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Abstract: Echinoderms are one of the most ancient groups of invertebrates. The study of their
genomes has made it possible to conclude that these animals have a wide variety of matrix metallo-
proteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The phylogenetic analysis
shows that the MMPs and TIMPs underwent repeated duplication and active divergence after the
separation of Ambulacraria (Echinodermata+Hemichordata) from the Chordata. In this regard the ho-
mology of the proteinases and their inhibitors between these groups of animals cannot be established.
However, the MMPs of echinoderms and vertebrates have a similar domain structure. Echinoderm
proteinases can be structurally divided into three groups—archetypal MMPs, matrilysins, and furin-
activatable MMPs. Gelatinases homologous to those of vertebrates were not found in genomes
of studied species and are probably absent in echinoderms. The MMPs of echinoderms possess
lytic activity toward collagen type I and gelatin and play an important role in the mechanisms of
development, asexual reproduction and regeneration. Echinoderms have a large number of genes
encoding TIMPs and TIMP-like proteins. TIMPs of these animals, with a few exceptions, have a
structure typical for this class of proteins. They contain an NTR domain and 10–12 conservatively
located cysteine residues. Repeated duplication and divergence of TIMP genes of echinoderms was
probably associated with an increase in the functional importance of the proteins encoded by them in
the physiology of the animals.

Keywords: echinoderms; matrix metalloproteinase; tissue inhibitors of metalloproteinases; tensilin;
development; regeneration; evolution

1. Introduction
1.1. Echinoderms

Echinoderms are one of the most ancient groups of invertebrates. They most likely
appeared in the Cambrian period, since several classes of these animals already existed
in the early Ordovician, in particular rhombiferous and crinoids [1,2]. Phylogenetically,
echinoderms are deuterostomes and, together with hemichordates, form the Ambulacraria
group, which is the sister group to the chordates [3] (Figure 1).

Echinoderms are exclusively marine animals found in all regions of the world oceans in
a wide range of depths, from shallow, intertidal zones to 5000 m or more. Most echinoderms
are benthic organisms, though there are some swimming species [4,5], and some may be
fully pelagic [6]. Modern species of echinoderms are grouped into five classes: Crinoidea
(sea lilies and feather stars), Asteroidea (sea stars), Ophiuroidea (brittle stars or ophiuroids),
Echinoidea (sea urchins), and Holothuroidea (holothurians or sea cucumbers). Despite the
variety of structures, they all share radial symmetry and a pentameric body organization [7].
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Figure 1. Phylogenetic tree showing the relationship of echinoderms to other animal groups.

A significant part of the echinoderm’s body wall is made up of a calcified connective
tissue forming a unique structure, the stereom. As a result, the majority of echinoderms,
with the exception of the holothurians, have a solid cover which protects their internal
organs from external threats. Nevertheless, these animals can autotomize various parts
of the body and reproduce asexually by transverse fission [8–12]. The ability to separate
body parts is carried out by changing of the mechanical properties of the connective tissue
referred to as mutable collagenous tissue (MCT) [13] or catch connective tissue [14]. An
extracellular matrix (ECM) with MCT properties can form various anatomical structures,
in particular, ligaments and connective body wall tissue [8,15].

Another widely known peculiarity of echinoderms is their regenerative abilities [16–19].
They can restore small body appendages, such as tentacles, tube feet, cirri and spines, and
also heal cutaneous wounds. Echinoderms can regenerate all their internal organs [16,17,20].
In addition, these animals can not only regenerate large body parts, such as arms, but they
can also entirely regenerate themselves from a small fragment after being cut into two or
three parts [20–28].

In echinoderms, the connective tissue and its transformation play an important role
not only in autotomy and fission, but also during regeneration. In the latter case, the
significance of ECM remodeling is determined by the fact that many organs of these
animals are epithelial formations containing a large amount of connective tissue. This is
especially characteristic of the holothurians. The connective-tissue base (connective-tissue
thickening) is formed first in the regeneration of the internal organs, and then certain cells
or epithelia migrate into it [19,29–33].

1.2. Components of Connective Tissue of Echinoderms

Echinoderms have genes encoding a variety of ECM components—collagens, pro-
teoglycans, and glycoproteins [34–39]. These proteins are common in most multicellular
animals [40]. At the same time, there are differences in the connective tissue between echin-
oderms and vertebrates. In particular, one of the main components of vertebrate ECM is
elastin, the fibers of which are formed due to the polymerization of tropoelastin [41]. No ho-
mologs of tropoelastin were found in the genomes of crinoid Anneissia japonica (Müller, 1841)
and sea urchin Strongylocentrotus purpuratus (Stimpson, 1857). There are no its transcripts
in the holothurian transcriptomes [35,42,43].

Another difference in ECM echinoderms is the lack of tenascins and fibronectins [44].
These proteins play an important role in the structural integrity of connective tissues in
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vertebrates [45,46]. Some holothurians have been found to blast transcripts as tenascin-like
proteins [35,47]. These contigs encode the domains characteristic of tenascins—FBG and
TILa. Nevertheless, according to the opinion of Hynes [48], all these domains are ancient
in origin and are found in many animals; however, in a combination characteristic of
tenascins, they appear only in chordates. Thus, the absence of such proteins as tropoelastin,
fibronectins, and tenascins indicates significant differences in the organization of connective
tissue in echinoderms and chordates.

The basis of the extracellular matrix of any animal is collagens. Echinoderms have
representatives in almost all major groups of these proteins—fibril-forming collagens, fibril-
associated collagens with interrupted triple helices (FACIT), network-forming collagens,
and multiplexins [34,35,49]. Moreover, proteoglycans and glycoproteins are important
components of connective tissue. They perform many functions, mediating adhesion,
proliferation, differentiation and migration of different types of cells [50–52]. Echinoderms
have orthologs of genes encoding various proteoglycans: aggrecan, syndecan, glypican,
bamacan (structural maintenance of chromosomes 3), perlecan (basement membrane-specific heparan
sulfate proteoglycan core protein-like), betaglycan and Secreted modular calcium-binding protein
1 [34,35]. In addition, they have genes for various glycoproteins—laminins, nidogens,
fibrillins, fibulins, agrin, dystroglycan, and thrombospondins [34,35,53]. Proteins encoded by
these genes, together with collagens and perlecan, are included in the basic set of “the
basement membrane ECM toolkit”, common to all Bilateria [34]. The connective tissue
also contains oligo- and polysaccharides such as N-glycans, glycogen, hyaluronic acid and
heparan sulfate [54–58].

1.3. Proteins Modifying Connective Tissue

As already indicated, ECM remodeling plays a large role in various physiological
processes in echinoderms. In this regard, these animals must have a set of various enzymes
that modify connective tissue. First of all, it should be noted the proteins that synthesize
the main component of the ECM, collagen. The formation of collagen fibrils occurs due
to the activity of a special enzyme—lysyl oxidase (LOX) [49]. Echinoderms also have lox
orthologs [35]. In addition, they have genes that code for enzymes that synthesize and
degrade polysaccharides—hyaluronidase, chondroitin sulfate synthase and heparanase [35].

A wide variety of proteinases capable of degrading ECM proteins have now been
found in echinoderms. They are serine, cysteine, aspartyl, and metal peptidases and their
inhibitors [35,59–67]. For example, the genome of the sea urchin S. purpuratus contains
approximately 240 metalloprotease genes [62]. They represent all 23 families expressed
in vertebrates. Among them are the genes encoding BMP-1/tolloid (astacins), matrix
metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and tissue
inhibitors of metalloproteinase (TIMPs). The transcriptome of the holothurian Cladolabes
schmeltzii (Ludwig, 1875) contains the products of at least nine genes of serine proteases
proprotein convertase subtilisin/kexin type 9 (PCSK9) belonging to the subtilases family [35].
In addition, this animal has furin and plasminogen.

Of the cysteine proteases in echinoderms, the genes cathepsin B and cathepsin L are
found [35,61]. Cathepsins B and L are lysosomal proteinases and are located in cells.
However, they can be secreted in the ECM and digest connective tissue proteins [68,69]. In
holothurian Apostichopus japonicus (Selenka, 1867) cathepsin L-like protein is found in the
epidermis and the cells located in the outer layer of the dermis [61]. It is assumed that it
can participate in the processes of autolysis of the connective tissue of the body wall.

One of the main ways to change the properties of ECM is the degradation of its
proteins by MMPs [70]. Moreover, the MMPs are involved in many other biologic pro-
cesses, such as, development, regeneration, cell proliferation, apoptosis, cell differentiation
and migration [70–74]. The activity of MMPs is modulated by their natural inhibitors,
TIMPs [74–77]. Echinoderms also have MMPs and TIMPs [19,35,62,78]. At least 26 genes
encoding MMPs were found in the genome at the sea urchin S. purpuratus [62]. Unlike
mammals with only four TIMPs, some species of echinoderms can have up to 45 TIMP
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genes [78]. In the holothurians, it was shown that various MMPs and TIMPs were ex-
pressed in asexual reproduction and regeneration [19,35,64,79]. MMP blocking leads to a
slowdown or full stop of morphogenesis [63,65,80,81].

Based on the interaction of MMPs and TIMPs, a mechanism has been proposed to
explain the changes in the properties of the MCT [82]. Achieving greater stiffness or, on
the contrary, more plasticity in the connective tissue occurred as a result of the interaction
of three protein groups: MMPs, TIMPs, and cross-link complexes connecting collagen
fibrils to one another. As the activity of TIMPs increase, MMPs are blocked. As a result,
cross-links are formed between collagen fibrils while the MCT strengthens. Conversely, an
increase in the MMPs concentration or activity in connective tissue leads to the destruction
of the cross-link complexes. This destruction enables collagen fibrils to slide along one
another, which brings the MCT into a compliant state.

However, a detailed analysis of MMPs and TIMPs has not been carried out in echino-
derms. In this regard, this paper is devoted to the characteristics of these proteins from
different classes of the phylum Echinodermata. For the analysis, we used the genomes of
representatives of four echinoderm classes: crinoid Anneissia japonica (PRJNA615663), sea
star Patiria miniata (Brandt, 1835) (PRJNA683060), sea urchin S. purpuratus (PRJNA13728),
holothurian Apostichopus japonicus (PRJNA354676). Hereinafter accession numbers of
genomes and nucleotide sequences from the NCBI database (https://www.ncbi.nlm.nih.gov,
accessed on 15 March 2021) are shown in parentheses. The sequences used for analysis
are presented in Supplementary Files 1 and 2. A list of protein names and accession num-
bers of nucleotide sequences of the corresponding transcripts from the NCBI database
(https://www.ncbi.nlm.nih.gov, accessed on 15 March 2021) are presented in Supplemen-
tary File 3.

2. Matrix Metalloproteinases of Echinoderms
2.1. Domain Structure

It was shown that the number of MMPs varies in different species of echinoderms.
The genome of crinoid Anneissia japonica revealed 22 MMP genes, in the sea star P. miniata
20 MMPs, the sea urchin S. purpuratus has 22 MMPs, and the holothurian Apostichopus
japonicus has 17. This is comparable to the number of MMPs in vertebrates, which have
25–33 MMP genes.

A study of the domain structure of echinoderm MMPs shows that they have a com-
position typical of this type of proteases. A signal peptide is located at the N-terminus,
followed by a propeptide domain. This often includes the proteoglycan-binding domain
(PGBD). The propeptide domain is followed by the catalytic domain. Many echinoderm
MMPs have several hemopexin-like repeats at the C-terminus of the molecule.

The propeptide domain of MMPs ends with a conserved sequence, the cysteine switch.
The cysteine contained in the cysteine switch interacts with the zinc of catalytic domain
and inactivates proteolytic activity of MMP [83]. The sequence of a cysteine-switch motif
in echinoderm MMPs is very often quite different from that of vertebrates (PRCGXPD, [84]
Figure 2). The CG sequence may be the most conservative. Quite often first P (proline)
is replaced by threonine (T), serine (S), alanine (A), glutamic acid (E), glutamine (Q), or
lysine (K). In some cases, the propeptide ends with a sequence that is completely different
from a cysteine-switch motif. For example, the crinoid Anneissia japonica has MMPs with
SPCRDAE (MMP14, XM_033271712.1) and IKCGFRE (MMP11, XM_033270068.1) sequences
(Figure 2). In some echinoderm MMPs, the cysteine switch is absent. Immediately upstream
of the catalytic domain in most echinoderm MMPs is the furin activated motif RX[K/R]R.
Additionally, a transmembrane domain can be located at the N- or C-terminus of the
molecule. The schemes of the MMP structure in representatives of different echinoderm
classes are presented in Figure 3.

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
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Figure 2. MUSCLE (MegaX) alignment of cysteine switch sequences (boxed area) of some MMPs of
echinoderms.

Figure 3. Scheme of structure of the matrix metalloproteinases of echinoderms. The domain structure
was revealed using the Pfam (http://pfam.xfam.org/, accessed on 15 March 2021), Blast NCBI,
and Smart (http://smart.embl-heidelberg.de/#, accessed on 15 March 2021) programs. In addition,
SignalP-5.0 Server (http://www.cbs.dtu.dk/services/SignalP, accessed on 15 March 2021) and
Phobius (https://phobius.sbc.su.se/index.html, accessed on 15 March 2021) were used to more
accurately determine the presence of a signal peptide and transmembrane domains in a protein
molecule.

http://pfam.xfam.org/
http://smart.embl-heidelberg.de/#
http://www.cbs.dtu.dk/services/SignalP
https://phobius.sbc.su.se/index.html
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Judging by the domain structure, most proteinases are synthesized in an inactive
form, zymogen, which is then activated by removing the propeptide domain. The catalytic
domain of echinoderm MMPs contains the characteristic zinc binding motif HEXXHXXG
XXH [85]. This shows that their mechanism of protein cleavage is similar to that of
vertebrate MMPs.

The presence of a PGBD-like domain at the N-terminus of a number of echinoderm
MMPs indicates that these MMPs, like similar vertebrate MMPs, can bind to proteoglycans
and catalyze extracellular matrix degradation. However, not all echinoderm MMPs have
PGBD-like domains (Figure 3). It is possible that the function of MMPs without these
domains is not related to ECM transformation. They may participate in the regulation of
cell migration or differentiation through the destruction of certain proteins such as integrins
or receptors.

Thus, echinoderm MMPs have a standard domain structure similar to that of verte-
brate MMPs [71,86]. Four different groups are distinguished by their structure in mam-
mals: archetypal MMPs, matrilysins, gelatinases, and furin-activatable MMPs. MMPs
in echinoderms can be divided into three groups: archetypal MMPs, matrilysins, and
furin-activatable MMPs (Figure 3).

A number of echinoderm MMPs are known to be capable of degrading denatured
collagen (gelatin) [63,65,81,87–89]. However, typical gelatinases similar in structure to
vertebrate gelatinases (MMP2 and MMP9) do not seem to exist in echinoderms. In MMP2
and MMP9, the catalytic domain contains fibronectin-like repeats [86] which gives the
ability to bind and degrade gelatin, suggesting that these enzymes play an important
role in collagen remodeling of the extracellular matrix [90]. The NCBI database shows
a transcript of the holothurian Apostichopus japonicus (MH348178.1), designated here as
MMP2-1. Analysis of its putative amino acid sequence shows that this proteinase also
contains a fibronectin-like repeats insertion in the catalytic domain. However, phylogenetic
analysis showed that this protein is clustered together with fish MMP2 and separate from
all MMPs of echinoderms (see below). In this regard, this contig is most likely the result of
contamination of a holothurian tissue samples with vertebrate mRNA, most likely from
bony fish Sinocyclocheilus rhinocerous Li & Tao, 1994.

2.1.1. Archetypal MMPs

Echinoderm MMPs, which can be assigned to the group of archetypal MMPs, have
a similar structure in all classes (Figure 3). The molecules of these proteinases have a
signal peptide, a propeptide domain with a cysteine switch, a catalytic domain, and
3–4 hemopexin-like repeats. In the holothurian A. japonicus, PGBD is absent in the propep-
tide domains of all three archetypal MMPs. One PGBD is missing from two MMPs in
the sea urchin S. purpuratus. In Anneissia japonica and P. miniata, all archetypal MMPs
contain PGBD.

MMPs with a missing propeptide domain were previously identified in the genome
of S. purpuratus [62]. We also detected MMPs of this structure in this species. In addition,
the holothurian Apostichopus japonicus also have one MMP that lacks a propeptide domain.
These MMPs are classified as archetypal MMPs because they lack the furin activated motif
and have hemopexin-like repeats.

2.1.2. Matrilysins

The examined species of echinoderms each have one MMP, which can be referred to
as the matrilysins group. They have a similar structure and consist of a signal peptide, a
propeptide domain with a cysteine switch, and a catalytic domain.

2.1.3. Furin-Activatable MMPs

The vast majority of the studied echinoderm MMPs contains furin activated motifs
and, accordingly, they can be referred to as the group of furin-activatable MMPs. Like in
vertebrates [86], this group combines proteases with different domain structures. Most
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of them are structurally similar to archetypal MMPs and matrilysins. They differ in the
number of hemopexin-like repeats and the presence or absence of PGBD (Figure 3).

In addition, transmembrane domains are detected in some echinoderm MMPs. Be-
cause the N- and C-terminus of the MMP molecule has a large number of hydrophobic
amino acids (valine, isoleucine, leucine, alanine, phenylalanine), determining the presence
of transmembrane domains in echinoderms should be approached with caution. In this
article, we have cited the transmembrane domain only when its presence was confirmed by
several programs. In the echinoderm species studied, transmembrane domains are found
at both the N- and C-terminus of the MMP molecule.

In each echinoderm species studied, 2-3 MMPs were identified with a posterior
transmembrane domain (Figure 3). These MMPs differ in their structure from the type
I transmembrane MT-MMPs (MT1-, MT2-, MT3- and MT5-MMPs) of vertebrates. In the
latter, the catalytic domain contains a characteristic sequence of 8-9 amino acids, an MT-
Loop [91–93]. It is assumed that MT-Loop plays a major role in the regulation of type I
transmembrane MT-MMPs function [92]. In echinoderms, no such sequence is present in
any of the studied MMPs (Figure 4). In addition, all vertebrate’s type I transmembrane
MT-MMPs have a DUF3377 domain at the C-terminus. It is absent in echinoderm MMPs.
At the same time, the hydrophobic site at the C-terminus in echinoderm MMPs is similar to
that of vertebrate glycosylphosphatidylinositol (GPI)-anchored type MT-MMPs (MT4- and
MT6-MMPs) [94–96] (Figure 4). Thus, echinoderm MMPs with a transmembrane domain at
the C-terminus are more similar to (GPI)-anchored MT-MMPs. However, this assumption
requires further verification.

Figure 4. MUSCLE (MegaX) alignment of amino acid sequences of MMPs with a posterior transmem-
brane domain of echinoderms and vertebrates. (a) Catalytic domain with MT-Loop; (b) C-terminus
of MMPs.

Another group of echinoderm MMPs is proteinases in which the transmembrane
domain is detected at the N-terminus of the molecule. In this respect, they are similar to
type II transmembrane MMPs (MMP23) of vertebrates [97,98]. Such MMPs were found
in the sea star P. miniata and the sea urchin S. purpuratus (Figure 3). In contrast to the
vertebrate MMP23s, they all contain cysteine switch and hemopexin-like repeats. Moreover,
the S. purpuratus proteinase does not have a furin activated motif. Thus, echinoderm MMPs
with a transmembrane domain at the N-terminus are significantly different not only from
the type II transmembrane MMPs of mammals but also from those of lower vertebrates
which lack a C-terminal cysteine-rich toxin-like and an immunoglobulin-like cell adhesion
molecule domains [97,99] and are obviously not their homologs. Nevertheless, the possible
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presence of a transmembrane domain at the N-terminus of the molecule suggests that these
echinoderm MMPs in question may function intracellularly, as do MMP23 in mammals [98].

In addition to MMPs with a single transmembrane domain, it has been noted that the
sea urchin S. purpuratus MMP2-2 (XM_776482.5) has transmembrane domains at both ends
of the molecule (Figure 3). It is not clear whether this is an error in the detection of these
domains by the softwares used, or if this is indeed the case. Since this MMP has a cysteine
switch and a furin activated motif, it is obvious that its activation is due to the removal
of the propeptide along with a possible anterior transmembrane domain. This structure
probably reflects the peculiarities of the biosynthesis and/or secretion of this proteinase. In
any case, this fact deserves further investigation because in mammals there are functioning
proteins with transmembrane domains at both ends of the molecule [100].

2.2. Evolution of MMPs of Echinoderms

In spite of the clear similarity of MMP domain organization between vertebrates and
echinoderms, on the phylogenetic tree most echinoderm MMPs is clustered separately from
vertebrate MMPs (Figure 5). This is apparently because the MMP genes of the last common
ancestor of Chordata and Ambulacraria underwent substantial duplication and divergence
following separation of the two groups [62]. Phylogenetic analysis shows that three
groups can be distinguished among echinoderm MMPs, which differ in their proximity
to vertebrate MMPs and, consequently, to ancestral forms of MMPs (Figure 5). The first
group contains the MMPs of all the studied species of the deuterostomes. It was probably
formed as a result of duplication and divergence of several ancestral genes. This includes
such mammalian MMPs as MMP18, MMP21, MMP23, MMP26, MMP28. Apparently, the
MMP genes of echinoderms from this group can be considered their orthologs.

The second group unites only the MMPs of representatives of Ambulacraria (Figure 5).
Apparently, it formed after the separation of the chordates. The third group of MMPs
contains mainly proteases of echinoderms and it is located closest to the base of the
phylogenetic tree. This probably indicates that this group combines the most conserved
MMPs, which diverged the least during the evolution of Ambulacraria. The fourth group
contains only echinoderm MMPs. These proteases apparently duplicated and diverged
after the separation of Echinodermata and Hemichordata. Thus, the MMPs belonging to
the II-IV groups have no direct homology with any of the mammalian MMPs.

In the given phylogenetic tree, the fifth and sixth groups unite vertebrate MMPs.
Interestingly, the MMP2-1 of holothurian Apostichopus japonicus (MH348178.1) clusters with
vertebrate MMP2 and is located on the same branch as MMP2 of Danio rerio (Figure 5). As
indicated above, this sequence most likely does not belong to holothurian A. japonicus.

At present, the identification of echinoderm MMPs is performed solely on the basis
of the proximity of their amino acid or nucleotide sequence to other proteases in the
NCBI database. However, as indicated above, the bulk of these animals’ MMPs are not
orthologous to vertebrate MMPs. Therefore, it does not make sense to draw conclusions
about the homology and, on this basis, about the similarity of the functions of these
proteinases. The constructed phylogenetic tree of MMPs of echinoderms identifies 7 large
groups of proteinases, each of which, if necessary, can be divided into subgroups (Figure 6).
This tree shows that within the phylum Echinodermata, the MMPs are also highly divergent.
It is well observed that there is no correspondence between the names of the MMPs (the
most likely homologues in BLAST) and the evolutionary relationship of the respective
proteases. For example, MMPs of the holothurian A. japonicus MMP2-2 (MRZV01000410.1)
and MMP2-3 (MRZV01000538.1), which by NCBI are “homologs”, are located in different
parts of the tree. Conversely, sequences located on the same branch of the phylogenetic
tree and which are very likely orthologous, have different designations, as, e.g., MMPs
of Anneissia japonica MMP18 (XM_033252622.1) and MMP16-1 (XM_033252624.1) from
group IV. Thus, the classification of MMPs of echinoderms requires revision and additional
research.
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Figure 5. Phylogenetic tree showing the relationships of MMPs of vertebrates, hemichordates, and echinoderms. Crinoids
(Anneissia japonica)—pink color, asteroids (Patiria miniata)—blue color, echinoids (Strongylocentrotus purpuratus)—green color,
holothurians (Apostichopus japonicus)—red color, hemichordates (Saccoglossus kowalevskii)—deep-blue color, vertebrates—
black color. Determination of conserved regions of the putative amino acid sequences was carried out using the Gblock
program. Construction of the phylogenetic tree was done using the MrBayes/Maximum Likelihood algorithm and the
online service CIPRES (http://www.phylo.org, accessed on 15 March 2021). The nucleotide and amino acid sequences were
analyzed using the Partitionfinder 2.1.1 [101,102]. The trees were visualized in the FigTree program.

2.3. Substrate Specificity and Function

Sea urchins are the most investigated model objects among echinoderms. Sea urchin
MMPs with collagen-gelatinase activity were first found in developing embryos [103–106].
They are hypothesized to regulate the processes of hatching, gastrulation and hyaline layer
development, as well as the growth of spicules. The identified gelatinases hydrolyze their
own collagen as well as type I collagen from rat tails, but are not active against casein.

The most studied are the hatching enzymes (HEs). These proteases are found not
only in sea urchins, but also in other echinoderms. On the phylogenetic tree, they cluster
together and probably represent a separate group of echinoderm MMPs (Figures 5 and 6).
These proteases are expressed at the late blastula stage and are necessary for the dissolu-
tion of the fertilization envelope and release the embryo [106]. The described properties
of HE6 were from Paracentrotus lividus (Lamarck, 1816) and the cloned HE6 transcript
(X65722.1) [107–110]. This proteinase had a typical MMP structure. The signal peptide
was located at the N-terminus, followed by the propeptide domain, catalytic domain, and
hemopexin-like repeats. HE6 by its domain structure can be attributed to an archetypal
MMP, because it does not contain a furin-activated motif. This proteinase was able to

http://www.phylo.org
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hydrolyze dimethyl casein [107]. Its activity was completely blocked by 20 mM EDTA. This
inhibition was irreversible and activity was not restored by the addition of Ca2+ ions.

Figure 6. Phylogenetic tree showing the relationships of MMPs of echinoderms. Crinoids (Anneissia
japonica)—pink color, asteroids (Patiria miniata)—blue color, echinoids (Strongylocentrotus purpuratus)—
green color, holothurians (Apostichopus japonicus)—red color. Determination of conserved regions
of the putative amino acid sequences was carried out using the Gblock program. Construction of
the phylogenetic tree was done using the MrBayes/Maximum Likelihood algorithm and the online
service CIPRES (http://www.phylo.org, accessed on 15 March 2021). The nucleotide and amino acid
sequences were analyzed using the Partitionfinder 2.1.1 [101,102]. The trees were visualized in the
FigTree program.

HE6 transcripts were not detected in unfertilized eggs [108]. This indicates that
mRNAs of HE6 do not belong to the maternal set of mRNAs. For the first time, HE6
transcripts have been detected in blastula cells at the 128-cell stage [109]. The number of
HE6 transcripts then increases until the pre-hatching blastula stage (250 cells) and then
returns to a very low level after hatching. HE6 expression occurs only in the blastomeres
of the animal part of the embryo, corresponding to the presumptive ectoderm. From the

http://www.phylo.org
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mesenchyme blastula stage, HE6 mRNAs are not detected, which is probably due to rapid
mRNA degradation.

HE, envelysin, (AB000719.1) demonstrated a similar structure and properties in the
sea urchin Hemicentrotus pulcherrimus (A. Agassiz, 1864) [111]. This MMP was completely
inhibited by alpha 2-macroglobulin and the chelating agents EDTA, EGTA, and 1,10-
phenanthroline and was slightly inhibited by chymostatin and pepstatin [104]. A HE with
similar properties and functions has also been found in sea stars [112,113]. In addition,
various proteinases capable of degrading collagen and gelatin have been found in the eggs
and developing embryos of the sea urchin S. purpuratus [87–89,114–122]. All of them show
properties similar to those of the MMPs. However, the genes encoding these proteinases,
as well as their domain structure, have not been established.

MMP probably plays a role in the early development of sea urchins [123]. The Sp-
MMP14 gene (XM_030985841.1) is expressed in unfertilized oocytes and then in embryonic
cells at the mesenchymal blastula stage in S. purpuratus. At the beginning of gastrulation,
the transcripts of this gene are found in the blastomeres on the animal and vegetal poles of
the larva, and later are retained only at the animal pole. Expression of SpMMP16 (Sp-Mt1-
4/MmpL7, NM_001033648.1) begins at the blastula stage of S. purpuratus. The transcripts
are localized in the area of the vegetal pole. Subsequently, its expression is limited to cells
of the secondary mesenchyme.

MMPs participate in the formation of the larval skeleton in sea urchins. It was shown
that during the cultivation of primary mesenchymal cells and embryos of S. purpuratus
in the presence of metalloprotease inhibitors, inhibition of spiculogenesis occurs [124].
When the inhibitor was added at a stage where a small triradial skeleton had already
formed, the growth of spicules was blocked. Proteomic analysis shows that the matrix
of skeletal elements of S. purpuratus contains several MMPs [125]. The most numer-
ous were Sp-Mmp18/19L3 (XM_030980004.1), Sp-Mmp18/19L6 (XM_030980002.1), Sp-
Mmp18/19L5 and Sp-Mmp18/19L4 (XM_783693.4), Sp-Mt1-4/MmpL5 (XM_786507.5), Sp-
Mt1-4/MmpL6 (XM_786523.5), Sp-Mt1-4/MmpL7 (NM_001033648.1), and Sp-Mt5/MmpL2
(XM_003725508.3). Our analysis shows that most of these MMPs are furin-activatable
MMPs and have a standard domain structure represented by a PGBD propeptide, a cat-
alytic domain, and hemopexin-like repeats. Two proteinases (Sp-Mmp18/19L3 and Sp-
Mt5/MmpL2) contain transmembrane domains at the C-terminus.

Studies of the sea urchin P. lividus revealed two MMP genes expressed in the skeleto-
genic cells [126]. One of them, Pl-MmpL5 (ortholog of Sp-Mt1-4/MmpL5 of S. purpuratus)
expressed at the blastula stage (10 h post fertilization, hpf). Transcripts of another gene,
Pl-MmpL7 (ortholog Sp-Mt1-4/MmpL7 of S. purpuratus) are first found at the beginning of
gastrulation (~20 hpf), and after 24 hpf they are detected at the skeletogenic lateral cell
clusters. The expression level of both genes depends on VEGF-signaling as it decreases
significantly when the VEGF receptor (VEGFR) is inhibited [126]. Thereafter, Pl-MmpL5 and
Pl-MmpL7 are expressed at the tips of the growing rods. Moreover, VEGF signaling controls
their activity only at the post-oral and anterolateral rods. The expression of Pl-MmpL5 and
Pl-MmpL7 at the tips of the body rods does not change upon inhibition of VEGFR, which
indicates the regulation of these genes by another regulatory system [126].

In adult echinoderms, MMPs also play an important role in various processes. In
particular, during asexual reproduction by transverse fission, local softening and lysis of the
connective tissue are necessary. The holothurian Apostichopus japonicus has MMPs that are
capable of completely degrading body wall collagen [127]. Analysis of the transcriptome of
the holothurian C. schmeltzii in the process of division revealed the presence of transcripts
of eight MMP genes [35]. However, in this species, no differences were found in the
qualitative composition of the MMPs between normal and dividing individuals. Probably,
if MMPs are involved in the mechanisms of asexual reproduction, then during fission it is
not the spectrum of proteinases that changes, but the level of their activity.

During regeneration, a large number of MMP genes are expressed in echinoderms
[19,35,36,38,39,128]. Their activation is possibly induced by high levels of reactive oxygen
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species (ROS) [71,129], which are produced by echinoderm cells in response to damage [19].
In A. japonicus, two MMP genes have been described that are expressed during the regen-
eration of internal organs—ajMMP-2 (MMP2-4, KX372219.1) and ajMMP-16 (MMP16-3,
KX372220.1) [64]. No transcripts of these genes were found in the intact intestine. Only
1-2 h after evisceration did ajMMP-2 and ajMMP-16 begin to be expressed. The maximum
number of their transcripts occurred at 6 h and 24 h after injury, respectively. Proteinases
were observed in the esophagus remnant 3 and 7 days after evisceration. Moreover, the
distribution of these MMPs in the digestive system was different. In the luminal epithelium,
only ajMMP-2 was localized, while ajMMP-16 was found in all tissues of the esophagus.
Differences in the expression of the genes ajMMP-2 and ajMMP-16 and the distribution
of proteins encoded by them indicate different functions of these proteinases in intestinal
regeneration in holothurians. Since transcrips of ajMMP-2 and ajMMP-16 are detected only
at the initial stage of regeneration, ajMMP-2 and ajMMP-16 are probably involved in the
degradation of the esophageal ECM and dedifferentiation of coelomic epithelial cells and
enterocytes [19]. In addition, it is possible that these proteinases regulate the interaction
between ECM components and growth factors due to proteinolysis of ECM proteins and
other biological molecules [64].

In the holothurian Eupentacta fraudatrix (D’yakonov & Baranova in D’yakonov, Bara-
nova & Savel’eva, 1958), several proteinases with gelatinase activity were found during the
regeneration of various internal organs. Four proteinases with molecular masses of 132, 58,
53, and 47 kDa were detected in the digestive system [63]. Zymographic assay revealed
different lytic activities of the proteinases during intestine regeneration. The 132 kDa
proteinase showed the highest activity at the first stage. During morphogenesis (stages
2–4 of regeneration), the highest activity was measured for the 53 and 58 kDa proteinases.
A similar set of proteinases was found during the regeneration of the body wall [65,80].
Inhibition of MMPs with GM6001 completely stopped the restoration of damaged organs.

Among these gelatinases, two have been identified so far—53, and 47 kDa proteinases
(Shabelnikov, personal comm.). The first one, 53 kDa (GHCL01011560.1), is an archetypal
MMP in its domain structure. The propeptide domain of this MMP does not contain PGBD.
Four hemopexin-like repeats are located after the catalytic domain. The second, 47 kDa
(GHCL01010993.1), is Ef-MMP16 [79]. This is a furin-activatable MMP. Its propeptide
domain does not contain PGBD, and four hemopexin-like repeats are located at the C-
terminus. It was shown that Ef-MMP16 expresses during gut regeneration in holothurian
E. fraudatrix [79]. Its transcripts were found in the coelomic epithelium of the mesentery
and gut anlage. It is possible that this proteinase is involved in the regulation of migration
and/or proliferation of coelomic epithelial cells.

3. Tissue Inhibitors of Metalloproteinases
3.1. Domain Structure

TIMPs are natural inhibitors of MMPs. Unlike vertebrates, echinoderms have a large
number of genes encoding TIMPs and TIMP-like proteins [35,78]. In some species, the
number of such genes can reach 45 [78]. Most of the studied TIMPs of echinoderms have a
standard structure similar to that of TIMPs of other animals [35,78]. Only one domain is
identified in them—the NTR domain, which is characteristic of this class of proteins. Most
of the studied TIMPs of echinoderms contain 10–12 conserved cysteine residues, which
probably form the tertiary structure of the molecule (Supplementary File 2) [35,78].

An important feature of TIMPs is the presence of the N-terminus C-X-C motif, in
which one amino acid residue is located between the first and second cysteines (Figure 7).
In vertebrates, such an amino acid residue is threonine (T) or serine (S). The function of this
motive is to interact with a special section of the MMP, S1 pocket [84,85,130]. In mammals,
the inclusion of an additional amino acid between the first and second cysteines leads to a
disruption in the ability of TIMPs to bind to MMPs [76].
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Figure 7. MUSCLE (MegaX) alignment of N-terminus of amino acid sequences of some TIMPs of
echinoderms and human.

Most of the examined TIMPs of echinoderms also have an N-terminus C-X-C motif
(Figure 7, Supplementary File 2). The amino acid residue located between the cysteines
varies in different TIMPs even within the same species. This distinguishes TIMPs in
echinoderms from TIMPs in vertebrates. In addition, echinoderms have several TIMP-like
proteins, in which not one, but two, or even three amino acid residues are located between
the first and second cysteines at the N-terminus (Figure 7) [35,78,79]. Some TIMP-like
proteins lack the C-X-C motif and/or HPQ binding site (Figure 7).

3.2. Evolution of TIMP of Echinoderms

Differences in the structure of the studied TIMPs of echinoderms are reflected in their
location on the phylogenetic tree. All of them are clustered separately from the TIMPs
of vertebrates (Figure 8). This confirms the previously obtained data on the evolution of
these proteins [35,78]. The TIMPs of echinoderms can be divided into five groups. Group
I is located closest to the base of the tree. It probably unites the most ancient TIMPs
characteristic of the ancestral forms of deuterostomes. Orthologs of these genes were
preserved in representatives of all classes of echinoderms, but apparently disappeared in
vertebrates [78].

TIMPs included in group II are located closest to the TIMPs of vertebrates on the
phylogenetic tree (group VI) (Figure 8). Apparently, they are all descendants of the gene
that gave rise to all four mammalian TIMPs. Judging by the data of Clouse et al. [78], its
orthologs are found not only in crinoids and asteroids (Figure 8), but also in other classes
of echinoderms.

Groups III, IV, and V are unrelated to TIMPs in vertebrates and are probably descended
from orthologs of genes formed after the separation of Chordata and Ambulacraria. TIMPs
located in group III probably arose on the basis of one common ancestral gene, the de-
scendants of which were preserved in all classes of echinoderms (Figure 8). Groups IV
and V combine TIMPs of a later origin. Their divergence apparently took place within
the phylum Echinodermata. Group IV contains only TIMPs of crinoids and asteroids,
while group V assemble only echinoids and holothurians. At the same time, group V
accumulates 2/3 of all holothurian TIMPs. This indicates that it is the TIMPs of this group
that underwent the strongest duplication and divergence in the class Holothuroidea. This
group also includes specific TIMP-like proteins—tensilins (Figure 8). These proteins are
distinguished by the presence of two amino acid residues between the first and second
cysteines of the N-terminal region of the molecule [35].
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Figure 8. Phylogenetic tree showing the relationships of TIMPs of echinoderms. Crinoids (Anneissia
japonica)—pink color, asteroids (Patiria miniata)—blue color, echinoids (Strongylocentrotus purpuratus)—
green color, holothurians (Apostichopus japonicus)—red color, red asterisk—tensilin, blue asterisks—
TIMP-like proteins that lack cysteines at the N-terminus of the molecule and/or the HPQ binding site.
Construction of the phylogenetic tree was done using the MrBayes/Maximum Likelihood algorithm
and the online service CIPRES (http://www.phylo.org, accessed on 15 March 2021). The nucleotide
and amino acid sequences were analyzed using the Partitionfinder 2.1.1 [101,102]. The trees were
visualized in the FigTree program.

For the first time, tensilin was found in the connective tissue of the body wall of the
holothurian Cucumaria frondosa (Gunnerus, 1767) [131]. It was assumed that such proteins
are present in all echinoderms and are an important component of the mechanism of regula-
tion of MCT properties [82,132]. However, phylogenetic analysis showed that all identified
tensilin-like proteins belong to members of relatively young groups of holothurians [35,79].
No similar proteins are found in Apodida and Elasipodida (the most ancient orders of
holothurians [133]), or in other echinoderms. Accordingly, the tensilins formed within the
order Holothuroidea [35,78]. The ancestral gene of tensilin, apparently, was repeatedly
duplicated, since some species of holothurians have several of its orthologs. For example,
in Cladolabes schmeltzii two tensilin genes were identified [35], and in E. fraudatix—four [79].
Repeated duplication and preservation of orthologs in phylogenesis shows that tensilins
play an important role in the physiology of holothurians.

As already mentioned, the studied species of echinoderms have TIMP-like proteins
that lack cysteines at the N-terminus of the molecule and the HPQ binding site [78]
(Figure 7, Supplementary File 2). However, the NTR domain is detected in them and the
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BLAST program identifies them as TIMPs. On the phylogenetic tree, these TIMP-like
proteins are located in different groups (Figure 8). It is obvious that such proteins have
arisen in the evolution of echinoderms repeatedly and independently of each other.

The reasons for the active duplication and divergence of TIMPs in the phylogenesis of
Echinodermata are possibly associated with an increase in the functional importance of
these proteins. Echinoderms are characterized by a high content of connective tissue in
organs, as well as the presence of asexual reproduction and autotomy. In this regard, they
need effective ECM remodeling mechanisms both for carrying out normal life activities
(movement, changing posture and body shape), and for successful fission and separation
of body parts during autotomy. The improvement of these mechanisms may have led
to the emergence and preservation of the diversity of not only MMPs, but also TIMPs.
In addition, an increase in the number of TIMP genes could also occur in connection
with the functional divergence of the proteins encoded by them. It is known that in
mammals, TIMPs can perform functions unrelated to MMP inhibition [134]. One of the
directions of such divergence could be the formation of TIMP-like proteins in echinoderms,
in particular, tensilins.

3.3. Functions

The functions of TIMPs in echinoderms have not been studied at all. It is obvious that,
as in mammals, many of these proteins are MMP inhibitors. As mentioned above, MMPs
play an important role in the mechanisms of development and regeneration in echinoderms.
In this regard, TIMPs can interact with MMPs and, accordingly, regulate the activity of
various biological processes, such as cell division, cell migration, ECM remodeling, etc.
In particular, TIMP was discovered in the coelomic fluid of the asteroid Asterias rubens
Linnaeus, 1758 [135]. The content of this protein increased six hours after the arm tip was
cut off and the coelomic fluid was completely removed. It is possible that the increase
in the quantity of TIMP was associated with the need to block protease activity for more
successful thrombus formation on the wound surface.

As an MMP inhibitors, TIMPs in echinoderms may be involved in the regulation of
MCT properties [78,82,132]. The TIMP-like protein, tensilin, is considered to be one of the
key molecules of this process [132]. It is assumed that its function is to inhibit MMPs and
prevent them from breaking down the crosslink complexes between collagen fibrils, which,
in turn, increases the stiffness of connective tissue [82,132]. However, as shown earlier,
tensilins are found only in species of the order Holothuroidea [35]. Probably, in other
echinoderms, some TIMPs, possibly belonging to groups IV and V (Figure 8), are involved
in the mechanisms of MCT regulation. In holothurians, due to the formation of a thick
connective tissue body wall and a decrease in the degree of its calcification, MMPs involved
in the destruction of crosslink complexes could be replaced by more efficient proteinases.
This, in turn, could lead to a change in TIMPs inhibiting them and the formation of a
specialized group of TIMP-like proteins—tensilins.

Another possible function of echinoderm TIMPs is participation in the regeneration.
It has been shown that in the holothurian E. fraudatrix one of the tensilin genes, Ef-tensilin3,
is expressed during gut regeneration [79]. In the early stages of regeneration its transcripts
were found in the coelomic epithelium of the mesentery and gut anlage. The most intense
expression was located in the ventral part of the forming digestive tube. In the course
of regeneration, the intensity of the expression decreased. On 10th day after damage, the
highest expression of this gene occurred only in the growing tip of the gut and in the
ventral part of the luminal epithelium. In holothurians, during the development of the
anlage of the digestive tube, collagen is synthesized and accumulated in the ventral edge of
the intestinal mesentery [17–19,32,33,55,81,136,137]. It is likely that blocking MMP activity
by Ef-tensilin3 is necessary to stabilize the extracellular matrix and form the base for the
digestive tube.

It should be noted that mammalian TIMPs, in addition to inhibiting MMPs, are
involved in a wide range of biological functions [134,138–140]. For example, TIMP-1,
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interacting with MT1-MMP, helps to activate pro-MMP2 [141]. This mechanism stimulates
cell migration and enhances tumor metastasis. TIMPs show cell growth promoting activity
and can modulate cell apoptosis regardless of their MMP inhibitory activity [142–145].
TIMP-1 and TIMP-2 have been described to inhibit the proliferation of cells including
endothelial cells and several carcinoma cells [142,146]. In addition, mammalian TIMP-1 is
able to bind to CD63 and integrins and regulate cell survival and polarization, as well as
modulate FAK/RhoA signaling [147,148]. In this regard, it can be assumed that the TIMPs
of echinoderms, in addition to inhibiting MMPs, can also perform other functions.

4. Conclusions

Analysis of the available genomes and existing literature showed that echinoderms
have a wide variety of MMP and TIMP genes. This indicates the prominent role of the
proteins encoded by them in the physiology of these animals. The MMP and TIMP genes
underwent repeated duplication and active divergence after the separation of Ambulacraria
and Chordata, as a result of which the homology of proteinases and their inhibitors between
these groups cannot be established. Special studies are needed to develop a classification
of MMPs and TIMPs in echinoderms.

Nevertheless, the MMPs and TIMPs of echinoderms and vertebrates have retained
much in common. They have a similar domain structure and, apparently, a similar function.
Echinoderm proteinases can be structurally divided into three groups—archetypal MMPs,
matrilysins, and furin-activatable MMPs. Echinoderms, apparently, do not have gelatinases
homologous to those of vertebrates. The main function of MMPs in echinoderms is
the degradation of various proteins. In this regard, they play an important role in the
mechanisms of development, asexual reproduction and regeneration.

TIMPs of echinoderms, with a few exceptions, have a structure typical for this class of
proteins. They contain an NTR domain and 10–12 conservatively located cysteine residues,
which probably form the tertiary structure of the molecule. At the same time, the structure
of TIMPs in echinoderms shows greater diversity than in vertebrates. In the phylogenesis
of echinoderms, the ancestral TIMP genes underwent significant divergence and repeated
duplication, which was probably associated with an increase in the functional importance
of the proteins encoded by them.
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