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Abstract

Auditory perceptual decisions are thought to be mediated by the ventral auditory pathway. 

However, the specific and causal contributions of different brain regions in this pathway, including 

the middle-lateral (ML) and anterolateral (AL) belt regions of the auditory cortex, to auditory 

decisions have not been fully identified. To identify these contributions, we recorded from and 

microstimulated ML and AL sites while monkeys decided whether an auditory stimulus contained 

more low-frequency or high-frequency tone bursts. Both ML and AL neural activity was 

modulated by the frequency content of the stimulus. However, only the responses of the most 

stimulus-sensitive AL neurons were systematically modulated by the monkeys’ choices. 

Consistent with this observation, microstimulation of AL—but not ML—systematically biased the 

monkeys’ behavior toward the choice associated with the preferred frequency of the stimulated 

site. Together, these findings suggest that AL directly and causally contributes sensory evidence 

used to form this auditory decision.

There is broad consensus that the ventral auditory pathway plays a central role in forming 

decisions about the identity of auditory stimuli
1–5

. Early stages of this pathway, including 

the core auditory cortex and two of its prominent targets, the middle-lateral (ML) and 

anterolateral (AL) belt regions of auditory cortex, encode information relevant to stimulus 

identity, such as its frequency content. Later stages of this pathway that receive direct and 

indirect input from ML and AL, including the ventrolateral prefrontal cortex, can encode 

decision outcomes, such as inferred auditory categories and associated behavioral choices. 

However, little is known about the process that converts stimulus information represented 

early in this pathway to the decision outcomes represented later, including which of these 
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early representations constitute the actual evidence used to form a decision
3, 6–8

. The goal of 

this study was to identify whether ML or AL auditory-driven responses are used as evidence 

to form decisions about the frequency content of auditory stimuli.

To achieve this goal, we recorded and manipulated ML and AL spiking activity in monkeys 

while they made a difficult decision about whether a noisy stimulus contained more low- or 

high-frequency tone bursts (Fig. 1). This approach provided three primary benefits
9
. First, 

we could assess the sensitivity of individual neurons in each brain region to the frequency 

content of the stimulus and compare such neurometric sensitivity to concurrently measured 

behavioral sensitivity around psychophysical threshold. These measures can help to identify 

neural signals that, in principle, could be used to form the decision
10

. Second, we could 

identify neural signals that were (weakly) modulated by the monkeys’ choices for nominally 

identical stimuli. Under certain conditions, such modulation is expected of neural signals 

that represent the evidence used to form a perceptual decision
9, 11

. Third, combined with 

electrical microstimulation in ML and AL, we could assess the causal contributions of these 

brain regions to the decision process.

Consistent with previous studies, we found that both ML and AL neurons had frequency-

tuned responses that, in principle, could be used as sensory evidence to form the auditory 

decision
4, 8, 12, 13

. By combining these measures with concurrently measured behavioral 

reports, we advanced previous findings by showing that the AL responses were more closely 

related to behavior than ML responses. Thus, AL appears to play a more direct, causal role 

than ML in the formation of this auditory perceptual decision.

RESULTS

Behavioral performance

Monkeys T (n=52 sessions) and A (n=39 sessions) reliably reported whether a sequence of 

tone bursts contained more low-frequency or high-frequency tone bursts on the low-high 

task, with performance that depended systematically on stimulus coherence (Fig. 2). When a 

stimulus contained mostly low- or high-frequency tone bursts (coherences near ±100%), the 

monkeys almost always reported the correct answer. This high accuracy for high-coherence 

stimuli, quantified as low lapse rates (dashed lines in the left panels of Fig. 2), implies that 

the monkeys were attentive and followed the rules of the task. Their choice accuracy 

decreased systematically as coherence approached zero; that is, for more difficult stimuli. 

We quantified this dependence by calculating the monkeys’ discrimination thresholds. These 

discrimination thresholds, which index the steepness of the psychometric (choice) function 

with respect to coherence and were computed from logistic functions fit to the psychometric 

data, imply that the monkeys were using relevant information from the auditory stimuli to 

inform their decisions (blue lines in the left panels of Fig. 2; median [interquartile range, or 

IQR] values across sessions were  for monkey T and 

 for monkey A). The monkeys were also relatively 

unbiased, making roughly equal numbers of low- and high-frequency choices (choice biases, 

measured as the coherence value corresponding to 50% high-frequency choices from the 
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logistic fits, were 13 [−5–31]% coherence for monkey T and −22 [−30–7]% coherence for 

monkey A).

A key feature of the low-high task was that on each trial, the monkey, and not the 

experimenter, controlled the stimulus-presentation duration, thereby providing us with both 

choice and response-time (RT) data. A primary benefit of this kind of task is that the 

monkeys’ behavior can be used to define the temporal epoch used on each trial to form the 

decision, thereby facilitating identification of the underlying neural signals
14

. To help better 

define this epoch, we fit the psychometric and chronometric (RT) data to a drift-diffusion 

model (DDM) of decision-making (red curves in Fig. 2)
15–20

. This model describes the 

process of forming a decision by temporally accumulating incoming auditory evidence, 

which we assumed was represented in the brain as the noisy spiking activity of relevant 

populations of auditory neurons, to one of two pre-defined values. This process is 

mathematically equivalent to the one-dimensional movement of a particle undergoing 

Brownian motion to one of two absorbing boundaries. This model accounts for both the 

choice (which boundary was reached) and the decision time (when the boundary was 

reached) on each trial. We used the DDM fits to define the decision epoch by subtracting a 

non-decision time, which was fit as a separate free parameter in the DDM for each of the 

two choices and included stimulus-encoding and motor-preparation times, from the 

measured RTs.

Both monkeys’ decisions were consistent with a DDM process that interpreted sensory 

evidence over much of the stimulus-presentation interval, accounting for choices that were 

both more accurate (Fig. 2, left) and faster (Fig. 2, right) as absolute coherence increased. 

Like the logistic fits, these DDM fits implied relatively unbiased choices (median [IQR] 

choice biases across sessions were 14 [−0.7–27] coherence for monkey T and −7 [−15–4]% 

coherence for monkey A; Spearman’s correlation coefficient between session-by-session 

values computed using logistic and DDM fits = 0.96, p=2.7*10−56) that depended strongly 

on coherence (median [IQR] discrimination thresholds were 

 for monkey T and 

for monkey A; Spearman’s correlation coefficient for DDM versus logistic fits = 0.70, 

p=2.2*10−14). The DDM fits accounted for the asymmetric RT data in terms of non-decision 

times, which were larger for high-frequency choices for monkey T and for low-frequency 

choices for monkey A and matched our qualitative observations of the monkeys’ asymmetric 

joystick-movement onset times (dashed lines in Fig. 2, right panel).

Recording-site localization

Because ML and AL are found relatively early in the ventral auditory pathway, we focused 

on understanding how their spiking activity might provide the auditory evidence used to 

form an auditory decision later in the pathway (possibly via a DDM-like accumulate-to-

bound mechanism
15

). We classified 140 frequency-tuned single units (88 from the right 

hemisphere of monkey T, 52 from the right hemisphere of monkey A) into ML and AL 

based on their tonotopic gradients along the anterior-posterior axis (Fig. 3). Similar to 

previous findings, ML frequency tuning increased at more posterior sites, whereas AL 
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frequency tuning increased at more anterior sites
4, 12, 13

. Neurons around the ML–AL border 

were tuned for low frequencies. Examples of frequency-response profiles with different 

preferred frequencies are shown in Fig. 3c. The subsequent neurophysiological analyses 

were conducted on 45 ML neurons (25 from monkey T and 20 from monkey A) and 55 AL 

neurons (31 from monkey T and 24 from monkey A). Microstimulation analyses were 

conducted on 41 ML sites (30 from monkey T and 11 from monkey A) and 44 AL sites (27 

from monkey T and 17 from monkey A). Our findings are robust to uncertainty about the 

specific location of the ML–AL border (similar results were obtained when we excluded 

neurons near our estimated border) and when we included multi-unit activity in our analyses 

(e.g., Supplementary Fig. 1).

Neuronal stimulus sensitivity

Both ML and AL auditory-driven responses were modulated by the frequency content of the 

stimulus. For the example ML neuron shown in Fig. 4a, top, the preferred frequency was 

assigned to the high-frequency value of the tone-burst sequence. Consequently, as signed 

coherence approached +100%, the firing rate of the neuron increased. This coherence-

dependent modulation had a strong phasic increase in activity that started <~50 ms after 

stimulus onset and then persisted for a few hundred ms. For the example AL neuron shown 

in Fig. 4a, bottom, because the preferred frequency was assigned to the low-frequency value, 

its firing rate increased as signed coherence approached −100%. The response of this 

neuron, like the ML neuron, had coherence-dependent modulations but had slightly later 

response onsets and more sustained, coherence-dependent responses throughout stimulus 

presentation. At the population level, both ML and AL showed qualitatively similar trends as 

these two example units, in both cases showing sensitivity to signed coherence that for ML 

was most prominent just after stimulus onset but for AL was more persistent throughout 

stimulus presentation (Fig. 4b).

Despite their slightly different average frequency-dependent response profiles, ML and AL 

neurons had similar sensitivity to the frequency content of the stimulus (which depended on 

not just the average response, but also its variability) throughout stimulus presentation. We 

quantified neuronal sensitivity using ROC-based “neurometric functions” that described the 

probability that an ideal observer could use the spiking activity of an individual neuron to 

decide whether a given stimulus contained more high- or low-frequency tone bursts 

(Supplementary Fig. 2; examples are shown in Fig. 5a)
21

. Across our populations of AL and 

ML neurons, the slopes of these functions tended to increase from just after stimulus onset 

until around the time of decision commitment (i.e., the end of the decision time inferred 

from DDM fits plus an additional 50 ms to account for the sensory latency; Fig. 5b). The 

neurometric slopes, which were calculated from firing rates between stimulus onset and the 

inferred time of the decision commitment, were similar for the two brain regions and the two 

monkeys (ML, 

; AL, ; 

two-tailed Wilcoxon rank-sum test for H0: median difference between ML and AL slopes=0, 
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p=0.46 for monkey T, p=0.13 for monkey A). Neurometric slopes were slightly lower than 

the corresponding psychometric slopes for the two brain regions and the two monkeys 

(median psychometric slope [IQR] from all sessions for both 

, two-tailed Wilcoxon signed-rank test, 

monkey T: p=5.6*10−6 ML and p=1.2*10−6 AL, monkey A: p=2.0*10−4 ML and 

p=1.8*10−5 AL). Thus, on average, single-neuron ML and AL spiking activity was sensitive 

to stimulus coherence but less so than psychometric sensitivity. This finding implies that 

either ML or AL activity could, in principle, be pooled to improve sensitivity and provide 

the evidence needed to make the decision
22

.

There was also a slight session-by-session relationship between neurometric sensitivity and 

concurrently measured psychometric sensitivity (Fig. 5c–e). We measured this relationship 

using sliding windows of spike counts measured relative to different task events: (1) the 

onset of the auditory stimulus, (2) the inferred time of the decision commitment, and (3) the 

inferred time of movement initiation. Qualitatively, these correlation profiles looked roughly 

similar in ML and AL: in both cases, they peaked around the inferred time of the decision 

commitment. However, the effects were statistically more reliable in AL, particularly for 

data aligned to stimulus onset, suggesting a slightly closer association for AL versus ML 

activity and perceptual performance (red curves in Fig. 5c). Nevertheless, these results 

further support the idea that ML and AL stimulus-driven responses were similar, and either 

or both could, in principle, be used to inform the monkeys’ decisions.

Neuronal choice sensitivity

To more directly assess the relationships between ML and AL activity and the monkeys’ 

decisions, we computed choice probabilities of individual neurons (Fig. 6a). Choice 

probability quantifies the ability of an ROC-based ideal observer to use spiking activity to 

discriminate between low- and high-frequency choices for nominally identical stimuli. We 

found that certain ML and AL neurons were modulated by the monkeys’ choices: 20% 

(9/45) of ML and 31% (17/55) of AL neurons had choice-probability values that differed 

from chance (permutation test for H0: choice-probability value=0.5, p<0.05). However, 

because the average value was ~0.5 in both brain regions (two-tailed Wilcoxon signed-rank 

test for H0: median=0.5, p=0.41 for ML and p=0.38 for AL), we did not identify any 

systematic effect of choice on the spiking activity of our populations of recorded neurons.

Nonetheless, in AL only, we found a strong, positive correlation between choice probability 

and neurometric sensitivity (i.e., neurometric slope) of individual neurons. That is, the most 

sensitive AL neurons had task-driven activity that was most related to the monkey’s 

choices
23–26

. This positive correlation, which was found in both monkeys (Fig. 6b–e) and 

when multi-unit data were also included in the analyses (Supplementary Fig. 1), was evident 

during stimulus listening (Fig. 6b), around the inferred time of decision commitment (Fig. 

6c), and persisted after the inferred time of movement initiation (Fig. 6d). This persistence 

into the motor-response epoch is consistent with the notion that that choice-related activity 

during this period reflected feedback from higher decision areas, as opposed to feedforward 

contributions to the decision itself
27

. We did not find reliable relationships between choice 
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probability and neurometric sensitivity for any ML epoch (Fig. 6 and Supplementary Fig. 1). 

Together, these results imply that AL activity was more related to the monkeys’ decision-

making behavior than ML activity.

Microstimulation

To identify possible causal roles for each brain region in the low-high task, we applied 

electrical microstimulation to individual sites in ML (n=41 sites) or AL (n=44 sites) during 

stimulus presentation and assessed how this manipulation of localized neural activity 

affected behavior. We found that microstimulation in AL only had a systematic effect on the 

monkeys’ choices: on average, microstimulation biasing the monkeys toward the choice 

associated with the preferred frequency of the microstimulation site. We could not identify a 

reliable effect of microstimulation on RT in either brain region.

Four example sites illustrate our main findings (Fig. 7a). ML microstimulation did not have 

any systematic effect on choice behavior, leaving both the slope (representing sensitivity) 

and horizontal position (representing a choice bias) of the psychometric function unchanged 

(Fig. 7a, top). In contrast, AL microstimulation had a systematic effect on choice bias, 

resulting in more high-frequency choices when applied to a high-frequency site and more 

low-frequency choices when applied to a low-frequency site, without affecting sensitivity 

(Fig. 7a, bottom).

These examples suggest that neurons with appropriate frequency tuning in AL, but not ML, 

provide sensory evidence used to form the decision. According to this interpretation, 

activation of AL sites tuned for a relatively low frequency should provide more evidence for 

the low-frequency choice and, therefore, increase the likelihood that the monkey would 

move the joystick to the right (i.e., ipsilateral to the site of microstimulation, which was in 

the right hemisphere for both monkeys). Conversely, activation of AL sites tuned for a 

relatively high frequency should bias movements toward more leftward (contralateral) 

joystick movements.

Across the population of sites tested, the effects were consistent with this interpretation and 

not with an alternative possibility that microstimulation simply caused more choices to one 

side or the other, independent of the frequency tuning of the microstimulation site. 

Specifically, microstimulation at low-frequency AL sites tended to cause more ipsilateral 

joystick movements, and microstimulation at high-frequency AL sites tended to cause more 

contralateral joystick movements (Fig. 7b, bottom). In contrast, there was no systematic 

effect on choice for either low- or high-frequency microstimulation sites in ML (Fig. 7b, 

top).

These effects corresponded to systematic shifts of choice biases in the expected direction, 

based on the frequency tuning of the microstimulation site, for AL but not ML sites (Fig. 

7c). On average, ML microstimulation did not cause systematic changes in choice bias (Fig. 

7c, top) or discrimination threshold (Fig. 7d, top). In contrast, AL microstimulation shifted 

choices in the expected direction (Fig. 7c, bottom. The microstimulation effects were too 

noisy to be sufficiently reliable in each monkey but, as we report, are highly reliable when 

combining data across monkeys for AL (two-tailed Wilcoxon sign-rank test, p=0.010) but 
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not ML (p=0.45), and the effects are consistent across the two monkeys for AL (two-factor 

ANOVA for shift [no microstimulation and microstimulation conditions] × monkey [monkey 

T and monkey A], main effect of shift: p=0.004; and the main effect of monkey: p=0.53), but 

not for ML (main effect of shift: p=0.29; and the main effect of monkey: p=0.56). Both ML 

and AL microstimulation did not affect discrimination threshold (two-tailed Wilcoxon sign-

rank test, p=0.17 for ML and p=0.32 for AL; Fig. 7d, bottom).

In principle, one possible reason for the different effects in AL and ML could be systematic 

differences in the local spatial organization of frequency tuning around sites of 

microstimulation in the two brain regions, independent of different causal relationships to 

choice behavior. For example, more homogenous local tuning in AL versus ML might 

promote more consistent change in sensory evidence provided by AL microstimulation, 

resulting in more systematic changes in choice behavior. However, two lines of evidence 

argue against this interpretation. First, for both brain regions, neurons recorded on the same 

electrode had comparable preferred frequencies (median [IQR] difference in the preferred 

frequency 0.33 [0–1.2] octaves for ML and 0.33 [0–0.8] octaves for AL; Wilcoxon rank-sum 

test for H0: ML and AL have the same difference, p=0.79). Second, we did not identify for 

either brain region any systematic relationship between the size of the microstimulation 

current (range=25–75 μAmp) and the size of the associated shift in the psychometric 

functions (Pearson’s r for current intensity versus psychometric shift =−0.30, p=0.06 for ML 

and 0.15, p=0.33 for AL) or discrimination threshold (r for current intensity versus 

psychometric slope =−0.06, p=0.72 for ML and 0.13, p=0.42 for AL), which might be 

expected to differ when comparing activation of locally homogenous versus heterogeneous 

populations. Thus, these microstimulation results suggest that AL plays a more direct and 

causal role than ML in the formation of the decisions that guided the monkeys’ behavioral 

responses on the low-high task.

DISCUSSION

We combined behavior, neural recordings, and electrical microstimulation to test if and how 

auditory-evoked neural responses in the ML and AL belt regions of auditory cortex 

contribute sensory evidence to a perceptual decision about the frequency content of an 

auditory stimulus. Despite similar modulation by the timing and frequency content of the 

stimulus (Fig. 4), ML and AL differed considerably with respect to their relationships to 

behavioral choices. In particular, neuronal sensitivity was positively correlated with choice 

probability, and electrical microstimulation biased choices, for AL but not ML. Our results 

are the first to demonstrate that two distinct brain regions in the ventral auditory pathway 

can have similar stimulus-driven responses but different causal relationships with a 

perceptual decision.

Our behavioral analyses suggested that the monkeys formed their auditory decisions by 

temporally accumulating sensory evidence in a manner consistent with a well-known 

sequential-sampling model, the DDM
18–20, 28–33

. Because ML and AL activity is strongly 

linked to auditory input and not behavioral output, we focused on analyses that addressed 

potential roles of these brain regions in providing sensory evidence for the decision. We do 

not know how and where in the brain this decision is formed, but it is likely that downstream 
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brain regions (e.g., the ventrolateral prefrontal cortex
34

) might accumulate this evidence to 

form the decision. On a more practical level, the DDM fits provided an estimate of the time 

within a trial that the monkeys used to form the decision, allowing us to better identify 

neural modulations that were relevant to the decision process
14

.

Such modulations included choice-selective responses of the most sensitive AL neurons (i.e., 

those with the highest neurometric slopes; Fig. 6). One interpretation of this result is that 

these weak choice-related signals reflect a feedforward decision process that uses pooled 

activity from the most sensitive AL neurons as evidence
22

, which is consistent with our 

microstimulation findings and is reminiscent of findings from other systems
23–26

. 

Alternatively, these signals might represent feedback to relevant sensory regions once the 

decision is formed elsewhere, which is consistent with our finding that the modulations 

occurred relatively late in the decision process
8, 27

. Regardless, this result reinforces the 

importance of appropriately identifying the temporal window in which to conduct analyses 

that relate neural activity with behavior
14

. By doing so, we identified striking differences in 

choice-related signals in ML and AL, which might reflect, in part, their anatomical 

relationship: because ML provides a major source of auditory information to AL 

(schematized in Fig. 3), neural representations of stimulus features in ML might be 

transformed into representations of sensory evidence in AL via a single stage of information 

processing
4
.

Extending our approaches might also help clarify previous, mixed findings relating auditory 

cortex to choice behavior. Under certain conditions, neural activity in auditory cortex is not 

reliably modulated by choice
35, 36

. Our new findings suggest that such a lack of overall 

choice modulation might reflect the absence of a direct role in the decision process, like for 

ML, or alternatively a more nuanced role involving primarily contributions from the most-

sensitive neurons, like for AL. In contrast, other conditions have been shown to elicit 

stronger and more systematic choice-related activity than we found, even for regions in the 

ventral pathway as early as the primary auditory cortex
8, 37

. Several non-exclusive reasons 

may contribute to this apparent difference from our results. One possibility is basic 

differences between task designs: we used a forced-choice discrimination task that might 

require a more complex decision variable, using multiple levels of processing, than the 

detection tasks used by others
8, 38

. Second, our task required a relatively high-level decision 

about the relative frequencies of high and low tone bursts in a sequence, whereas other tasks 

required decisions about lower-level stimulus features (e.g., pitch or amplitude modulation) 

that might be represented directly in the responses of individual neurons in the early auditory 

pathway
8, 39–41

. A third possibility involves differences in how choice-related activity was 

analyzed. We focused on neural data from trials in which the stimulus was relatively 

ambiguous (i.e., low coherence) to help isolate the effects of choice from other stimulus-

related factors on neural responses. In contrast, previous studies might have conflated 

stimulus- and choice-related activity
8, 37, 38

.

In summary, our findings are consistent with the hypothesis that the ventral auditory 

pathway is functionally and causally involved in forming auditory perceptual decisions. A 

simple, feedforward scheme might involve a representation of the acoustic features of a 

stimulus in the core auditory cortex and ML, which gets converted into task-relevant sensory 
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evidence in AL. This evidence, in turn, is used to form the decision in the ventrolateral 

prefrontal cortex
34

. The functional contributions of each of these brain regions may be 

further modified by the specific nature of the task and auditory decision
3, 8, 37

. This 

hierarchical relationship may be analogous to that observed for perceptual decisions in the 

visual and somatosensory systems
15, 42

. Future research should focus on clarifying the 

differential and specific contributions of core auditory cortex and ML to auditory perception, 

identifying the mechanism by which sensory evidence in AL is converted into a choice in 

the prefrontal cortex, and the contribution of correlated activity to perception and decision-

making
8,43

.

MATERIALS AND METHODS

The University of Pennsylvania Institutional Animal Care and Use Committee approved all 

of the experimental protocols. All surgical procedures were conducted under general 

anesthesia and using aseptic surgical techniques. The authors were not blind to group 

allocation during the experiment and in assessing the data outcomes.

In each session, a male monkey (Macaca mulatta; monkey T [15 years old] or monkey A [14 

years old]) was seated in a primate chair. A calibrated speaker (model MSP7, Yamaha) was 

placed in front of the monkey at its eye level. The monkey moved a joystick, which was 

attached to the primate chair, to indicate its behavioral report. These sessions took place in 

an RF-shielded room that had sound-attenuating walls and echo-absorbing foam on the inner 

walls.

Identification of Auditory-Cortical Fields

Prior to recording, the stereotactic locations of AL and ML were identified through 

structural MRI scans
44–46

. ML and AL were functionally differentiated by their tonotoptic 

organization
4, 12, 13

; see Fig. 3 and the Preferred-frequency task (below).

Auditory Tasks and Stimuli

Auditory stimuli were generated using the RX6 digital-signal-processing platform (TDT 

Inc.) and were transduced by the Yamaha speaker.

Preferred-frequency task—Monkeys listened passively while individual tone bursts 

were presented in a random order. The tone bursts (100-ms duration with a 5-ms cos2 ramp; 

65 dB SPL) varied between 0.3–12 kHz in one-third octave steps. A neuron’s “preferred 

frequency” was the frequency that evoked the highest firing rate during tone presentation.

Low-high task—This single-interval, two-alternative forced-choice discrimination task 

required the monkey to report whether a temporal sequence of tone bursts contained more 

low-frequency or high-frequency tone bursts (Fig. 1). A trial began with the monkey 

grasping the joystick, and, after a delay of 400 ms, a sequence of tone bursts (50-ms 

duration; 5-ms cos2 ramp; 10-ms inter-burst interval) was presented. The monkey moved the 

joystick: (1) to the right to report that the sequence contained more low-frequency tone 

bursts, or (2) to the left to report that the sequence contained more high-frequency tone 

bursts. The monkey could report its choice at any time after stimulus onset.
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The frequency of each tone burst was determined relative to the preferred frequency of a 

concurrently recorded neuron. By convention, when the preferred frequency was <1750 Hz, 

we used it as the “low frequency,” and the other (non-preferred) frequency was 1–3 octaves 

above that value. In contrast, when the preferred frequency was >1750 Hz, we used it as the 

“high frequency,” and the other (non-preferred) frequency was 1–3 octaves below that value.

On a trial-by-trial basis, we randomly varied the strength of the sensory evidence by varying 

the proportion of low- and high-frequency tone bursts (coherence) in the auditory stimulus. 

A stimulus with all low-frequency tone bursts was a −100% coherence stimulus, whereas a 

stimulus with all high-frequency tone bursts was a +100% coherence stimulus. These 

sequences were the most easily discriminable (Fig. 1a). A stimulus with 0% coherence was 

one in which 50% of the tone bursts were randomly assigned to be low or high frequency. 

Because this stimulus had equal numbers of low- and high-frequency tone bursts, it was 

hardest to discriminate (Fig. 1a). Each stimulus was generated by randomly assigning the 

frequency of each tone burst to the low- or high-frequency value based on the given 

coherence. For all analyses, stimulus coherence was calculated from the actual proportion of 

low- and high-frequency tone bursts that were presented from stimulus onset until the 

monkey indicated its choice by moving the joystick (i.e., during the response-time [RT] 

interval) on the given trial.

Training procedure and reward schedule for the low-high task—Each monkey 

was first trained with the most easily discriminable stimuli (i.e., ±100% coherence stimuli) 

and given a juice reward for a correct choice. The monkey’s reward did not depend on the 

speed of the behavioral report, only its accuracy. Error trials resulted in a 2-s longer inter-

trial interval. After performance stabilized, more difficult stimulus coherences were 

introduced. Because there was not a “correct” answer for a 0%-coherence stimulus, the 

monkey received a reward on 50% of the trials, independent of its behavioral report.

Recording Methodology

For each recording session, a tungsten microelectrode (~1.0 MΩ @ 1 kHz; FHC Inc.) was 

placed in a skull-mounted microdrive (Narishige, MO-95) and then lowered into the brain 

through a recording chamber. All neural signals were sampled at 24 kHz, band-pass filtered 

between 700 Hz and 7 kHz (RA16PA and RZ2, TDT Inc.), and stored for online and offline 

analyses. OpenEx (TDT Inc.), Labview (NI Inc.), and Matlab (The Mathworks Inc.) 

software synchronized behavioral control with stimulus production and data collection. 

Single-neuron activity was isolated from the neural signals with on-line (OpenSorter, TDT 

Inc.) and off-line spike-sorting programs (WaveClus
47

).

Data-Collection Strategy

Once a neuron was isolated, the monkey participated in the preferred-frequency task. After 

identifying the preferred frequency of the neuron, we assigned the values of the low and 

high frequencies for the low-high task. Next, the monkey participated in the low-high task.

During electrical-microstimulation sessions, on 50% of randomly interleaved trials, we 

delivered negative-leading bipolar current pulses (rate: 300 Hz; pulse duration: 250 μs; 
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amplitude: 25–75 μA) using a dual-output square-pulse stimulator (Grass S88) and two 

optical isolation units (Grass PSIU6)
32, 48

. Microstimulation started with stimulus onset and 

terminated at joystick movement. Microstimulation trials were rewarded using the same 

schedule as non-microstimulation trials. Thus, the monkeys were not incentivized to respond 

differently during microstimulation trials than during non-microstimulation trials.

Behavioral Analyses

Drift-diffusion model—Psychophysical and chronometric data were fit to a standard 

drift-diffusion model (DDM), which models a decision process in which noisy evidence is 

accumulated over time until it reaches a fixed bound
18–20, 29–33

. This version had five free 

parameters: k, A, B, F1, and F2. k governed the stimulus sensitivity of the moment-by-

moment sensory evidence: the evidence had a Gaussian distribution N(μ,1) in which the 

mean μ scaled with the stimulus coherence (COH): μ = k× COH. The decision variable was 

the temporal accumulation of this momentary sensory evidence. A decision occurred when 

this decision variable reached a decision bound (+A or −B, corresponding to a high- and 

low-frequency choice, respectively). “Decision time” was the time between stimulus onset 

and the crossing of either bound. “Response time” was the sum of the decision time and a 

non-decision time (F1 for a high-frequency choice and F2 for a low-frequency choice). Non-

decision time can include processes such as stimulus encoding and motor preparation. The 

probability that the decision variable crossed the +A bound first is . The average 

decision time is  for high-frequency choices and 

 for low-frequency choices.

Logistic analysis of psychophysical data—We used a logistic function
32, 49, 50

 to fit 

psychophysical performance during recording and microstimulation sessions
31, 50, 51

. This 

function related the probability (p) that the monkey reported high-frequency choices as a 

function of coherence (COH) and took the form: . L 

represents the upper and lower asymptotes (lapse rates) of the logistic function. βCOH 

represents the effect that coherence had on the monkey’s reports; it governs the slope of the 

psychometric function. β0 governs the function’s horizontal position. A maximum-likelihood 

procedure fit the logistic function to the behavioral data.

From this logistic fit, we quantified two parameters. (1) Discrimination threshold, a measure 

of sensitivity to stimulus coherence, depended on βCOH and governed the steepness of the 

psychometric curve (steeper slopes reflected higher sensitivity). Discrimination threshold 

was defined as the slope of the function determined from the 25% and 75% high-frequency 

choice points
10

. (2) Choice bias depended on β0 and was the stimulus coherence that elicited 

50% high-frequency choices.

The effect of microstimulation on behavior was quantified using the following procedure. 

First, we independently fit logistic curves to the behavioral data generated on 

microstimulation and on non-microstimulation trials, with the assumption of a common 
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lapse. Next, using data from non-microstimulation trials, we used a bootstrap procedure to 

resample trials and fit the resampled data to the logistic function
32

. From this resampling 

procedure, distributions of discrimination thresholds or choice biases were generated. A 

microstimulation parameter was considered significant if it was outside the 95% confidence 

interval of its resampled distribution.

Neural Analyses

No statistical methods were used to pre-determine sample sizes but our sample sizes are 

similar to those reported in previous publications and are similar to those generally 

employed in the field
51, 52

.

Neurometric analysis—A neurometric function was constructed from neural activity on 

correct trials for each neuron. We only used correct trials to ensure that the neurometric 

function indexed stimulus sensitivity, independent of choice effects
21, 22

. This function plots 

the probability that an ideal observer could use firing rate alone to correctly identify whether 

a stimulus contained more high-frequency tone bursts. We computed the curve by comparing 

neural responses of each neuron to pairs of stimulus coherences with the same magnitude 

but different signs (e.g., <−80% versus >80%), which is equivalent to assuming that on a 

given trial, the decision is made by comparing the responses of a pair of neurons with 

symmetric tuning properties (i.e., one tuned to the high-frequency value, the other to the 

low-frequency value)
21

. For each symmetric pair of coherence values, we pooled the firing 

rates from correct trials into two distributions and generated a receiver-operating-

characteristic (ROC) curve. The area under the curve is the probability that this ideal 

observer could discriminate between two stimulus coherences (we expressed this probability 

as percent correct to facilitate comparison with the psychometric data). This process was 

repeated for all of the pairs of stimulus coherences (<−80% versus >+80%; −80% – −40% 

versus +40% – +80%; and −40% – 0% versus 0% – +40%). Finally, this function was fit to a 

logistic equation analogous to that described in Psychophysical analyses.

Neurometric curves were calculated using 300-ms bins of neural data that advanced in 10-

ms increments. Neurometric sensitivity was quantified by calculating the slope of the 

neurometric function: as the value of βCOH of the fitted logistic increases, the slope of the 

neurometric curve becomes steeper.

Choice probability—Choice probability quantifies the ability of an ROC-based ideal 

observer to determine choice based only on spike rates from a single neuron, given 

responses separated by choice (in this case, high frequency versus low frequency) for 

nominally identical stimulus conditions
24, 26, 34, 35, 53

. We computed choice probability 

separately for trials using ranges of low-coherence values, which elicited sufficient numbers 

of correct and error trials to be able to separate responses to a given range into the two 

choices. The ranges were −20% – −10%; −10% – 0%; 0%; 0% – +10%; and +10% – +20%. 

Reported choice probabilities were the mean of the values computed separately for each 

range.
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Code availability

The data analyses were performed in Matlab; this code is available upon request.

A supplementary methods checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Stimuli and task
a, The auditory stimulus was a temporal sequences of tone bursts. Coherence refers to the 

percentage of high-frequency bursts (up to +100%) or low-frequency bursts (down to 

−100%). b, The monkey indicated its choice by moving a joystick to the right to report “low 

frequency” or to the left to report “high frequency.” The monkey could report its choice any 

time after stimulus onset.
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Figure 2. Psychophysical performance on the low-high task
Psychometric (left) and chronometric (right) functions for Monkey T (top) and Monkey A 

(bottom). Psychometric functions are plotted as the percentage of trials in which monkey 

chose “high frequency” as a function of signed coherence, where larger negative/positive 

coherence values indicate more low/high frequency tone bursts. The horizontal dashed grey 

lines on the psychometric plots indicate lapse rate (errors for strong stimuli, presumably 

reflecting lapses in attention or inappropriate application of the decision-motor mapping, 

which were estimated from logistic-model fits indicated as solid blue curves). Chronometric 

functions are plotted as the mean RT, which was the time interval between stimulus onset 

and onset of joystick movement, on correct trials as a function of signed coherence. Grey 

dots are low-frequency choices, and black dots are high-frequency choices. Solid red curves 

are simultaneous fits of both psychometric and chronometric data to a drift-diffusion model 

(DDM)
18–20, 29–33

. The horizontal dashed grey lines on the chronometric plots indicate 

choice-dependent non-decision times (NDT) estimated by the DDM fits. Decision times 
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(DT) were estimated as the difference between the trial-specific RT and the choice-specific 

NDT.
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Figure 3. Recording locations and ML/AL tonotopy
a, Schematic of the ventral auditory pathway. b, Coronal MRI sections of monkey A’s brain 

at the level of the superior temporal gyrus. The purple squares indicate targeted locations of 

ML and AL. c, Examples of tuned frequency-response profiles from ML (top) and AL 

(bottom). Each colored line represents responses from a different neuron. Solid lines indicate 

mean values; dotted lines indicate s.e.m. d, Reconstructions of ML and AL tonotopy. The 

preferred frequency of ML neurons increased at more posteriorly located sites, whereas 

those of AL neurons increased at more anterior locations. The ML-AL border was identified 

from the location of the frequency-gradient reversal. The solid lines are linear regressions 

that relate recording location with preferred frequency in ML and AL.
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Figure 4. Neuronal sensitivity to stimulus frequency and coherence in ML (top) and AL (bottom)
a, Single-neuron examples of responses from correct trials. Color corresponds to stimulus 

coherence. Grey lines show low-coherence responses separated by choice, as indicated. Left 

panels show activity aligned to stimulus onset. Right panels show activity aligned to the 

onset of joystick movement. b, Population histograms from correct trials, plotted as in a 
except that coherence is encoded with respect to each neuron’s preferred and non-preferred 

frequency (see legend).
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Figure 5. Relationship between neurometric and psychometric sensitivity for ML (top) and AL 
(bottom)
a, Example neurometric curves. Different curves and their corresponding neurometric slopes 

(an index of sensitivity) are shown in different colors. The curves were obtained from neural 

data elicited at the time of the peak of the correlation between neurometric and behavioral 

sensitivity (see panel c). b, Time courses of average neurometric slopes. The neurometric 

slope was calculated using 300-ms bins (with 10-ms increments) relative to stimulus onset. 

This relatively large bin size was needed to obtain reliable slope measurements and likely 

exaggerates the apparently gradual rise in sensitivity following stimulus onset. Thick/dashed 

lines show median/95%-confidence intervals across individual neurons. Insets show the 

distributions of neurometric slopes calculated from individual neurons using firing rates 

measured between stimulus onset and the inferred time of the decision commitment for each 

trial (i.e., the end of the decision time plus an additional 50 ms to account for the sensory 

latency), per monkey; black bars indicate H0: slope>0, p<0.05 (one-tailed permutation test). 

c, d, e, Time-dependent correlations between neuron-by-neuron neurometric slope and the 

simultaneously measured psychometric slope, plotted relative to stimulus onset (c), the 

inferred time of the decision commitment (d), and the inferred time of movement initiation 

(e). Significant regression coefficients are colored red (Spearman correlation coefficient, 

p<0.05). In b and c, the horizontal bars represent the range of the inferred times of decision 

commitment, for high (<−80% and >+80%, black), middle (−80% to −20% and +80% to 

+20%, dark gray), and low (−20% to +20%, light gray) coherence.
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Figure 6. Relationship between choice probability and neurometric sensitivity for ML (top) and 
AL (bottom)
a, Distributions of choice probabilities calculated from firing rates between stimulus onset 

and the inferred time of the decision commitment (i.e., the end of the decision time plus an 

additional 50 ms). Black bars indicate H0: choice probability≠0.5, p<0.05 (two-tailed 

permutation test). Arrows indicate median values. b, c, d, Time-dependent correlations 

between neuron-by-neuron choice probability and neurometric sensitivity (i.e., slope), 

plotted relative to stimulus onset (b), the inferred time of the decision commitment (c), and 

the inferred time of movement initiation (d). Significant regression coefficients are 

highlighted in red (Spearman correlation coefficient, p<0.05). The horizontal bars represent 

the range of the inferred times of the decision commitment, for high (<−80% and >+80%, 

black), middle (−80% to −20% and +80% to +20%, dark gray), and low (−20% to +20%, 

light gray) coherence. e, Scatterplot examples showing the correlation between neurometric 

slope and choice probability for each monkey. These plots were generated from the time 

point with the largest correlation in AL for each monkey.
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Figure 7. Effect of microstimulation on behavioral performance during the low-high task for ML 
(top) and AL (bottom)
a, Single-site examples of microstimulation effects on psychometric performance. 

Psychometric functions are plotted as in Fig. 2. Red/blue symbols are for data from trials 

with/without microstimulation. Solid lines are logistic fits, computed separately for the two 

conditions. Dotted lines are 95% confidence intervals of the non-microstimulation trials that 

were calculated by a bootstrap procedure
32

. b, Average effects of microstimulation with 

respect to low-tone sites, which were expected to bias behavior towards more low-tone 

choices (corresponding to hand movements to the right, or ipsilateral to the targeted brain 

hemisphere; solid lines), and high-tone sites, which were expected to bias behavior towards 

more high-tone choices (corresponding to hand movements to the left, or contralateral to the 

targeted brain hemisphere; dashed lines). Solid lines indicate the median difference in 

choices for the given coherence for trials with versus without microstimulation. Dotted lines 

indicate bootstrapped 1st and 3rd quartiles of the median difference. c, d, Distributions of 

session-by-session effects of microstimulation on choice bias (c) and discrimination 

threshold (d) from logistic fits. The “expected” direction for choice bias is toward choices 

associated with the given site’s preferred frequency, whereas “unexpected” is toward those 

associated with the non-preferred frequency. The data in blue is from monkey T and the data 

in red is from monkey A; dark bars indicate sites with significant (p<0.05; one-tailed 

permutation test) microstimulation effects. Arrows indicate median values; labels indicate 

result of two-tailed Wilcoxon rank test for H0: median=0.
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