is shown in white.
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we focus on frequency-phase analysis to characterize functional connections by their phase differences. We also 
aim to introduce an analysis method that is similar to conventional correlation analyses. For this reason, the 
GLM approach was selected as it is a common functional MRI analysis approach. Besides its simplicity, the GLM 
approach used here reduces the number of parameters to 8 real numbers (the weights of the basis-set), which 
were shown to be sufficient to obtain good fits for the cross-correlation functions. In addition, since we aim to 
characterize functional connections by their type of phase differences (symmetric, antisymmetric and asymmet-
ric) and not to define their phases, t-statistics can be used on each of the 8 GLM weights separately, with no need 
for complex-numbers statistics (e.g., circular Gaussian distributions or Gaussian hypergeometric distributions) 
which are more difficult and less familiar.

The ability of the FPA method to characterize functional connectivity by its phase-differences is demonstrated 
on resting-state fMRI data. We show that the FPA method identifies unique functional connections that were 
not defined before. Several examples are given for this attribute. Figure 3A shows functional connectivity of the 
left thalamus with a region in the occipital-temporal cortex, demonstrating an asymmetric type of functional 
connectivity that is not observed by the Pearson’s correlation analysis. This functional connection has a signifi-
cant weight of a cosine function at 0.08 Hz along with close to significant weights of cosine and sine functions at 
0.02 Hz. Their combined effect results with a phase-difference of ∼ 79° corresponding to a time delay of 10.9 sec. 
Since antisymmetric sine functions shift the cross-correlation function in time, the correlation value at time-lag 
zero (i.e., Pearson’s correlation) is reduced and insignificant. Figures 5B and 7B demonstrate examples in which 
Pearson’s correlation coefficients were not significant but the antisymmetric GLM-weights were significant. 
These connections were associated with cerebellar functional connectivity. An example for the ability of the FPA 
method to characterize connections by their dominant frequencies is given in Fig. 5A and C. These figures show 
functional connections which are significant by Pearson’s correlation analysis and by the FPA. However, the FPA 
method enables a more subtle characterization of these connections. Whereas the SMA-precentral functional 
connectivity (Fig. 5A) is mainly apparent in the lowest frequency, the SMA-occipital functional connectivity 
(Fig. 5C) is mainly apparent in the highest frequency. Figure 6 shows the GLM-SPMs of the left cerebellum crus 
1 seed and demonstrates that antisymmetric functional connectivity can be associated with large gray matter vol-
umes. Antisymmetric and symmetric functional connections in this figure correspond to anatomically different 
brain structures: the cerebellum crus 1 is functionally connected with the motor system by negative symmetric 
cross-correlation functions, and connected with frontal regions by antisymmetric cross-correlation functions.

Our interpretation of the biological meaning of fMRI time-series frequencies and phases is based on the 
assumption of a coupling between neuronal activity and BOLD signal and that the communication between 
different regions can be differently weighted by different frequencies52 and phases. Two principle mechanisms, 
applicable for healthy subjects, are presented below to explain the biological meaning of the measured phase 
differences in fMRI time-series. One is that phase-differences correspond to neuronal delays and reflect time 
of information transfer. This assumption was used by others to explain directionality in functional and effective 
connectivity1 and was used by us to show directionality of information flow and temporal organization using 

Figure 9. Group mean of cross-correlation functions, their GLM-fits and GLM-weights for the functional 
connectivity between the left caudate seed and voxels in the precuneus and paracentral lobule which show 
significance for both β1 and γ1 SPMs. Inserted images (from Fig. 8) show β 1 and γ 1 GLM-SPM of the same slice 
for the caudate seed that contains the selected voxels with colors corresponding to t-values. The white dashed 
lines present the area from which voxels were selected. (A) Group averaged cross-correlation (CC) function is 
shown in blue and its GLM-fit (GLM-Fit) in red. (B) GLM-weights. Betas 1-4 are denoted by b1-4, gammas 1-4 
by c1-4, Pearson’s correlation coefficient by r and significant GLM-weights by*. Error bars correspond to group 
standard errors.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7:43743 | DOI: 10.1038/srep43743

nonlinear coherence in wavelet space24. The second mechanism is related to the hemodynamic effect as we pre-
viously suggested53. We proposed that the hemodynamic responses of BOLD signals at different brain locations 
can be modulated by different weights. Specifically, if two remote regions with synchronous neuronal activity 
have different hemodynamic response functions, such that one is mainly affected by regional cerebral blood flow 
(rCBF) while the other is mainly affected by regional cerebral blood volume (rCBV), a time-delay between the 
two BOLD signals will be generated regardless of their neuronal coupling, since changes in rCBV are known to be 
delayed compared to changes in rCBF54–56. Consequently, one of the BOLD signals can, for example, be described 
by a cosine function with a zero phase, while the other by a cosine function at the same frequency with a non-zero 
phase. Such scenario may also occur when two regions are affected by different neurotransmitters or by different 
concentrations of neurotransmitters, since neurotransmitters are known to affect blood circuitry53.

Conclusions. We introduce a new analysis method which characterizes functional connectivity between cou-
pled time-series functions based on their frequencies and phase differences. We speculate that these phase dif-
ferences in fMRI signals correspond to time of information transfer and/or to regional dependent hemodynamic 
effects with are modulated by neurotransmitters concentrations. Clearly, much more studies are needed to better 
understand the capabilities and physiological correlates of the new proposed analysis.

Experimental Method
Human Subjects and MRI acquisition. The study was approved by the Ethics Committee of the General 
University Hospital in Prague, Czech Republic. All subjects provided written informed consent for participa-
tion in the study and all methods were performed in accordance with the relevant guidelines and regulations. 
Magnetic resonance images were acquired with a 3T MR scanner (Magnetom Skyra, Siemens, Germany). Each 
participant underwent 10-minute resting-state functional MRI during which they were instructed to fixate on a 
visual crosshair, remain still and awake. Wakefulness was monitored during the whole scan using an MRI compat-
ible camera. Functional images were acquired using T2*-weighted gradient EPI sequence with TR/TE 2 sec/30 ms, 
300 repetitions and voxel size of 3 ×  3 ×  3 mm. 34 healthy subjects (age 64.9 ±  8.2, 18 men and 16 women) were 
included in the study. High resolution anatomical images were acquired using a sagittal T1-weighted magnetiza-
tion-prepared rapid acquisition gradient echo (MP-RAGE) sequence for coregistration and normalization of the 
functional images to MNI space.

Preprocessing of fMRI data and Pearson’s correlation analysis. Resting-state fMRI data was first 
preprocessed using Statistical Parametric Mapping (SPM8, Welcome Trust Centre for Neuroimaging, London, 
United Kingdom, http://www.fil.ion.ucl.ac.uk/spm/software/spm8). Standard preprocessing steps included: rea-
lignment, coregistration, normalization to MNI-space and spatial smoothing with an 8 mm Gaussian kernel. 
Voxels of 2 ×  2 ×  2 mm3 were obtained after these steps. An a-priori standard inclusion criterion of maximal head 
motion < 3 mm or 3° rotations was chosen although the average displacement for subjects was < 1.5 mm and  
< 1.5° rotation. Functional connectivity analysis of resting-state data was done using CONN toolbox57. Further 
preprocessing steps included: removal of confounds by regression (motion parameters, first principal compo-
nents of CSF and white matter signals), linear detrending and band-pass filtering (0.01–0.1 Hz). Removal of the 
first principle components of the CSF and white matter signals by regression was used rather than removal of 
global signal in order to minimize biases that might be introduced by global signal regression40,58–61. Scrubbing 
was further done using DPARSF toolbox62. Regions of interest (ROIs) for seed analysis were selected using the 
Automated Anatomical Labeling (AAL)63. Although some AAL regions can be further sub-divided to more spe-
cific functional regions (e.g. the thalamus), standard AAL regions were chosen to demonstrate different func-
tional connectivity between cortical, subcortical and cerebellar regions.

GLM of cross-correlation functions. All further calculations were performed with IDL version 6.1 using 
custom-developed software. Cross-correlation functions were generated using 41 time-lag points which corre-
spond to a range of − 40 to 40 seconds. This time range was chosen to include all relevant basis-set frequencies 
(0.02–0.08 Hz) and to cover the relevant length of the post-stimulus response expected to modulate the hemo-
dynamic response function of the BOLD signal by regional cerebral blood volume (rCBV)64. To study possible 
effects of lower frequencies (< 0.02 Hz), a larger range of time-lag points should be selected. Beta and gamma 
values, i.e., the coefficients of the cosine and sine basis-set functions of Equation 6, were calculated using standard 
IDL routine for linear regression. Consequently, the FPA method generated 8 ×  N scalars for each seed: 4 beta and 
4 gamma values for each of the N functional connections.

Statistics. The level of significance in the FPA GLM-SPM calculations was defined by one sample t-test on 
each GLM weight separately. Significance was defined by a combination of a voxel-level p-value of p <  0.0001 and 
a cluster-level threshold of 100 voxels. The cluster size was chosen according to Monte-Carlo simulation to set 
the threshold at p <  0.01 corrected for multiple comparisons65. For the ROI statistics (Figures 3, 5, 7 and 9), one 
sample t-test on each GLM weight was done separately using a threshold of p <  0.0001.

Choice of seed regions. Seed-voxel statistical-parametric-maps (SPM) were obtained from 3 predefined 
ROIs that represent different types of brain regions (cortex, subcortex and cerebellum) and are all part of the 
motor system. These were: the left supplementary motor area (SMA), left thalamus and left cerebellum crus 1. The 
motor system was chosen arbitrarily as an example to demonstrate the capabilities of the proposed analysis. At a 
later stage, we searched for clusters in the GLM-SPM that showed asymmetric functional connectivity. The left 
caudate was identified as showing asymmetric functional connections and therefore chosen as a 4th seed region. 
Note that these seeds were not chosen by their goodness of fit to Equation 6.

http://www.fil.ion.ucl.ac.uk/spm/software/spm8


www.nature.com/scientificreports/

1 1Scientific RepoRts | 7:43743 | DOI: 10.1038/srep43743

References
1. Friston, K. J. Functional and effective connectivity: a review. Brain Connect 1, 13–36, doi: 10.1089/brain.2011.0008 (2011).
2. Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. NeuroImage 19, 1273–1302 (2003).
3. McIntosh., A. R. & Gonzalez-Lima, F. Structural equation modeling and its application to network analysis in functional brain 

imaging. Human brain mapping 2, 2–22 (1994).
4. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: anatomy, function, and relevance to disease. 

Annals of the New York Academy of Sciences 1124, 1–38, doi: 10.1196/annals.1440.011 (2008).
5. Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat 

Rev Neurosci 8, 700–711 (2007).
6. Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using 

echo-planar MRI. Magn Reson Med 34(4), 537–541 (1995).
7. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the 

National Academy of Sciences of the United States of America 102, 9673–9678 (2005).
8. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default 

mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America 100, 253–258 (2003).
9. Raichle, M. E. et al. A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America 

98, 676–682 (2001).
10. Deco, G., Jirsa, V. K. & McIntosh, A. R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat 

Rev Neurosci 12, 43–56 (2011).
11. Shehzad, Z. et al. The resting brain: unconstrained yet reliable. Cerebral cortex 19, 2209–2229, doi: 10.1093/cercor/bhn256 (2009).
12. Zuo, X. N. et al. Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. NeuroImage 

49, 2163–2177, doi: 10.1016/j.neuroimage.2009.10.080 (2010).
13. Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C. & Constable, R. T. Brain connectivity related to working memory 

performance. J Neurosci 26, 13338–13343, doi: 10.1523/JNEUROSCI.3408-06.2006 (2006).
14. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L. & Greicius, M. D. Neurodegenerative diseases target large-scale human brain 

networks. Neuron 62, 42–52 (2009).
15. Honey, C. J., Kotter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple 

time scales. Proceedings of the National Academy of Sciences of the United States of America 104, 10240–10245 (2007).
16. Ghosh, A., Rho, Y., McIntosh, A. R., Kotter, R. & Jirsa, V. K. Noise during rest enables the exploration of the brain’s dynamic 

repertoire. PLoS Comput Biol 4, e1000196 (2008).
17. Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O. & Kotter, R. Key role of coupling, delay, and noise in resting brain fluctuations. 

Proceedings of the National Academy of Sciences of the United States of America 106, 10302–10307 (2009).
18. Cordes, D. et al. Frequencies Contributing to Functional Connectivity in the Cerebral Cortex in “Resting-state” Data. Am J 

Neuroradiol 22, 1326–1333 (2001).
19. Sun, F. T., Miller, L. M. & D’Esposito, M. Measuring interregional functional connectivity using coherence and partial coherence 

analyses of fMRI data. NeuroImage 21, 647–658, doi: 10.1016/j.neuroimage.2003.09.056 (2004).
20. Salvador, R., Suckling, J., Schwarzbauer, C. & Bullmore, E. Undirected graphs of frequency-dependent functional connectivity in 

whole brain networks. Philos Trans R Soc Lond B Biol Sci 360, 937–946, doi: 10.1098/rstb.2005.1645 (2005).
21. Thirion, B., Dodel, S. & Poline, J. B. Detection of signal synchronizations in resting-state fMRI datasets. NeuroImage 29, 321–327, 

doi: 10.1016/j.neuroimage.2005.06.054 (2006).
22. Salvador, R. et al. Frequency based mutual information measures between clusters of brain regions in functional magnetic resonance 

imaging. NeuroImage 35, 83–88, doi: 10.1016/j.neuroimage.2006.12.001 (2007).
23. Salvador, R. et al. A simple view of the brain through a frequency-specific functional connectivity measure. NeuroImage 39, 

279–289, doi: 10.1016/j.neuroimage.2007.08.018 (2008).
24. Goelman, G. & Dan, R. Multiple-region directed functional connectivity based on phase delays. Human brain mapping, doi: 

10.1002/hbm.23460 (2016).
25. Handwerker, D. A., Roopchansingh, V., Gonzalez-Castillo, J. & Bandettini, P. A. Periodic changes in fMRI connectivity. NeuroImage 

63, 1712–1719, doi: 10.1016/j.neuroimage.2012.06.078 (2012).
26. Hutchison, R. M., Womelsdorf, T., Gati, J. S., Everling, S. & Menon, R. S. Resting-state networks show dynamic functional 

connectivity in awake humans and anesthetized macaques. Human brain mapping 34, 2154–2177, doi: 10.1002/hbm.22058 (2013).
27. Kiviniemi, V. et al. A sliding time-window ICA reveals spatial variability of the default mode network in time. Brain Connect 1, 

339–347, doi: 10.1089/brain.2011.0036 (2011).
28. Yaesoubi, M., Allen, E. A., Miller, R. L. & Calhoun, V. D. Dynamic coherence analysis of resting fMRI data to jointly capture state-

based phase, frequency, and time-domain information. NeuroImage 120, 133–142, doi: 10.1016/j.neuroimage.2015.07.002 (2015).
29. Glerean, E., Salmi, J., Lahnakoski, J. M., Jaaskelainen, I. P. & Sams, M. Functional magnetic resonance imaging phase synchronization 

as a measure of dynamic functional connectivity. Brain Connect 2, 91–101, doi: 10.1089/brain.2011.0068 (2012).
30. Liu, X. & Duyn, J. H. Time-varying functional network information extracted from brief instances of spontaneous brain activity. 

Proceedings of the National Academy of Sciences of the United States of America 110, 4392–4397, doi: 10.1073/pnas.1216856110 (2013).
31. Baria, A. T., Baliki, M. N., Parrish, T. & Apkarian, A. V. Anatomical and functional assemblies of brain BOLD oscillations. J Neurosci 

31, 7910–7919, doi: 10.1523/JNEUROSCI.1296-11.2011 (2011).
32. Esposito, F. et al. Rhythm-specific modulation of the sensorimotor network in drug-naive patients with Parkinson’s disease by 

levodopa. Brain 136, 710–725, doi: 10.1093/brain/awt007 (2013).
33. Devergnas, A., Pittard, D., Bliwise, D. & Wichmann, T. Relationship between oscillatory activity in the cortico-basal ganglia network 

and parkinsonism in MPTP-treated monkeys. Neurobiol Dis 68, 156–166, doi: 10.1016/j.nbd.2014.04.004 (2014).
34. Thompson, W. H. & Fransson, P. The frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs 

and integration in the resting brain. NeuroImage 121, 227–242, doi: 10.1016/j.neuroimage.2015.07.022 (2015).
35. Majeed, W. et al. Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans. NeuroImage 54, 1140–1150, doi: 

10.1016/j.neuroimage.2010.08.030 (2011).
36. Thompson, G. J., Pan, W. J., Magnuson, M. E., Jaeger, D. & Keilholz, S. D. Quasi-periodic patterns (QPP): large-scale dynamics in 

resting state fMRI that correlate with local infraslow electrical activity. NeuroImage 84, 1018–1031, doi: 10.1016/j.
neuroimage.2013.09.029 (2014).

37. Pan, W. J. et al. Broadband local field potentials correlate with spontaneous fluctuations in functional magnetic resonance imaging 
signals in the rat somatosensory cortex under isoflurane anesthesia. Brain Connect 1, 119–131, doi: 10.1089/brain.2011.0014 (2011).

38. Chang, C. & Glover, G. H. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 50, 
81–98, doi: 10.1016/j.neuroimage.2009.12.011 (2010).

39. Torrence, C. & Webster, P. Interdecadal changes in the ENSO-Monsoon system. J Clim 12, 2679–2690 (1999).
40. Bianciardi, M., Fukunaga, M., van Gelderen, P., de Zwart, J. A. & Duyn, J. H. Negative BOLD-fMRI signals in large cerebral veins. J 

Cereb Blood Flow Metab 31, 401–412 (2011).
41. Mitra, A., Snyder, A. Z., Hacker, C. D. & Raichle, M. E. Lag structure in resting-state fMRI. J Neurophysiol 111, 2374–2391, doi: 

10.1152/jn.00804.2013 (2014).



www.nature.com/scientificreports/

1 2Scientific RepoRts | 7:43743 | DOI: 10.1038/srep43743

42. Mitra, A., Snyder, A. Z., Constantino, J. N. & Raichle, M. E. The Lag Structure of Intrinsic Activity is Focally Altered in High 
Functioning Adults with Autism. Cerebral cortex, doi: 10.1093/cercor/bhv294 (2015).

43. Mitra, A., Snyder, A. Z., Blazey, T. & Raichle, M. E. Lag threads organize the brain’s intrinsic activity. Proceedings of the National 
Academy of Sciences of the United States of America 112, E2235–2244, doi: 10.1073/pnas.1503960112 (2015).

44. Mitra, A. et al. Human cortical-hippocampal dialogue in wake and slow-wave sleep. Proceedings of the National Academy of Sciences 
of the United States of America 113, E6868–E6876, doi: 10.1073/pnas.1607289113 (2016).

45. Amemiya, S., Takao, H., Hanaoka, S. & Ohtomo, K. Global and structured waves of rs-fMRI signal identified as putative propagation 
of spontaneous neural activity. NeuroImage 133, 331–340, doi: 10.1016/j.neuroimage.2016.03.033 (2016).

46. Lv, Y. et al. Identifying the perfusion deficit in acute stroke with resting-state functional magnetic resonance imaging. Annals of 
neurology 73, 136–140, doi: 10.1002/ana.23763 (2013).

47. Amemiya, S., Kunimatsu, A., Saito, N. & Ohtomo, K. Cerebral hemodynamic impairment: assessment with resting-state functional 
MR imaging. Radiology 270, 548–555, doi: 10.1148/radiol.13130982 (2014).

48. Christen, T. et al. Noncontrast mapping of arterial delay and functional connectivity using resting-state functional MRI: a study in 
Moyamoya patients. Journal of magnetic resonance imaging: JMRI 41, 424–430, doi: 10.1002/jmri.24558 (2015).

49. Garg, R., Cecchi, G. A. & Rao, A. R. Full-brain auto-regressive modeling (FARM) using fMRI. NeuroImage 58, 416–441, doi: 
10.1016/j.neuroimage.2011.02.074 (2011).

50. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional 
connectivity MRI networks arise from subject motion. NeuroImage 59, 2142–2154, doi: 10.1016/j.neuroimage.2011.10.018 (2012).

51. Power, J. D., Plitt, M., Laumann, T. O. & Martin, A. Sources and implications of whole-brain fMRI signals in humans. NeuroImage, 
doi: 10.1016/j.neuroimage.2016.09.038 (2016).

52. Zuo, X. N. et al. The oscillating brain: complex and reliable. NeuroImage 49, 1432–1445, doi: 10.1016/j.neuroimage.2009.09.037 (2010).
53. Goelman, G., Gordon, N. & Bonne, O. Maximizing negative correlations in resting-state functional connectivity MRI by time-lag. 

PLoS One 9, e111554, doi: 10.1371/journal.pone.0111554 (2014).
54. Buxton, R. B., Wong, E. C. & Frank, L. R. Dynamics of blood flow and oxygenation changes during brain activation: the balloon 

model. Magn Reson Med 39, 855–864 (1998).
55. Buxton, R. B., Uludag, K., Dubowitz, D. J. & Liu, T. T. Modeling the hemodynamic response to brain activation. NeuroImage 23 

Suppl 1, S220–233 (2004).
56. Zong, X., Kim, T. & Kim, S. G. Contributions of dynamic venous blood volume versus oxygenation level changes to BOLD fMRI. 

NeuroImage 60, 2238–2246, doi: 10.1016/j.neuroimage.2012.02.052 (2012).
57. Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain 

networks. Brain Connect 2, 125–141, doi: 10.1089/brain.2012.0073 (2012).
58. Fox, M. D., Zhang, D., Snyder, A. Z. & Raichle, M. E. The global signal and observed anticorrelated resting state brain networks. 

Journal of neurophysiology 101, 3270–3283 (2009).
59. Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B. & Bandettini, P. A. The impact of global signal regression on resting state 

correlations: are anti-correlated networks introduced? NeuroImage 44, 893–905 (2009).
60. Weissenbacher, A. et al. Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison 

of preprocessing strategies. NeuroImage 47, 1408–1416 (2009).
61. Chai, X. J., Castanon, A. N., Ongur, D. & Whitfield-Gabrieli, S. Anticorrelations in resting state networks without global signal 

regression. NeuroImage 59, 1420–1428 (2011).
62. Chao-Gan, Y. & Yu-Feng, Z. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI. Front Syst Neurosci 

4, 13, doi: 10.3389/fnsys.2010.00013 (2010).
63. Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the 

MNI MRI single-subject brain. NeuroImage 15, 273–289, doi: 10.1006/nimg.2001.0978 (2002).
64. Arichi, T. et al. Development of BOLD signal hemodynamic responses in the human brain. NeuroImage 63, 663–673 (2012).
65. Forman, S. D. et al. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-

size threshold. Magn Reson Med 33, 636–647 (1995).

Acknowledgements
This work was supported by a Czech-Israel cooperative research grant issued by the Israel Ministry of science 
(grant number 3–9814) and the Czech Ministry of education (Grant LH13256 VES13-KontaktII). Additional 
support was given by the Czech Ministry of Health (Grant IGA MZ CR NT12282-5/2011) and the Charles 
University in Prague (Research Project PRVOUK-P26/LF1/4).

Author Contributions
G.G.: Conception and design of study, analysis and writing of the paper R.D.: Data preprocessing and assistance 
in writing of the paper F.R., O.B., E.R., J.R., J.V., R.J.: Data acquisition.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing Interests: The authors declare no competing financial interests.
How to cite this article: Goelman, G. et al. Frequency-phase analysis of resting-state functional MRI. Sci. Rep. 
7, 43743; doi: 10.1038/srep43743 (2017).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2017

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Frequency-phase analysis of resting-state functional MRI
	Mathematical description
	Results
	Discussion
	Conclusions. 

	Experimental Method
	Human Subjects and MRI acquisition. 
	Preprocessing of fMRI data and Pearson’s correlation analysis. 
	GLM of cross-correlation functions. 
	Statistics. 
	Choice of seed regions. 

	Acknowledgements
	Author Contributions
	Figure 1.  Flowchart diagram for the proposed analysis.
	Figure 2.  Seed-voxel statistical parametric maps (SPMs) of the left thalamus seed for two symmetric GLM-weights (GLM-SPMs).
	Figure 3.  Group mean of cross-correlation functions, their GLM-fits and GLM-weights for the functional connectivity between the left thalamic seed and two cortical regions: occipital-temporal region (MNI = 42, −74, 16) and inferior frontal gyrus re
	Figure 4.  Seed-voxel statistical parametric maps (SPMs) of the left supplementary motor area (SMA) for two symmetric GLM-weights (GLM-SPMs).
	Figure 5.  Group mean of cross-correlation functions (CC), their GLM-fits and GLM-weights for the functional connectivity between the left supplementary motor area (SMA) seed and three regions.
	Figure 6.  Seed-voxel statistical parametric maps (SPMs) of the left cerebellum crus 1 seed.
	Figure 7.  Group mean of cross-correlation functions, their GLM-fits and GLM-weights for the functional connectivity between the left cerebellum crus 1 seed and two cortical regions.
	Figure 8.  Seed-voxel statistical parametric maps (SPMs) of the left caudate seed.
	Figure 9.  Group mean of cross-correlation functions, their GLM-fits and GLM-weights for the functional connectivity between the left caudate seed and voxels in the precuneus and paracentral lobule which show significance for both β1 and γ1 SPMs.



 
    
       
          application/pdf
          
             
                Frequency-phase analysis of resting-state functional MRI
            
         
          
             
                srep ,  (2017). doi:10.1038/srep43743
            
         
          
             
                Gadi Goelman
                Rotem Dan
                Filip Růžička
                Ondrej Bezdicek
                Evžen Růžička
                Jan Roth
                Josef Vymazal
                Robert Jech
            
         
          doi:10.1038/srep43743
          
             
                Nature Publishing Group
            
         
          
             
                © 2017 Nature Publishing Group
            
         
      
       
          
      
       
          © 2017 The Author(s)
          10.1038/srep43743
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep43743
            
         
      
       
          
          
          
             
                doi:10.1038/srep43743
            
         
          
             
                srep ,  (2017). doi:10.1038/srep43743
            
         
          
          
      
       
       
          True
      
   




