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Single-cell elastography: Probing for disease
with the atomic force microscope

Kevin D. Costa∗
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Abstract. The atomic force microscope (AFM) is emerging as a powerful tool in cell biology. Originally developed for high-
resolution imaging purposes, the AFM also has unique capabilities as a nano-indenter to probe the dynamic viscoelastic material
properties of living cells in culture. In particular, AFM elastography combines imaging and indentation modalities to map the
spatial distribution of cell mechanical properties, which in turn reflect the structure and function of the underlying cytoskeleton.
Such measurements have contributed to our understanding of cell mechanics and cell biology and appear to be sensitive to the
presence of disease in individual cells. This chapter provides a background on the principles and practice of AFM elastography
and reviews the literature comparing cell mechanics in normal and diseased states, making a case for the use of such measurements
as disease markers. Emphasis is placed on the need for more comprehensive and detailed quantification of cell biomechanical
properties beyond the current standard methods of analysis. A number of technical and practical hurdles have yet to be overcome
before the method can be of clinical use. However, the future holds great promise for AFM elastography of living cells to provide
novel biomechanical markers that will enhance the detection, diagnosis, and treatment of disease.
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1. Introduction

Many physiologic and pathophysiologic processes
alter the biomechanical properties of the tissues they
affect. It is well known that muscles get harder with
weight training, and skin becomes less resilient with
age. Abnormal tissue biomechanics also play a key
role in a wide range of diseases such as osteoporo-
sis, osteoarthritis, cystic fibrosis, muscular dystrophy,
ventricular aneurysm, and others. Based on the rela-
tionship between tissue mechanics and pathology, pal-
pation is used clinically to detect stiff nodules associ-
ated with breast cancer and abdominal hardness due to
cirrhosis of the liver. In an effort to make such ex-
aminations more quantitative, a number of indentation
devices have been developed to evaluate the stiffness
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of soft tissuesin vivo [1–4], though these have yet to
achieve wide clinical acceptance.

Recently, there has been great interest in a new
technique known as elastography [5], which generally
refers to any imaging modality that yields information
about the mechanical properties of a tissue. Based pri-
marily on ultrasound and magnetic resonance imaging
methods, elastographic techniques have demonstrated
the ability to detect the size and shape of tumors [5,
6], to identify regional anatomic differences in nor-
mal tissue stiffness [5,6], to identify abnormal cardiac
deformation due to coronary artery disease [7,8], and
even have been implemented in a catheter system for
intravascular evaluation of atherosclerotic plaques [9].
However, in an elastogram, image contrast is based
on regional differences in the response of tissue struc-
tures to applied loads, yielding new information not
available using traditional medical imaging modalities.
Consequently, there is rapidly growing clinical interest
in the ability to diagnose disease based on analysis and
visualization of regional tissue mechanical properties.

It follows that pathophysiologic changes in the me-
chanical properties of tissues may be manifest at the
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single cell level. In fact, alterations of cell mechanical
properties recently have been reported in certain forms
of cancer, arthritis, and cardiovascular disease [10–
13], opening a new window to examine the underlying
mechanisms of these pathologies. Moreover, once the
normal and abnormal mechanical properties of a given
cell type are established, it is enticing to imagine that
potential pharmaceutical or genetic treatments might
be evaluated by measuring their effects on the mechan-
ical properties of target cellsin vitro. Hence, by com-
plementing other evolving single-cell analysis tech-
niques [14,15], the identification of a distinct biome-
chanical fingerprint of the cell in response to a battery
of material tests may offer an important new approach
in cell biology. Single cell elastography using atomic
force microscopy is a technique with the potential to
identify such a mechanical fingerprint.

At present, atomic force microscope (AFM) elas-
tography is largely a research tool used by biomedi-
cal engineers and biophysicists to study the mechanics
of cell function. However, the technique is evolving
rapidly to a state where medical applications may be
feasible. Therefore, the purpose of this article is to
provide a brief introduction to cell biomechanics and
its relation to disease; to describe the AFM experiment,
including principles of operation and methods of data
analysis; to review recent findings in the area of cell
mechanics with AFM; and to identify the current limits
of the technology and future developments that would
enhance transfer to the basic and clinical sciences to aid
in the identification of novel cell biomechanical mark-
ers that might lead to improved detection, diagnosis,
and treatment of disease.

1.1. Basic cell biomechanics

Such a detailed characterization of cell mechanics
requires knowledge of the constitutive relation of the
cell, which relates cell deformation (i.e., strain) to in-
ternal forces and externally applied loads (i.e., stress)
acting on the cell. Stiffness is defined as the slope of
the force-deformation curve – it depends on geometry
and hence on the particular sample studied and the test-
ing device used. Therefore, rather than relating force
(F ) and deformation (∆L) directly, it is important to
consider the related quantities stress (σ = F/A) and
strain (ε = (∆L/Lo) because these are normalized
measures (by area,A, and initial length,Lo, respec-
tively) independent of size or geometry. That is, the
stress-strain constitutive relation reflects an underlying
property of the cell. Perhaps the best known and sim-
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Fig. 1. An idealized linear elastic material (dotted line) is char-
acterized by the Young’s modulus obtained from the slope of the
stress-strain curve. For most biological soft tissues, the stress-strain
relation is nonlinear (solid line) and exhibits viscoelastic hysteresis
between loading and unloading segments of the curve.

plest constitutive relation for solid materials is Hooke’s
law, which states that stress is proportional to strain
(σ = Eε), where the constant of proportionality,E,
is called the Young’s modulus. Materials that obey
Hooke’s law (e.g., rubber, steel, bone) are called linear
elastic (Fig. 1). A similar constitutive relation for fluid
materials states that the stress is proportional to the rate
of strain (σ =: µdε/dt), where the constant of propor-
tionality,µ, is called the viscosity. Such materials (e.g.,
water, blood plasma) are called Newtonian fluids.

Macroscopically, most soft biological tissues are
more complex than these simple idealized materi-
als [16]. In addition to being heterogeneous, with me-
chanical properties varying from one region of the tis-
sue to another, the stress-strain relationship typically is
nonlinear (e.g., polynomial or exponential), such that
the modulus increases as the tissue is deformed (Fig. 1).
Many tissues also have a preferred structural alignment
that gives rise to material anisotropy, such that the mea-
sured material properties depend upon the axis along
which the tissue is tested. Moreover, most soft tissues
are viscoelastic materials consisting of solid and fluid
(and ionic) components that influence how the tissue
responds to mechanical stimulation [17,18]. Hence, the
mechanical behavior depends not only on how much
the tissue is deformed, but also on how rapidly it is de-
formed and on the memory of its previous deformation
history, resulting in hysteresis between the loading and
unloading portions of the stress-strain curve (Fig. 1).
Clearly, such tissues are not well characterized by a sin-
gle Young’s modulus, and constitutive equations that
combine elastic and viscous properties are required to
mathematically model their stress-strain behavior [16].

Single cells appear to share many of the same biome-
chanical characteristics as macroscopic soft tissues.
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Even the earliest analyses of leukocyte mechanics rec-
ognized the importance of viscoelasticity due to the
aqueous gel nature of the cytoplasm [19,20]. More
recent studies suggest that actin filaments, intermedi-
ate filaments, and microtubules each contribute differ-
ently to the viscoelastic properties of fibroblasts and en-
dothelial cells [21–23], though the specific roles remain
quite controversial [24]. Some anchorage-dependent
cells appear to exhibit nonlinear elastic behavior, also
called strain hardening [25], but it is unclear whether
this is an intrinsic material property or a consequence
of the underlying cytoskeletal architecture [26]. Het-
erogeneity of cell mechanical properties has been as-
sociated with the nucleus and other organelles [27,28].
In addition, the major cytoskeletal filaments that deter-
mine cell material properties are heterogeneously dis-
tributed, preferentially oriented, and dynamic – assem-
bling, disassembling, and reorganizing in response to
their mechanical environment [29–32]. Consequently,
reported measurements of the Young’s modulus of a
cell must be interpreted with caution. Unfortunately,
relatively little is known about the more detailed multi-
axial, nonlinear, viscoelastic mechanical properties of
most cells, and the identification of such represents one
of the major challenges in modern biomechanics.

1.2. Cell mechanics as a disease indicator

Nevertheless, the field of cell mechanics has evolved
tremendously in the past two decades, and several texts
have now been devoted to the topic [33–35]. Of partic-
ular interest here are the growing number of studies that
demonstrate a close association between cell mechani-
cal properties and various disease conditions. For ex-
ample, cultured myotubes from a dystrophin-deficient
rat model of Duchenne muscular dystrophy were only
one-fourth as stiff as normal cells [36], and recent ev-
idence suggests that some muscle types are protected
from dystrophin deficiency by up-regulating special-
ized accessory proteins that act to preserve cell stiff-
ness [37]. Chondrocytes isolated from osteoarthritic
human cartilage exhibit elevated viscoelastic moduli
compared to cells from normal tissue [28], which may
underlie the dissimilar responses of these cells to ex-
ternal mechanical stimulation [38]. Differences in me-
chanical properties between normal hepatocytes and
hepatocellular carcinoma cells were restricted to the
elastic moduli, while the viscous modulus was un-
altered [39]. On the other hand, pressure-overload
ventricular hypertrophy specifically increases viscous
damping (without affecting elastic stiffness) in passive

cardiac myocytes [12]. Therefore, methods of elasto-
graphic mapping must be developed that are sensitive
to changes in viscous as well as elastic properties of the
cell. Erythrocytes from patients with sickle cell disease
are stiffer and more viscous than are normal red blood
cells [13,40]. These mechanical properties are restored
to near-normal values in patients treated with hydrox-
yurea [13,41], which suggests that measurements of
cell mechanics also may be used to monitor the efficacy
of therapeutic interventions.

Because cell mechanical properties are determined
largely by the underlyingcytoskeleton, any disease pro-
cess that alters the composition, organization, kinetics,
or crosslinking of the cytoskeleton is likely to be de-
tectable using single-cell elastography. At this time,
data on the mechanical properties of different cell types
are critically needed to establish methodological crite-
ria and guidelines for comparing measured mechanical
properties with a normal population, as is being done
for clinical hemorheology [42,43]. Thus, the develop-
ment of tools for reliable and rapid characterization of
cell mechanical properties is essential.

1.3. Measurement techniques

Micropipette aspiration has been used widely to
study the mechanical properties of red and white blood
cells [20,44,45]. Most studies find that the cytoplasm
of these cells behaves like a fluid,with elastic properties
attributed to the cell membrane and cortical skeleton.
This technique applied to endothelial cells subjected to
shear stress revealed greater cytoplasmic stiffness com-
pared to non-sheared cells [46]. While variations of the
micropipette method continue to provide important in-
formation on cells floating in suspension [11,47], these
methods are less well suited to studying adherent cells
because the large deformation caused by aspiration may
disrupt connections between the cell membrane and the
underlying cytoskeleton. In addition, due to the large
area aspirated, this technique has limited potential for
examining regional variations in mechanical properties.

Indentation is an alternative approach for identifying
in-plane material properties of biological tissues [48,
49]. Indeed, a “cell poker” utilizing pulled glass micro-
fibers has been used to explore the mechanical prop-
erties of living cells [27,50,51]. In fibroblasts, stiff-
ness was lower over the nucleus than over the cyto-
plasm, increased with indentation depth, and decreased
after disrupting actin filaments with cytochalasin [27].
However, due to the large size of the probe (diameter
∼2µm) relative to the cell thickness (typically<5µm),
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some of these findings may have been influenced by the
rigid substrate to which the cells were attached [52].

A number of alternative specialized techniques such
as magnetic twisting cytometry [53], laser tracking mi-
crorheology [54], magnetic tweezers [55], and the opti-
cal stretcher [56], also have been developed to study the
mechanical properties of cells with a well-defined cy-
toskeleton. However, following its invention in 1986 as
a high-resolution imaging tool for investigating semi-
conductor properties at the atomic scale [57], the AFM
rapidly has become one of the most versatile and widely
used methods for studying mechanical properties of
living cells [58].

2. Fundamentals of atomic force microscopy

The AFM is well suited for cell mechanics appli-
cations due to its high sensitivity (sub-nanoNewton),
high spatial resolution (sub-micron), and the ability to
be used for real-time measurements in a physiologic
aqueous cell culture environment. An important ad-
vantage of AFM over other cell mechanics techniques
is the ability to combine high-resolution scanning with
nano-indentation, which allows direct correlation of lo-
cal mechanical properties with underlying cytoskele-
tal structures [23,59]. Unlike most other cell imaging
techniques, atomic force microscopy is based on a di-
rect mechanical interaction between the probe and the
sample. In this sense, the AFM is inherently an elas-
tography instrument. Another advantage is that com-
mercial availability of the AFM makes it accessible to
a broad range of investigators.

2.1. Principles of operation

In principle, the AFM is a relatively simple instru-
ment that involves laser tracking of the deflection of
a microscopic-sized cantilever probe as its tip scans,
indents, or otherwise interacts with the sample (Fig. 2).
The AFM probe is the transducer of the instrument and
typically consists of a rectangular or “V”-shaped can-
tilever about 100 to 300 microns long and about half
a micron thick, microfabricated of silicon or silicon-
nitride [60]. The physical and geometric properties of
the cantilever determine its spring constant,k, which
is used to convert the measured cantilever deflection,
h, into a contact force,F = k × h. The value ofk,
which typically ranges from 0.01 N/m to 1.0 N/m for
cell mechanics applications, is nominally provided by

the manufacturer and may be individually calibrated
using a variety of methods [61–63].

The standard AFM probe has an integrated pyramid-
shaped tip with a blunted point having a radius of cur-
vature in the 50–100 nanometer range (Fig. 2b). It is
this tip that actually comes in contact with the cell,
while the cantilever serves as a soft spring to measure
the contact force. The tip dimension determines the
spatial resolution of the instrument. Therefore, sharp-
ened pyramids, etched silicon cones, carbon nanotubes,
and other high-aspect ratio tips have been developed to
scan samples with ultra high resolution [60,64]. How-
ever, such tips have been shown to penetrate the cell
membrane and cause damage to living cells, whereas
the standard pyramid tip apparently does not penetrate
the cell membrane [65]. Cell viability has been demon-
strated up to 48 hours after AFM scanning [66,67], al-
though significant alterations of cell morphology and
transfer of membrane to the probe tip can occur under
some conditions [67–69]. Modified AFM probes with
glass or polystyrene microsphere tips also have been
used for some cellular applications to yield a more eas-
ily characterized tip geometry, though at the expense
of decreased spatial resolution [70,71].

The AFM sensor uses a laser beam reflected off the
end of the cantilever probe and onto a four-quadrant
photodetector to monitor vertical and lateral deflections
of the probe due to contact forces at the tip. AFM
probes often are coated with a thin layer of gold to
increase reflectivity, especially for cell mechanics ap-
plications in which the laser intensity may be attenu-
ated by the phenol red present in standard cell culture
medium. The distance between the probe and the pho-
todetector amplifies the laser reflection such that move-
ments of the AFM tip on the order of 0.1 nm can be
detected reliably [63].

The actuator that moves the AFM probe in the z-
direction toward or away from the sample is a piezo-
electric ceramic that deforms in response to applied
voltages. The typical z-range is about 6 microns,
though custom configurations have achieved a z-range
up to about 20 microns [70]. Although piezoelec-
tric materials inherently are nonlinear and hysteretic,
these effects can be overcome by software compensa-
tion (open-loop design) or direct strain-gauge moni-
toring (closed-loop design) to yield very precise posi-
tioning of the AFM tip with sub-nanometer accuracy
in the z-direction. Similarly, piezoelectric positioners
are used to control movement in the x–y plane as well,
with a maximum scan range typically around 100×
100 microns.
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Fig. 2. (A) Schematic of the atomic force microscope (AFM). Deflection of the AFM cantilever probe is sensed from the reflection of a laser
onto a four-quadrant photodetector, and the position of the probe is controlled by a piezoelectric ceramic actuator. (B) SEM images of V-shaped
silicon-nitride AFM probes with integrated pyramidal tips (microlevers, Veeco Metrology). One probe has a 15µm diameter polystyrene sphere
attached for comparison. Inset shows detail of a pyramidal tip with some visible debris accumulated during prior scanning of cultured cells.
Scale bars are 50µm and 1µm, respectively.

In the standard AFM configuration, the sample is po-
sitioned relative to a stationary probe. However, for cell
biology applications, it is more convenient to place the
entire AFM on the stage of an inverted light microscope
to allow simultaneous visualization, including fluores-
cence microscopy, of the cells [70]. In this configura-
tion, the AFM probe is moved relative to a stationary
sample. In addition, whereas the typical setup conceals
the petri dish underneath the AFM head, at least one
model (the Bioscope from Digital Instruments, Santa
Barbara, CA) supports the AFM head from behind.
This leaves the sample easily accessible for direct vi-
sual inspection and also facilitates the use of other de-
vices such as fluid exchange systems, micromanipu-
lators, and the like that enhance its versatility for cell
biology applications.

2.2. The AFM experiment

There are two primary forms of AFM imaging in
which the probe is raster scanned over the sample. Tap-

ping mode imaging involves oscillating the probe near
its resonance frequency and using feedback to maintain
the amplitude of the oscillation as the probe encoun-
ters different features of the sample. Contact-mode
imaging involves simply raster scanning the tip over the
sample using feedback to maintain a constant deflec-
tion (force) of the cantilever (Fig. 3). In both cases, a
topographical image of the sample is constructed from
the z-position of the probe at each x–y pixel location.
Tapping mode has the advantage of intermittent con-
tact with the sample, virtually eliminating any frictional
forces and thus minimizing distortion or damage to
the cell [72]. Tapping-mode based elastography tech-
niques such as phase imaging [73,74] and force modu-
lation [75–77] yield images with contrast related to lo-
cal sample stiffness but have not been capable of yield-
ing quantitative estimates of the elastic modulus due to
complications with the analysis. Contact mode also has
been shown to yield high-resolution images with cell
viability sustained for several hours [66]. In addition,
contact mode is easier to use than tapping mode and
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A

B

Fig. 3. (A) Inverted microscope image (200×) of human aortic
endothelial cell showing AFM probe and laser reflection, with zig-zag
line indicating approximate region raster-scanned by probe. (B)
Contact mode AFM image of 35× 35 µm region of cell periphery
indicated in (A).

more conducive to switching back and forth between
imaging and “force mode,” in which nano-indentation
is used to obtain quantitative stiffness measurements.

For the AFM indentation experiment, the probe is
located at a desired position over the sample and is put
through an extension-retraction cycle covering a typical
z-range of 1 to 3 microns at a typical frequency of 1
to 10 Hz (Fig. 4). As the AFM probe approaches and
contacts the sample at positionZo, further extension
of the probe (Z − Zo) is converted into a combination
of probe deflection,h, and sample indentation,D =
(Z−Zo)−h. The indentation response depends on the
spring constant of the probe, the geometry of the tip,
and the mechanical properties of the sample. One also
can vary the rate of indentation to study viscoelastic
properties. Thus, by monitoring the z-position and
deflection of the probe (the so-called “force curve”),
one can obtain an indentation curve of indentation force
versus depth that can be analyzed to extract the elastic
material properties of the sample, as discussed below.

Force mapping is a hybrid combination of imaging
and force probing that involves making a series of in-
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Fig. 4. The AFM cell indentation experiment. (A) Measurements
of cantilever deflection versus Z-position during advancement and
retraction of the probe yield the so-called “force curve” that includes
information about the viscoelastic properties of the cell. Once the
contact point is identified, the raw force curve is converted to a plot
of indentation force versus depth (B), which is analyzed to determine
cell mechanical properties (see text for details).

dentations in an array covering a region of interest on
the sample and reconstructing an isoforce image from
the z-position at which the probe reaches a preset con-
stant deflection (i.e., contact force) [78]. In such im-
ages, larger z-values are interpreted as softer regions
of the sample because a greater motion of the probe
would have been required to achieve the preset force.
However, in samples such as living cells, such images
are complicated by the highly variable topography of
the cell, which also influences the z-position at which
a given contact force is achieved. Therefore, it is more
accurate to analyze the indentation data and create an
image that directly represents the elastic properties ob-
tained at each pixel location. This is the method of
AFM elastography.

Of course, the second half of the indentation cycle
(i.e., the retraction curve) also contains useful informa-
tion. Differences between the indentation and retrac-
tion curves reflect viscoelastic hysteresis of the sam-
ple. Upon retraction of the probe, the AFM tip may
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adhere to the sample and cause negative deflections
of the probe. Such retraction events are the focus of
experiments on protein unfolding [79], receptor-ligand
binding [80], and cell-cell adhesion [81].

With such a range of capabilities, the AFM has
proven to be a very versatile tool for applications in
cell biology (an extensive review of the state-of-the-
art can be found in reference [82]), and many of the
properties that can be measured with AFM may depend
on whether the cell is normal or abnormal. Herein,
attention is focused on use of the AFM for mapping
cell mechanical properties as an indicator of disease.
Although the AFM has yet to achieve its full potential
as a tool for measuring the micromechanical proper-
ties of cells, there is still much information to be gar-
nered from the standard cell indentation test. As the
field of cell elastography advances, other experimental
protocols and methods of analysis may be developed,
but the classic AFM indentation experiment is likely to
remain an important component of any battery of cell
mechanical tests.

2.3. Analysis and visualization of AFM indentation
data

Since the earliest AFM studies of soft biological sam-
ples [83,84], the prevalent method of analyzing AFM
indentation data has been application of the so-called
“Hertz model” of contact between two elastic bodies.
Actually, it was Love who first obtained the widely used
solution for indentation with a cone [85]. However,
Hertz originally had solved the contact problem for the
sphere and other smooth ellipsoidal geometries [86], so
herein we refer to this general class of indentation prob-
lems as the “Hertz theory.” In particular, the equations
relating force and depth for indentation with a cone and
a sphere, respectively, are given by:

F =
2
π

E

(1 − v2)
tan(α)D2 and

F =
4
3

E

(1 − v2)

√
RD3

whereα is the semi-included angle of the cone tip,R
is the sphere radius, andν is the Poisson’s ratio that de-
termines the amount of lateral expansion that accompa-
nies axial compression (note thatν = 0.5 for water and
other incompressible materials, and this value often is
assumed for cells). It is important to appreciate that
these solutions are based upon a number of simplifying
assumptions, including homogeneous, isotropic, lin-
ear elastic material properties; axisymmetry; infinitesi-

mal deformations; infinite sample thickness and dimen-
sions; and a smooth sample surface. Therefore, cau-
tion must be exercised when such theoretical solutions
are applied to the more complex AFM-cell indentation
problem.

Analysis based on the Hertz theory has been tested on
thin films of gelatin, polyacrylamide, and similar sub-
stances [71,74,84], and a strong correlation (even nu-
merical equality) between the microscopic and macro-
scopic elastic properties has been demonstrated in some
cases [87,88]. However, because these test materials
actually satisfy several key assumptions of the theory
(e.g., thick films with homogeneous, isotropic, linear
elastic material properties), this agreement does not en-
sure that the analysis also will be accurate or appro-
priate for more complex materials such as cells. In
particular, whereas the classical analysis assumes that
the sample is well characterized by a single Young’s
modulus, like a piece of rubber or steel, several re-
cent studies suggest that nonlinear material properties
may be important at the cellular level [25,71,89,90].
In addition, the classical analysis assumes infinitesimal
sample deformation, whereas for soft samples such as
cells indented with the standard pyramidal tip, local
deformations near the probe always fall into the finite
strain regime [91,92], even for small indentations rel-
ative to the sample thickness. Interestingly, our recent
finite element model studies of AFM indentation sug-
gest that, if the sample is indeed a linear elastic mate-
rial, then the Hertz theory may yield accurate estimates
of the material properties even when applied to finite
indentations [91]. However, the linear elastic condi-
tion must be demonstrated experimentally and not as-
sumed a priori. Fidelity of the calculated elastic prop-
erties also requires accurate identification of the contact
point [88], accurate calibration of the probe spring con-
stant [93], and accurate representation of the detailed
tip geometry [90,91], each of which can be challenging
in practice.

To address some of the practical and theoretical lim-
itations of the Hertz theory, alternative approaches for
analyzing AFM indentation data have been developed.
For example, rather than fitting the entire post-contact
data set, Radmacher and coworkers applied the Hertz
equation using two post-contact data points to solve
for the two unknowns: Young’s modulus and contact
point [94]. When applied to cells, this method showed
that the Young’s modulus often depends on the depth
range from which the two data points are selected,
with the value ofE increasing as the points are cho-
sen from deeper indentations [94]. However, data from
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deeper regions often yielded an inaccurate estimate of
the contact point; thus, the resulting modulus values
also were questionable. Hoh’s technique of force in-
tegration to equal limits, or FIEL mapping, overcomes
some practical difficulties with the standard analysis of
AFM data such as contact point uncertainty, to yield
regional maps of relative cell stiffness from the area
under the force curve [59]. However, this analysis ulti-
mately is founded on the same assumptions as the Hertz
model and therefore is subject to the same theoreti-
cal limitations. McElfresh and coworkers developed
an analysis that explicitly accounts for surface interac-
tions with the cell membrane for AFM indentation of
sperm cells, but the approach makes other assumptions,
such as single-point contact, that limit applicability to
more general cell types [89]. One of the more sophis-
ticated approaches to date is by Mahaffy et al. [71],
in which small perturbations upon a large indentation
were used to extract frequency-dependent elastic and
viscous moduli of polyacrylamide films. When applied
to fibroblasts, the method revealed an elastic modulus
that increased substantially with indentation depth,pos-
sibly indicative of nonlinear elastic cell material prop-
erties. However, the potential influence of the underly-
ing rigid substrate was not taken into account specifi-
cally. Recently, Demitriadis and coworkers developed
an empirical correction for the effects of finite sample
thickness on the AFM indentation response [88]. This
correction yielded consistent Young’s moduli for thin
(<5µm) and thick poly (vinyl alcohol) films, although
validation of the method on more complex samples and
living cells awaits further study.

We recently published a new analysis method
whereby computation of an apparent elastic modulus as
a function of indentation depth can reveal nonlinearity
and heterogeneity of material properties from standard
AFM indentation tests [91]. The concept is similar to
that of Radmacher et al., mentioned above [94], but
in our implementation the contact point is determined
independently of the modulus and remains constant for
all indentation depths, yielding elastic properties that
more properly reflect the material properties of the sam-
ple. The form of the governing equation is derived
from the Hertz theory:

F = 2πẼφ(D),

whereẼ is a generalized elastic modulus (equivalent
to E/2(1 − ν2) for linear elastic materials, but also
may be defined in terms of nonlinear elastic material
constants [91]), andφ(D) is a function of the indenter
geometry that determines the depth dependence of the

indentation response. SinceF andD are measured in
the AFM experiment (Fig. 4b), andφ(D) is determined
by the tip geometry, the above equation may be solved
at each force-depth datum to obtain a “point-wise” ap-
parent modulus [91].

Extensive finite element model validation illustrated
how depth dependence of the point-wise modulus is
sensitive to a number of factors likely to be important
for cell indentation, including nonlinear mechanical
properties and through-thickness material heterogene-
ity. The point-wise analysis has been used to distin-
guish different cell types [90] and also is readily applied
to force curves with abrupt features as may occur when
probing organelles [95]. Unfortunately, some charac-
teristics of the shape of the curve are not unique – for
example, some forms of material heterogeneity look
similar to material nonlinearity. Therefore, a more so-
phisticated battery of tests is required to make such dis-
tinctions. Nevertheless, AFM indentation tests clearly
have potential to yield more information about cell me-
chanical properties than a single modulus value, and to
ignore this information is to discard potentially critical
data on the detailed mechanical properties of the cell.

3. Probing cell mechanics with AFM

Due to the unique capabilities of AFM as an imag-
ing tool for scanning the surface of living cells, nu-
merous studies have been conducted comparing such
images with alternative modalities. For example, while
scanning electron microscopy (SEM) still can resolve
greater detail on prepared cell samples [69], some AFM
studies have found features of the surface of living cells
not observed by SEM [66]. Importantly, AFM also can
be used to monitor dynamic cellular processes, includ-
ing migration and division [96], cytoskeletal reorgani-
zation [97], exocytosis [98], and even the response of
cancer cells to antitumor drug treatment [99]. Confocal
microscopy combined with immunolabeling and fluo-
rescent probes such as green fluorescent protein (GFP)
allows imaging the dynamics of living cells with molec-
ular specificity but cannot achieve the spatial resolu-
tion of AFM. Therefore, combining imaging modali-
ties with the AFM mounted directly on the stage of
an inverted light microscope aids identification of cel-
lular structures observed with AFM [22,23,100]. For
example, Fig. 5 shows a human aortic endothelial cell
imaged with AFM in contact mode and also with a flu-
orescent microscope after the cell had been fixed and
stained with rhodamine-phalloidin, indicating a strong
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A
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Fig. 5. Human aortic endothelial cell. (A) Topographic image con-
structed from a mosaic of seven individual 60× 60µm contact mode
AFM scans. (B) Fluorescent image of same cell fixed and stained
with rhodamine phalloidin to visualize cytoskeletal f-actin.

correlation between the ridge structures observed with
AFM and actin stress fibers in the cell.

As emphasized above, in addition to imaging the sur-
face topography, AFM is capable of mapping the elas-
tic properties of living cells, which has yielded inter-
esting insights into a number of physiologic cell pro-
cesses. For example, monitoring the edge dynamics of
migrating fibroblasts revealed a thin margin with uni-
form elastic properties more consistent with an actin- or
myosin-based mechanism of extension rather than lo-
calized blebbing [94]. Endothelial cells have been ob-
served to get less stiff in the presence of attached mono-
cytes, which indicates a possible mechanism to facili-
tate monocyte migration,a key process in the inflamma-
tory response in the later stages of atherogenesis [101].
Regional measurements of the mechanical properties

of endothelial cells exposed to shear flow show that the
upstream edge is earliest to respond with increased stiff-
ening that later extends to the entire cell [102], which
suggests localized control of cytoskeletal organization.
AFM also has been used to monitor temporal changes
in mechanical properties during cell division [103] and
revealed an increase in stiffness in the equatorial region
that precedes any detectable cleavage furrow by more
than two minutes [104].

The AFM has been used to measure characteristic
differences in both the elastic and viscous properties of
various cell types [69,90,105]. Differences in stiffness
also have been observed between the nucleus and cy-
toplasm of the same cell [59,66,74,102,106,107], and
in some cases regions of altered stiffness have been
identified by AFM that do not seem to have an obvious
anatomical correlate [59]. Substrate-dependent differ-
ences in cell elastic properties have been reported as
well [108].

To elucidate how cell mechanical properties are re-
lated to the structure and function of the underlying
cytoskeleton, a number of studies have examined the
effects of chemical treatments or genetic mutations that
target specific cytoskeletal constituents. In general, the
actin cytoskeleton has a dominant effect on cell stiff-
ness measured with AFM [22,23,97,109,110]. Corre-
lation of regional cell mechanics with underlying cy-
toskeletal components by combining AFM and fluo-
rescent microscopy with immunolabeling showed that
actin and intermediate filaments make a major con-
tribution to elastic properties, whereas microtubules
make a negligible contribution to cell elastic proper-
ties [22,23]. In another study, actin depolymerization
by cytochalasin-D decreased elastic and viscous prop-
erties of L929 fibroblasts, whereas microtubule depoly-
merization by nocodazole or colcemid increased elas-
tic stiffness without altering viscous properties [110].
The membrane-associated cytoskeletal binding protein
vinculin also was found to play an important functional
role in stabilizing focal adhesions such that vinculin-
deficient mouse embryonic F9 carcinoma cells showed
a markedly decreased stiffness compared to wild-type
cells [111]. Clearly, cell mechanics is an important
indicator of cytoskeletal structure and function [112].

In particular, actin stress fibers are prominent linear
structures comprised of actin and myosin [113] that
provide a contractile apparatus in many cultured non-
muscle cell types,as well as in vascular endothelial cells
in some physiologic conditions [32,114]. AFM force
mapping studies show that these structures are very stiff
compared to any other cellular component [23]. We
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have found that, in cultured human aortic endothelial
cells, stress fibers were not only stiffer than the sur-
rounding cytoplasm, but the point-wise modulus on the
stress fiber increased with indentation depth to maxi-
mum values that were large (12–24kPa) comparedwith
the more uniform values on the surrounding cytoplasm
(1–5 kPa) (Fig. 6). When the same region of the cell
was examined after 45 minutes’ treatment with 4µM
cytochalasin-B, no stress fibers were visible in the AFM
image (not shown) and the cell behaved uniformly like
a soft, homogeneous material with a constant stiffness
(0.5–1.5 kPa). Previous studies have indicated that the
cytoskeleton may exhibit strain hardening, with stiff-
ness increasing as deformation increases [25]. Even
with linear elastic cytoskeletal elements, such nonlin-
earity may arise from purely structural considerations,
depending on how the elements are interconnected [26].
Our data suggest the cytoskeletal elements themselves
may be inherently nonlinear elastic, which is an impor-
tant distinction for accurately characterizing cellular
stresses and for properly identifying the biomechanical
fingerprint of the cell.

Although the vast majority of AFM elastography
studies to date have focused on characterizing normal
cells and cell behavior, a few key AFM studies have be-
gun to examine how cell mechanical properties may be
altered by disease processes. In particular, a compar-
ison of normal and SV40-transformed human dermal
fibroblasts found comparable membrane cortical ten-
sion, but the apparent viscosity was 30% lower for the
transformed cells, which suggests that such measure-
ments may offer new markers of oncogenic transforma-
tion [115]. More recently, Lekka and coworkers have
shown that cancerous human bladder epithelial cells
have a Young’s modulus about one-tenth that of cor-
responding normal cells [10]. Remarkably, the abnor-
mal modulus values returned toward normal when the
cancerous cells were treated with microcrystalline chi-
tosan [116], a drug shown to inhibit glycolytic activity
in tumor cells. Such studies may provide critical data
for evaluating and understanding candidate therapeu-
tic strategies using single cell analysis, possibly even
on a patient-specific basis following biopsy. Taken to-
gether with the growing data relating cell mechanical
properties to cytoskeletal structure and substrate adhe-
sion, these studies underscore the tremendous potential
for AFM elastography of living cells to provide novel
biomechanical markers that will enhance the detection,
diagnosis, and treatment of disease.

4. Current limitations and future directions for
AFM elastography

For all of its advantages, the AFM still has a number
of limitations that must be overcome to realize the full
potential of this unique tool. For instance, accuracy
of the cantilever spring constant traditionally has been
one limitation of using the AFM for quantitative mea-
surements of mechanical properties. In particular, vari-
ations in the thickness [117] and stoichiometry [118] of
commercially available AFM cantilevers can result in
spring-constant variability of nearly an order of mag-
nitude between batch-produced wafers [61]. This ne-
cessitates individual calibration for applications (such
as elastography) in which accuracy of the contact force
is critical. Fortunately, several methods now exist for
nondestructively calibrating AFM cantilevers [61–63],
and it has been shown that, for a given wafer, spring-
constant variability of individual cantilevers is within
about 10% of the average value for that wafer [93].

Identification of the exact point of contact between
the AFM tip and the sample is another source of error
in estimating mechanical properties from indentation
tests. On stiff samples, the contact point is detected
readily as a discontinuity in the slope (first derivative)
or a spike in the curvature (second derivative) of the
raw force curve [58]. However, this often is ineffec-
tive when applied to indentations on soft samples be-
cause the transition from pre-contact to post-contact is
smooth and obscured by noise in the data. When in-
denting cells with a pyramidal tip, the problem is exac-
erbated by the fact that initial contact forces are minimal
as the smallest part of the probe tip first contacts the soft
cell membrane. Rather than relying on visual inspec-
tion of the force curve [88], the contact point may be
estimated by including it as an unknown variable when
analyzing post-contact data [94], though this is prone
to errors with deeper indentations as mentioned above.
Alterations in the thermal noise spectrum of the can-
tilever as it approaches the surface also may reveal con-
tact if the long-range interaction forces are well charac-
terized [119]. Alternative probe-tip geometries or in-
strumented probes that utilize MEMS technology [120]
may allow improved identification of initial cell con-
tact. Another approach is to develop methods of anal-
ysis that are insensitive to the precise point of contact,
such as FIEL mapping [59]. Ultimately, some indepen-
dent method for verifying the contact point needs to be
developed.

Most analysis methods focus on estimating cellu-
lar elastic properties and neglect viscoelastic behav-
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Fig. 6. (A) Contact mode AFM image (15× 15µm) of stable edge of human aortic endothelial cell on a tissue culture dish at room temperature.
(B) Magnified 3.5× 3.5µm square region of panel A where an 8× 8 array of 64 indentations was performed to measure local cell mechanical
properties. Curves indicate pointwise modulus (0–30 kPa) versus indentation depth (0–400 nm) at selected locations on and off a prominent stress
fiber. (C) Corresponding 8× 8 pixel grayscale map of pointwise modulus at an indentation depth of 200 nm. Black squares indicate locations
highlighted in panel B.

ior. This may be significant particularly since, in some
cases, diseased cells may have the same elastic prop-
erties as do normal cells but may have altered vis-
cous properties [11,115,121]. In addition to the in-
dentation experiments that have become standard with
AFM, it is necessary to develop more sophisticated
tests (e.g., creep and relaxation [59,110], frequency-
dependent microrheology [71]),possibly combining in-
dentation with other modes of cell deformation (e.g.,
in-plane stretch [91]), to more completely characterize

cell mechanical properties. AFM has the flexibility to
perform such tests but has yet to be fully developed for
this purpose.

It also is necessary to validate whether micro-scale
mechanical properties can be interpreted in the same
context as are macro-scale mechanical properties; i.e.,
to test whether the continuum assumption is valid in
the AFM indentation experiment. In particular, Sta-
menovic and Coughlin recently pointed out that alter-
native methods for measuring cell mechanical proper-



150 K.D. Costa / Single-cell elastography: Probing for disease with the atomic force microscope

ties (cell poking, micropipette aspiration, and magne-
tometry) consistently yield Young’s moduli of differ-
ent orders of magnitude [122]. There is an apparent
correlation with the length scale over which the cell
is interrogated that is consistent with a discrete struc-
tural model of the cytoskeleton [122]. On the other
hand, these alternative measurement techniques actu-
ally may measure different aspects of cell mechanical
properties. In fact, a recent study on elastomeric poly-
mer gels showed that, when properly corrected for tip
geometry, the Young’s modulus determined by AFM
using spherical-tipped cantilevers closely matched the
results of macroscopic indentation tests [88]. For stan-
dard pyramid tips, the microscopic modulus was larger
than the macroscopic modulus [88]; but the authors
analyzed this data assuming an ideal cone geometry
rather than a more accurate blunt cone [91], an error
that is known to overestimate Young’s modulus values
obtained from indentation tests [90,123]. While these
studies suggest that some porous polymeric materials
behave like a continuum when probed with AFM, sim-
ilar validation studies must be performed on increas-
ingly complex materials before we can understand fully
such measurements of living cells.

Another limitation of AFM elastography (and of cell
mechanics measurements in general) is that typical ex-
periments are highly time- and user-intensive, so that
a limited number of cells can be analyzed in one day.
Until the AFM can be used to rapidly evaluate large
populations of cells, it will not realize its full poten-
tial for basic science and clinical applications, such as
screening for disease or evaluating therapeutic treat-
ments. Therefore, an essential modification to expand
the use of this technology is to increase throughput.
Arrays of multiple probes have been used for rapidly
imaging large areas of silicon wafers for the semicon-
ductor industry [124–126], though such technology has
not been tested yet in cell biology applications. One
major challenge is to position automatically such irreg-
ular biological samples under the probe tip for consis-
tent and rapid sequential testing.

As AFM elastography evolves, the mechanical tests
become increasingly sophisticated, and data sets be-
come increasingly large and complex, computational
methods and imaging techniques will play a critical
role in the analysis and visualization of cell mechan-
ics data. Already, we have identified many limitations
when applying the standard Hertz theory, and prelim-
inary finite element models have motivated novel ex-
periments and yielded alternative methods of analysis
that promise to increase the information that can be

obtained from AFM indentation tests [91]. Finite el-
ement models also can accommodate challenging as-
pects of the AFM indentation problem such as non-
axisymmetry of the tip geometry, inclination angle of
the cantilever relative to the cell surface, the irregular
topography of the cell, and the more complex cell me-
chanical properties, including nonlinearity, viscoelas-
ticity, anisotropy, heterogeneity, and even multi-phasic
material composition. Such computational methods
also will be critical in evaluating alternative theoretical
models of the cell, including discrete structurally based
models of the cytoskeleton [127]. Recently, the sophis-
tication of such models has increased [92,128], but the
AFM indentation problem has yet to be fully charac-
terized. Such detailed computational models also can
be used for simulation purposes to better understand
how forces at the cantilever tip are manifest as the raw
force curve data, as instructional tools to expose a wider
population to the AFM, and, ultimately, perhaps as in-
verse models for extracting cell mechanical properties
from individual cell mechanics experiments. Comput-
ers also will play an important role in the visualization
of increasingly complex elastography data using novel
image-processing methods [129].

5. Summary and perspective

In the past decade, the AFM rapidly has become one
of the most widely used and versatile tools for studying
and physically interacting with living cells. In particu-
lar, AFM elastography, which capitalizes on the unique
capability of combining mechanical measurements and
topological imaging, holds great promise in the field of
cell biology. A growing body of data relating cell me-
chanical properties to cytoskeletal structure and sub-
strate adhesion suggests that single-cell elastography
may provide sensitive indicators of the presence of dis-
ease. However, it will serve us well to heed the words
of Werner Heisenberg who cautioned, “. . . We have to
remember that what we observe is not nature in itself
but nature exposed to our method of questioning” [130].
A number of technical and practical hurdles remain in
the way of obtaining accurate and meaningful cell me-
chanics measurements with sufficient throughput that
they will be practical for reliably examining large pop-
ulations of cells. Nevertheless, as one powerful method
of questioning, the future holds tremendous potential
for AFM elastography of living cells to provide novel
biomechanical markers that will enhance the detection,
diagnosis, and treatment of disease.
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