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Abstract

The recent discovery of functional brown adipocytes in adult humans illuminates the potential of these cells in the
treatment of obesity and its associated diseases. In rodents, brown adipocyte-like cells are known to be recruited in white
adipose tissue (WAT) by cold exposure or b-adrenergic stimulation, but the molecular machinery underlying this
phenomenon is not fully understood. Here, we show that inducible brown adipogenesis is mediated by the microRNA miR-
196a. We found that miR-196a suppresses the expression of the white-fat gene Hoxc8 post-transcriptionally during the
brown adipogenesis of white fat progenitor cells. In mice, miR-196a is induced in the WAT-progenitor cells after cold
exposure or b-adrenergic stimulation. The fat-specific forced expression of miR-196a in mice induces the recruitment of
brown adipocyte-like cells in WAT. The miR-196a transgenic mice exhibit enhanced energy expenditure and resistance to
obesity, indicating the induced brown adipocyte-like cells are metabolically functional. Mechanistically, Hoxc8 targets and
represses C/EBPb, a master switch of brown-fat gene program, in cooperation with histone deacetylase 3 (HDAC3) through
the C/EBPb 39 regulatory sequence. Thus, miR-196a induces functional brown adipocytes in WAT through the suppression of
Hoxc8, which functions as a gatekeeper of the inducible brown adipogenesis. The miR-196a-Hoxc8-C/EBPb signaling
pathway may be a therapeutic target for inducing brown adipogenesis to combat obesity and type 2 diabetes.
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Introduction

Brown adipose tissue (BAT) combusts excess energy through

mitochondrial energy uncoupling mediated by Uncoupling protein-

1 (Ucp1, also known as thermogenin) in nonshivering thermogenesis

[1]. Recent discoveries of metabolically active BAT in adult humans

[2–6] have highlighted BAT as a new therapeutic target for treating

obesity and its associated diseases, such as type 2 diabetes mellitus

[7]. The activity of BAT is inversely correlated with body mass

index in humans [3–4], implying a significant role for BAT in the

development of obesity. Importantly, the brown adipocyte-like cells

in white adipose tissue (WAT) can be generated by cold exposure or

b3-adrenergic stimulation in rodents [8–9], and the activity of BAT

can be increased by cold exposure or b3-adrenergic stimulation in

humans [2]. The molecular mechanisms underlying this inducible

brown adipogenesis have not been fully elucidated.

The expression patterns of the Hox family of homeobox genes

(Hox genes) are characteristically distinct between BAT and WAT

[10–12], which implies a significant role of Hox genes in the

determination of two fat types. But its significance has not been fully

understood. Hox genes are representative of developmental genes

and confer an anteroposterior positional identity during embryo-

genesis. Several Hox genes have roles in differentiation systems,

such as hematopoiesis [13], myogenesis [14], and cardiogenesis

[15], but relatively less is known about their roles in adipogenesis.

Among the differentially expressed Hox genes, Hoxc8 is more highly

expressed in WAT than in BAT and is categorized as a white-fat

gene [11,16]. These observations imply that Hoxc8 may have an

unknown role in the determination of the two fat types.

microRNAs (miRNAs) are important regulators of the gene

networks underlying diverse biological phenomena [17]. miRNAs are

small, non-coding RNAs that base pair with specific mRNAs and

suppress gene expression post-transcriptionally [18]. miRNAs con-

stitute an essential regulatory layer at the level of the transcriptional

network [19]. Through their regulatory capacity, miRNAs affect the

output of signaling networks by fine-tuning or switching output levels

[19] and promote or redirect dynamic flow in genetic circuits and

affect differentiation [20]. The roles of miRNAs in the inducible

brown adipogenesis in WAT are not well understood.

We here show that single miRNA miR-196a is capable of

recruiting the metabolically functional brown adipocytes in WAT in

mice. The miR-196a expression is induced in the WAT-progenitor

cells in mice exposed to cold or b3-adrenergic stimulation. The

induction of miR-196a is required for the brown fat gene expression

and is sufficient to generate the metabolically functional brown

adipocyte-like cells in WAT in mice. The target gene of miR-196a is

white-fat gene Hoxc8, which directly represses the expression of C/

EBPb, a master regulator of brown adipogenesis.
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Results

HOXC8 Represses Brown-Fat Genes and Is Down-
Regulated During Brown Adipogenesis of Human WAT-
Progenitor Cells

Recent reports have shown that the WAT-derived progenitor

cells undergo brown adipogenesis in vitro in both mice [16,21] and

humans [16,22]. Consistently, the human fat progenitor cells

derived from flank subcutaneous WAT (hereafter, WAT-progen-

itor cells) exhibited increased brown-fat gene expression after

differentiation (Figure S1A and S1B). HOXC8 is categorized as a

white-fat gene [16] and RNA-seq analysis revealed that HOXC8

was most highly expressed among the clustered HOX genes in the

human WAT-progenitor cells (Figure 1A and 1B). We noticed that

HOXC8 was down-regulated in the differentiated adipocytes

(Figure 2A and 2B). Contrarily, the expression of HOXC6 did not

change after differentiation (Figure S1C) and was not particularly

high in WAT (Figure S1D), though HOXC6 is located adjacent to

HOXC8 in HOXC cluster and was the second most highly

expressed gene (Figure 1A and 1B). These results implied the

existence of specific regulatory machinery for HOXC8 expression.

Down-regulation of HOXC8 was observed at the protein level

(Figure 2C) but not at the mRNA level (Figure 2D). These results

implied that HOXC8 might be regulated post-transcriptionally.

Transduction of HOXC8 in the human WAT-progenitor cells

suppressed the brown-fat genes including C/EBPb [23], UCP1

[24], and ADIPSIN (also known as CFD) (Figure 2E) [23]. In

contrast, HOXC8 did not suppress the white-fat genes including

leptin [11], CD24 [25], HMGA2 [26], and ADIPOQ (also called

adiponectin) (Figure 2E). These results suggested that HOXC8 might

regulate the brown-fat genes and that HOXC8 might be an

important regulator for brown adipogenesis of the WAT-

progenitor cells.

Hoxc8 Is Down-Regulated During Brown Adipogenesis In
Vivo

To extend our findings in vitro to in vivo, we proceeded to

a mouse model of brown adipogenesis. In mice, the Hoxc8

expression was higher in WAT than BAT and other tissues (Figure

S2). Stromal vascular fraction (SVF) of fat depots contains fat

progenitor cells (hereafter, SVF cells). The Hoxc8 expression was

suppressed after the SVF cells were induced to undergo brown

adipogenesis (Figure 3A and 3B) and expressed Ucp1 (Figure 3C),

Pgc-1a, and C/EBPb (Figure 3D). In mice, brown adipogenesis can

be induced in WAT by administering a b3-adrenergic agonist,

CL-316,243, or by exposing mice to cold environment. After

administration of CL-316,243, the expression of Hoxc8 was down-

regulated prominently in inguinal WAT (ingWAT) (Figure 3E).

The down-regulation of Hoxc8 was relatively modest in epi-

didymal WAT (epiWAT) and interscapular BAT (iBAT) than in

ingWAT (Figure 3E). To delineate the Hoxc8 expression changes

during white and brown adipogenesis, the Hoxc8 expression levels

were compared between the progenitor cell fraction (SVF) and

tissue fraction mainly composed of mature adipocytes. As a result,

the Hoxc8 expression is slightly increased in saline-treated WAT

than in SVF and is down-regulated in CL-316,243-treated fat that

underwent brown adipogenesis, indicating that Hoxc8 is down-

regulated specifically during brown adipogenesis, but not during

white adipogenesis (Figure 3F). Thus, the down-regulation of

Hoxc8 is observed during brown adipogenesis both in vitro and in

vivo.

miR-196a Regulates Hoxc8 Expression in Brown
Adipogenesis of WAT-Progenitor Cells

We next sought to identify the mechanism underlying the down-

regulation of Hoxc8 during brown adipogenesis. Post-transcrip-

tional regulation of Hoxc8 was suggested by the in vitro exper-

iments. Characteristically, a number of Hox genes are regulated

by miRNAs [14,27–29] and the Hoxc8 expression can be down-

regulated by evolutionally conserved miR-196a via translational

inhibition during vertebrate development [28]. There are two

genes encoding miR-196a (miR-196a-1 and miR-196a-2) located

within the Hox gene clusters [28]. Based on the hypothesis that

Hoxc8 might be regulated by miR-196a, we investigated the miR-

196a expression during the brown adipogenesis in mice. We found

that the miR-196a expression was induced in WAT depots of

mice exposed to cold environment or b3-adrenergic stimulations

(Figure 4A). More specifically, miR-196a was more highly induced

in the SVF cells (Figure 4B) than in mature adipocytes (Figure S3).

Thus, miR-196a expression is induced in the SVF cells in mice

exposed to b3-adrenergic stimulation or cold exposure. The in situ

hybridization analysis of miR-196a showed the induction of miR-

196a in WAT after CL-316,243 administration (Figure 4C). Based

on the finding that the miR-196a expression is induced during

the brown adipogenesis in WAT in mice, we next investigated

whether the miR-196a induction is required for the induction of

brown adipogenesis and Hoxc8 suppression. In vitro, the miR-

196a expression is induced during the differentiation of WAT-

progenitor cells derived from both mice (Figure 4D) and humans

(Figures S4A). More detailed analyses showed that miR-196a was

induced by forskolin, an adenylyl cyclase activator, implying the

significant role of cyclic AMP pathway to regulate miR-196a

expression (Figure S4B). To address the necessity of miR-196a in

the brown adipogenesis, antisense oligonucleotide (ASO) against

mR-196a was transfected to the mouse SVF cells. The miR-196a

expression was suppressed in the transfected cells (Figure 4E) and

the Hoxc8 expression was recovered in the transfected adipocytes

Author Summary

Obesity is caused by the accumulation of surplus energy
in a fatty tissue called white adipose tissue (WAT) and
can lead to important health problems such as diabetes.
Mammals additionally possess brown adipose tissue
(BAT), which serves to generate body heat to stabilize
body temperature under exposure to cold, and is
abundant in hibernating animals and human neonates.
In performing its function BAT consumes energy,
thereby reducing WAT fat accumulation. Recent studies
have shown that exposure to a cold environment
stimulates the partial conversion of WAT to BAT in mice,
and given that human adults have a limited amount of
BAT, such a conversion has the potential to afford a
novel method of obesity control. Here, we analyze the
molecular mechanism of this conversion using geneti-
cally manipulated mice and cells isolated from human
adipose tissue. We find that the expression levels of
a microRNA, miR-196a, positively correlate with the
conversion of WAT to BAT under cold exposure con-
ditions. We show that forced expression of miR-196a in
mouse adipose tissue increases BAT content and energy
expenditure, thereby rendering the animals resistant to
obesity and diabetes. Mechanistically, we observe that
miR-196a acts by inhibiting the expression of the
homeotic gene Hoxc8, a repressor of brown adipogen-
esis. These findings introduce the therapeutic possibility
of using microRNAs to control obesity and its associated
diseases in humans.

Brown Adipogenesis Induced by miR-196a
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(Figure 4F), indicating that Hoxc8 suppression was mediated by

miR-196a. The ASO against miR-196a suppressed the expression

of Ucp1 (Figure 4G and 4H) and other brown-fat genes (Figure 4H),

but not the leptin expression, indicating that miR-196a is necessary

for the brown fat gene expression. Thus, the upregulation of miR-

196a is required for the induction of brown fat gene expression

during the differentiation of WAT-progenitor cells.

We next sought whether the findings above are possible to be

generalized to the conventional brown adipogenesis, which occurs

in the iBAT. The miR-196a expression level was significantly

Figure 1. HOXC8 is most highly expressed among clustered HOX genes in human WAT-progenitor cells. (A) Strand-specific RNA-seq
results showing the expression levels of clustered HOX genes in undifferentiated human white fat (WAT) progenitor cells. The results with the clusters
of HOXA, HOXB, HOXC, and HOXD are shown. The position of RefSeq genes are shown below. (B) The expression levels of clustered Hox genes from
two biological replicates. FPKM, fragments per kilobase of exon per million mapped fragments.
doi:10.1371/journal.pbio.1001314.g001

Brown Adipogenesis Induced by miR-196a
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lower in iBAT than WAT (Figure S4C) and was not altered during

the differentiation of the iBAT-SVF cells (Figure S4D), suggesting

that miR-196a might not be involved in conventional brown

adipogenesis in iBAT. Furthermore, endogenous expression of

Hoxc8 was not detected in iBAT-SVF cells (Figure S5). Taken

together, miR-196a is upregulated in the WAT-progenitor cells

during the inducible brown adipogenesis in mice and is required

for the induction of brown fat gene expression.

miR-196a Induces Brown-Fat Genes Through Hoxc8
Suppression

We next asked whether Hoxc8 was an essential target of miR-

196a for the induction of brown-fat genes. We cloned the wild-type

(Hoxc8-wt39UTR) and miR-196a-binding site-deleted (Hoxc8-

DmiR-196-BS) Hoxc8-39UTR into a pCX4 retroviral vector and

transduced these constructs into human WAT-progenitor cells

(Figure S6A). The exogenous expression levels were comparable

among the constructs (Figure S6A). After the adipogenic induction,

the protein expression of Hoxc8 was suppressed in the Hoxc8-

wt39UTR-transduced cells than in Hoxc8-DmiR-196-BS- or

Hoxc8-transduced cells (Figure S6B), suggesting that the suppres-

sion of Hoxc8 was dependent on the miR-196a-binding site in the

Hoxc8 39UTR. The brown fat gene expression was specifically high

in the Hoxc8-wt39UTR-tranduced cells (Figure S6C), indicating

that the induction of brown-fat genes was regulated in a manner

dependent on the miR-196a-binding site of Hoxc8 mRNA. These

results suggest that miR-196a regulates brown-fat genes through

suppression of Hoxc8. To further corroborate that Hoxc8

suppression is an important step, Hoxc8 was knocked down using

Hoxc8 shRNA (Figure S7). As a result, the brown-fat genes

including C/EBPb and Ucp1 were induced (Figure S7A and S7B),

indicating that the suppression of Hoxc8 is a critical step for the

induction of brown-fat genes.

miR-196a Induces Brown Adipocyte-Like Cells in WAT
Based on the finding that miR-196a is required for the inducible

brown adipogenesis, we next addressed whether miR-196a is

capable of inducing brown adipogenesis in mice. We created

transgenic mice in which miR-196a and EGFP were expressed

under the control of the aP2 promoter/enhancer, which is

exclusively active in adipose tissues [30]. The transgenic mice

(hereafter, the miR-196a mice) were born in a Mendelian ratio

Figure 2. HOXC8 represses brown-fat genes and is down-regulated during brown adipogenesis of human WAT-progenitor cells. (A)
The immunofluoresence analysis of HOXC8 in human WAT-progenitor cells. Arrowheads indicate differentiated adipocytes that exhibit multiple
vesicles. The cells were counterstained with CellTracker and DAPI. The scale bars indicate 30 mm. (B) The percentage of HOXC8-expressing cells
among undifferentiated cells (Undiff) and differentiated cells (Diff). (C) The immunoblots for HOXC8 in human WAT-progenitor cells treated with an
adipogenic induction medium (Induction) or left untreated. b-actin was used as a loading control. (D) The qRT-PCR of HOXC8 mRNA expression levels
in human WAT-progenitor cells left untreated or induced to undergo differentiation. The data were normalized to 18S. (E) The qRT-PCR analysis of
genes in human WAT-progenitor cells transduced with Hoxc8 or control vector and induced to undergo differentiation. The results are normalized to
18S. All data are presented as means 6 SEM; * p,0.05 versus untreated. n.s., not significant.
doi:10.1371/journal.pbio.1001314.g002
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and were viable. The SVF cells isolated from the miR-196a mice

were EGFP-negative immediately upon isolation, but they became

EGFP-positive while they were kept in culture (Figure S8A) and

expressed miR-196a (Figure S8B), resulting in Hoxc8 suppression

(Figure S8C and S8D). After differentiation induction, the cells

expressed more intense EGFP and underwent adipogenesis. The

aP2 promoter activity was observed in the fibroblast-like cells in

ingWAT depots (Figure S8E), which might represent the fat

progenitor cells undergoing adipogenesis. The SVF cells isolated

from the miR-196a mice expressed brown-fat genes more highly

than the cells from wild-type (WT) mice after differentiation in

vitro (Figure S8F), indicating that miR-196a promotes brown

adipocyte differentiation of the WAT-progenitor cells. To ask

whether the miR-196a function is cell-autonomous, the human

WAT-progenitor cells were transduced with lentivirus expressing

miR-196a. As a result, miR-196a enhanced the brown fat gene

expression during differentiation, indicating the cell-autonomous

function of miR-196a (Figure S9).

In vivo, the gene-expression analysis revealed an induction of

brown-fat genes, including C/EBPb, Prdm16, and Ucp1 in ingWAT

(Figure 5A), and the histological analysis revealed clusters of

multilocular cells with Ucp1 expression (Figure 5B). It is known

that different WAT depots respond to brown fat-inducing

stimulations to different extents [31], and we therefore addressed

the responses to the miR-196a expression in different fat depots.

The miR-196a expression levels were comparable among the

different fat depots in the miR-196a mice (Figures 5C and S10).

The induction of C/EBPb, Ucp1, and Pgc-1a was more

prominent in the ingWAT than in the epiWAT (Figure 5D and

5E) and was further augmented after CL-316,243 treatment

(Figure 5D and 5E). In the iBAT, no appreciable influence of miR-

196a was observed (Figure 5D and 5E). Thus, miR-196a induces

the brown adipocyte-like cells with characteristic appearance and

gene expression profile of brown adipocytes in WAT.

The miR-196a Mice Show Resistance to Obesity and
Improved Glucose Metabolism

Based on the finding that miR-196a is capable of inducing the

brown adipocyte-like cells, we next addressed whether they were

metabolically functional. The miR-196a mice showed a tendency

to be leaner than WT mice (Figure 6B), and even when fed a high-

fat diet, they exhibited resistance to obesity (Figure 6A and 6B),

despite the fact that their food intake tended to be increased

compared with that of the WT littermates (Figure 6C). The weight

reduction was attributable to a reduced fat accumulation (Figure

S11). To interrogate the mechanism behind the obesity resistance

of the miR-196a mice, indirect calorimetry was performed. We

used mice with similar body weight under a normal diet. As a

result, the oxygen consumption (Figure 6D) and the energy

Figure 3. Hoxc8 is down-regulated during brown adipogenesis in vivo. (A) Immunofluorescence analysis of Hoxc8 in the mouse SVF cells
derived from inguinal WAT. The cells were untreated (Undifferentiated) or induced to undergo differentiation (Adipogenic induction). The lipid
droplets and nuclei were counterstained with Bodipy and DAPI, respectively. Scale bars indicate 30 mm. (B) Immunoblots of Hoxc8 in the mouse SVF
cells left untreated or induced to undergo differentiation. b-actin served as a loading control. (C) Upper, the UCP1 expression in the differentiated
mouse SVF cells. Scale bars indicate 30 mm. Lower, the fold increase of mRNA expression levels of Ucp1 and Ucp2 in the mouse WAT-SVF cells induced
to undergo differentiation. The results were normalized to b-actin. (D) The expression of Pgc-1a and C/EBPb induced during the differentiation of
mouse SVF cells. The results were normalized to b-actin. The data are presented as means 6 SEM; * p,0.05. (E) Western blot analysis in different fat
depots from mice treated with or without CL-316,243, a b3-adrenergic receptor agonist. ingWAT, epiWAT, and iBAT denote inguinal WAT, epididymal
WAT, and interscapular BAT, respectively. (F) Western blot analysis of Hoxc8 in SVF cells and ingWAT of mice treated with CL-316,243 (CL) or saline.
doi:10.1371/journal.pbio.1001314.g003

Brown Adipogenesis Induced by miR-196a
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Figure 4. miR-196a is induced in SVF cells during brown adipogenesis and is required for UCP1 expression. (A) The expression of miR-
196a in the ingWAT depots of mice housed at 4uC (Cold) or at ambient temperature for 5 h (n = 6), and of mice treated with CL-316,243 (CL) or saline
for 7 consecutive days (n = 6). The results are normalized to U6. (B) The expression of miR-196a in WAT-SVF cells of the mice exposed to cold
environment or CL-316,243 (CL, n = 6). The data are normalized to U6. (C) The in situ hybridization of miR-196a in the ingWAT depots of mice treated
with CL-316,243 or saline. The sections were probed with a miR-196a-antisense (AS) probe or control (Ctrl) probe. Size bars indicate 50 mm. All data
are presented by means 6 SEM; * p,0.05. (D) The miR-196a expression levels in mouse SVF cells during differentiation in vitro. (E) The miR-196a
expression level in the mouse SVF cells transfected with antisense oligonucleotides (ASO) against miR-196a. (F) The immunoblots for Hoxc8 in mouse
SVF cells transfected with ASO against miR-196a or with control (Ctrl) oligonucleotides after differentiation. b-actin served as a loading control. (G)
The immunoblots for Ucp1 in mouse SVF cells transfected with ASO against miR-196a or with Ctrl oligo followed by adipogenic induction. b-actin
served as a loading control. (H) The mRNA expression levels in the mouse SVF cells transfected with ASO against miR-196a or control (Ctrl)
oligonucleotides followed by differentiation induction. The results were normalized to b-actin. All data are presented by means 6 SEM; * p,0.05.
doi:10.1371/journal.pbio.1001314.g004
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expenditure (Figure 6E and Table S1) were enhanced during both

the light and dark phases in the miR-196a mice compared to the

WT mice, indicating the accelerated energy metabolism. The

difference of the oxygen consumption and the energy expenditure

was even enlarged when the mice were fed a high-fat diet (Figure

S12). The core body temperature was higher in the miR-196a

mice than in the WT mice (Figure 6F). These findings suggest that

miR-196a boosted the cellular energy combustion through the

induction of brown adipocyte-like cells. We next analyzed impacts

of miR-196a on glucose metabolism in the miR-196a mice. In the

glucose tolerance tests, the miR-196a mice showed lower blood

glucose (Figure 6G) and insulin levels (Figure 6H). After insulin

administration, they exhibited more pronounced declines in their

blood glucose levels (Figure 6I). These results imply that miR-196a

prevented the mice from developing insulin resistance, the

premorbid condition of type 2 diabetes. Taken together, these

findings suggest that the miR-196a-induced brown adipocyte-like

cells are metabolically functional and have favorable impacts on

glucose metabolism in mice.

Hoxc8 Targets C/EBPb in Cooperation With HDAC3 to
Regulate Brown-Fat Genes

The concept that miR-196a induces brown adipogenesis

through the suppression of Hoxc8, which might function as a

gatekeeper of brown adipogenesis in WAT, facilitated us to

investigate the target gene of Hoxc8 transcription factor. The

chromatin immunoprecipitation (ChIP) assays among the candi-

date genes revealed a significant enrichment of Hoxc8 in the C/

EBPb locus in the mouse genome (Figure 7A). C/EBPb is a crucial

regulator of brown adipogenesis, which is highly expressed in BAT

compared to WAT [23]. The enrichment was found in the 39

region, which harbors high interspecies conservation (Figure 7B,

Figure 5. miR-196a induces brown adipocyte-like cells in WAT. (A) The gene-expression analysis in the ingWAT of the wild-type (WT) and the
aP2-miR-196a transgenic mice. The results are normalized to b-actin. The values for the WT mice are set to 1. (B) Left, Hematoxylin and eosin staining
of an ingWAT section from a miR-196a mouse showing clusters of multilocular cells. Right, the corresponding section subjected to
immunofluorescence staining with a UCP1 antibody. The insets show the multilocular appearance of the induced brown adipocyte-like cells. The
scale bar indicates 100 mm. (C) The miR-196a expression levels in different fat pads of the WT and miR-196a mice. The results are normalized to U6. (D)
The protein expression in the different fat depots of the WT and miR-196a mice treated with or without CL-316,243. (E) The densitometric analysis of
(D). CL, CL-316,243. All data are presented as means 6 SEM; * p,0.05.
doi:10.1371/journal.pbio.1001314.g005

Brown Adipogenesis Induced by miR-196a
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‘‘4’’). In human WAT-progenitor cells, too, the enrichment of

HOXC8 was observed in the C/EBPb 39 region (Figure 7C and

7D). The enrichment of HOXC8 was also observed in the

promoter of osteopontin (OPN) gene used as a positive control

(Figure 7C) [32]. To ask whether the binding of Hoxc8 in the 39 of

C/EBPb has a regulatory role, we performed the reporter assay by

replacing the C/EBPb coding region with luciferase gene. Indeed,

the C/EBPb 39 sequence induced luciferase activity, which was

further augmented by adipogenic stimulation (Figure 7E). This

luciferase expression was suppressed by concomitant transfection

of Hoxc8 but not by that of Hoxc8 with a mutated homeodomain

(HDm) lacking DNA-binding capacity (Figure 7F) [33]. These

results implied that Hoxc8 regulates the C/EBPb expression via

the C/EBPb 39 regulatory sequence. Furthermore, the suppressive

effect of Hoxc8 was abolished by trichostatin A, a histone

deacetylase (HDAC) inhibitor, indicating that the suppressive

effect involves histone deacetylation (Figure 7G). In this regard,

Hoxc8 interacted with HDAC3 (Figure 7H) [34–35], but not with

HDAC1 or HDAC2. The interaction was independent of the

DNA binding capacity of Hoxc8 (Figure 7I). To further

corroborate that HDAC3 cooperates with Hoxc8, HDAC3 was

suppressed using siRNA (Figure 7J), resulting in partial elimination

of the suppressive effects of Hoxc8 (Figure 7K). To demonstrate

that C/EBPb is an essential target of Hoxc8, C/EBPb was

Figure 6. The miR-196a mice show resistance to obesity and improved glucose metabolism. (A) The appearance of the WT and miR-196a
mice fed a high-fat diet for 16 wk. (B) The body weights of the WT and miR-196a mice (n = 8) fed a high-fat diet (HFD) or normal diet (ND) after 8 wk
old. (C) The daily food intake of the WT and miR-196a mice (n = 8). (D) Oxygen consumption rates (V̇O2) in the WT and miR-196a mice fed a normal
diet (n = 6). Measurements were performed on 3- to 4-mo-old mice with similar body weight that were given a standard diet. (E) The energy
expenditure in the WT and miR-196a mice fed a normal diet (n = 6) calculated based on V̇O2 and V̇CO2 values and averaged separately for the light
and dark phases. Measurements were performed on 3- to 4-mo–old mice with similar body weight that were given a standard diet. (F) The core body
temperatures of the WT and miR-196a mice (n = 6). (G) The glucose tolerance test results for the WT and miR-196a mice (n = 10). (H) The plasma
insulin concentrations after glucose injection in the WT (n = 8) and miR-196a (n = 10) mice. (I) The insulin tolerance test for the WT and miR-196a mice
(n = 10). All data are presented as means 6 SEM; * p,0.05.
doi:10.1371/journal.pbio.1001314.g006
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Figure 7. HOXC8 targets C/EBPb in cooperation with HDAC3 to regulate brown-fat genes. (A) The ChIP analysis in 3T3-L1 preadipocytes
expressing Flag-Hoxc8 in mouse C/EBPb locus. H1foo is an oocyte-specific gene and served as a negative control. The numbers 1–4 in C/EBPb
correspond to 1–4 in (B), respectively. (B) The interspecies conservation of the mouse C/EBPb 39. The data obtained from the UCSC Genome Browser
map. (C) The ChIP analysis in the human WAT-progenitor cells in human C/EBPb locus. Osteopontin (OPN) served as a positive control. (D) The
interspecies conservation and location of ChIP primers used in (C) in the human C/EBPb locus. The data obtained from the UCSC Genome Browser
map. (E) Luciferase reporter assay to assess the transcriptional activity of C/EBPb 39 sequence inserted into the 39 end of the luciferase gene. The
activity was measured in 3T3-L1 preadipocytes left untreated (Untreated) or induced to undergo adipogenesis (induction). * p,0.05. ¡ p,0.05. (F)
Luciferase reporter activity of C/EBPb 39 sequence measured in 3T3-L1 preadipocytes transfected with Hoxc8, homeodomain-mutated Hoxc8 (HDm),
or control vector. (G) Luciferase reporter activity in 3T3-L1 preadipocytes transfected with Hoxc8, HDm, or control vector in the presence of
trichostatin A, a histone deacetylase (HDAC) inhibitor. (H) Immunoprecipitation in 3T3-L1 preadipocytes stably expressing Flag-Hoxc8. The
immunoblot analysis was performed after immunoprecipitation with anti-Flag antibody. The white dot indicates a non-specific band. (I)
Immunoprecipitation in 3T3-L1 preadipocytes stably expressing Flag-HDm. The immunoblot analysis was performed after immunoprecipitation with
anti-Flag antibody. The white dot indicates a non-specific band. (J) The immunoblot of HDAC3 in the 3T3-L1 preadipocytes transfected with siRNA
against HDAC3. (K) Luciferase reporter activity in 3T3-L1 preadipocytes transfected with Hoxc8 and siRNA against HDAC3. (L) The mRNA expression
levels in the human WAT-progenitor cells stably expressing HOXC8 followed by transfection with C/EBPb or EGFP and adipogenic induction. All data
are presented as means 6 SEM. * p,0.05. n.s., not significant.
doi:10.1371/journal.pbio.1001314.g007
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transfected into the human WAT-progenitor cells that stably

expressed human HOXC8, resulting in restoration of the brown-fat

gene expression that had been suppressed by HOXC8 (Figure 7L).

Thus, Hoxc8 targets and represses C/EBPb in an HDAC3-

dependent manner.

In summary, during the brown adipogenesis induced by cold

exposure or b3-adrenergic stimulations, miR-196a is induced in

WAT-progenitor cells and suppresses Hoxc8, which targets C/

EBPb, an essential regulator of brown adipogenesis. The miR-

196a expression is required for the brown-fat gene expression and

sufficient to induce metabolically functional brown adipocyte-like

cells in WAT in mice. Our findings imply the therapeutic potential

of targeting the miR-196a-Hoxc8-C/EBPb signaling pathway that

induces metabolically functional brown adipocytes in WAT to

treat obesity and its associated diseases.

Discussion

Recent discoveries of metabolically active BAT in adult

humans have highlighted BAT as a therapeutic target for treating

obesity and its associated diseases. The brown adipocyte-like cells

in WAT can be generated by cold exposure or b-adrenergic

stimulation in rodents, but the molecular mechanisms underlying

these phenomena have not been fully elucidated. In this work,

we elucidated that miR-196a induces functional brown adipo-

cytes in WAT in mice. miR-196a is upregulated in WAT-

progenitor cells during brown adipogenesis induced by cold or

b-adrenergic stimulations. miR-196a is required for the brown

fat gene expression and is sufficient to induce metabolically

functional brown adipocyte-like cells in mice. The target gene

of miR-196a is Hoxc8, which is categorized as a white-fat gene

with a previously undermined role in adipogenesis. Hoxc8

directly targets and represses C/EBPb, a master switch of

brown adipogenesis. Thus, the miR-196a-Hoxc8-C/EBPb path-

way underlies the brown adipogenesis in WAT (Figure 8) and

might be a therapeutic target for the treatment of obesity and

type 2 diabetes.

Elucidation of the molecular mechanism regulating the brown

adipogenesis in WAT is important from both a biological and

clinical viewpoint. Recent studies uncovered the existence of

WAT-progenitor cells that harbor a potential to differentiate to

brown adipocytes [16,21–22,36]. The molecular mechanism

behind the inducible brown adipogenesis in WAT is relatively

unknown, but recent studies elucidated the importance of

cyclooxygenase-2 [36–37] and Prdm16 [38]. C/EBPb is an essential

regulator of brown fat gene program [23,39–41], but whether C/

EBPb has a significant role in the inducible brown adipogenesis

was not fully understood. We found that miR-196a suppresses

Hoxc8, thereby derepressing C/EBPb, which leads to the activation

of the brown fat gene program. Our findings imply the relevance

of C/EBPb not only in the conventional brown adipogenesis but

also in the inducible brown adipogenesis in WAT.

The cellular origin of the inducible brown adipocyte-like cells in

WAT is an important question. Transdifferentiation is a significant

mechanism that has been reported to contribute to brown

adipocyte recruitment in WAT [42–43]. Because the increase in

Ucp1 mRNA is detectable within a few hours after cold stimulation

[1,31], and in vitro SVF cell differentiation is a longer process,

transdifferentiation might have a significant role in the rapid

response to stimulation. The important questions include the

relative contribution of transdifferentiation and the progenitor cell-

mediated mechanism in brown adipocyte recruitment throughout

the different phases upon exposure to a cold environment and

physiological energy regulation.

miRNAs regulate the gene networks underlying various

physiological and pathological phenomena and might be thera-

peutic targets [18–19,44–46]. miR-196a has been implicated in

the in vitro osteoblast differentiation of human fat progenitor cells,

where miR-196a suppresses Hoxc8 [47], but the in vivo relevance

remains unknown. We elucidated that miR-196a is induced in the

WAT-progenitor cells after the induction of brown adipogenesis, is

required for the induction of brown fat gene expression, and is

sufficient to induce the metabolically functional brown adipocyte-

like cells in WAT.

Our observations indicate that miR-196a has only a modest, if

any, effect on iBAT. The endogenous expression of Hoxc8 and

miR-196a was much lower in iBAT than in ingWAT and

epiWAT. The forced expression of miR-196a in mice did not

yield appreciable effects in iBAT. Treatment of mice with b3-

adrenergic receptor agonists usually leads to a much more

moderate induction of Ucp1 expression in iBAT than in WAT

depots. Although the primary cultures of brown adipocytes from

iBAT are highly sensitive to b3-adrenergic activation [1], a

moderate but significant induction of Ucp1 was reported in iBAT in

response to b3-adrenoreceptor agonists in vivo [48]. A relatively

modest response from iBAT to the b3-adrenergic receptor agonist

compared with subcutaneous and visceral WAT has also been

reported in other studies [16,43,49]. These results imply that

distinct machinery regulates brown adipocyte recruitment in

iBAT, which was previously suggested by Petrovic et al. [21].

A number of miRNAs function as a molecular switch [46,50–

53], and further elucidating how the miRNAs influence the

physiological output will enable better understanding and clinical

use of miRNAs.

The significance of the distinct expression patterns of Hox genes

between BAT and WAT has been unknown [10–12]. We here

demonstrate that Hoxc8 functions as an important determinant

of white fat lineage and negatively regulates the induction of

brown adipogenesis in WAT-progenitor cells by repressing C/

EBPb, which is a master switch of brown adipogenesis [39–41].

Mechanistically, Hoxc8 directly represses the C/EBPb expression

Figure 8. A schematic of miR-196a-regulated brown adipogen-
esis of WAT-progenitor cells. Cold temperatures or b3-adrenergic
stimulations induce miR-196a in the WAT-resident progenitor cells in
mice. miR-196a post-transcriptionally suppress Hoxc8, which is one of
the white-fat genes. The direct target of Hoxc8 is C/EBPb, a master
switch of brown adipogenesis that provokes brown fat gene program in
the WAT-progenitor cells.
doi:10.1371/journal.pbio.1001314.g008
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through the 39 regulatory sequence. Similar conserved non-coding

regulatory elements have been reported for the Foxp3 gene [54],

and previous studies suggested that the majority of transcription

factors bind to sites other than the promoter [20,55]. Hoxc8

recruits HDAC3, which is implicated in the regulation of

metabolic genes [34,35]. Since the HDAC proteins lack DNA-

binding activity, they are recruited to target genes via association

with transcriptional factors [56]. Our findings imply the possible

therapeutic efficacy of HDAC inhibitors for obesity through

inducing brown adipogenesis, but further study is required to

address the possibility.

The induction of brown adipogenesis in WAT has great

therapeutic potential. Our findings suggest that the miR-196a-

Hoxc8-C/EBPb pathway may constitute a promising strategy for

addressing the social and health problems caused by obesity and its

associated diseases.

Materials and Methods

Ethics Statement
Mice were handled in accordance with protocols approved by

the Ethics Committee for Animal Experiments of the Osaka

University Graduate School of Medicine.

Plasmids
The coding sequence of human Hoxc8 (Gene ID: 3224) was

cloned into pCX4-puro [57] and pCAGIP vector [58]. The

pCX4-Hoxc8 retroviral vector was used to generate human WAT-

progenitor cells stably expressing Hoxc8. Human C/EBPb was

cloned into the pCAGIP vector. The homeodomain mutant

(I195A/Q198A/N199A/M202A) [33] of Hoxc8 (HDm) was

created by site-directed mutagenesis. For lentivirus-mediated

shRNA expression, pLenti6-miR-196a, -shHoxc8, and -shLacZ

were generated from pcDNA6.2 constructs by Gateway reactions.

Lentivirus was generated by cotransfection of the pLenti6

construct with packaging plasmids into 293FT cells according to

the manufacturer’s instruction (Invitrogen). For Hoxc8 39UTR

analysis, human Hoxc8 39UTR sequence was cloned and inserted

to the 39 end of Hoxc8 cDNA. The miR-196a binding site

(CCCAACAACTGAGACTGCCTA) was deleted to generate

Hoxc8-DmiR-196a-BS.

Gene Expression Analysis
Total RNA was isolated using the RNeasy Lipid Tissue Mini

Kit (QIAGEN, CA). Reverse transcription and quantitative PCR

were performed as previously described [59]. For microRNA

quantification, total RNA was isolated using a mirVana miRNA

isolation kit (Applied Biosystems). Reverse transcription and

quantitative PCR were performed according to the manufacturer’s

instructions. A list of probes is provided in Text S1.

RNA-seq
RNA from human white fat (WAT) progenitor cells was

extracted with RNeasy (QIAGEN) following the manufacturer’s

instructions. 12.5 mg of total RNA were subjected to two rounds of

oligo-dT purification using Ambion MicroPoly(A) Purist Kit

(Ambion). 50 ng of the fragmented poly(A) RNA by using

RNaseIII were ligated to SOLiD Adaptor Mix and were

reverse-transcribed by using SOLiD Total RNA-Seq Kit (Life

Technologies). First-strand cDNA from 100 bp to 150 bp was

selected by using Agencourt AMPure XP reagent (Beckman

Coulter Genomics) and was amplified by SOLiD 59 PCR primer

and barcoded SOLiD 39 PCR primers (Life Technologies).

Sequencing libraries were prepared according to Life Technolo-

gies’ protocol. RNA-seq libraries were sequenced with SOLiD 4.

Mapping of resulting reads was performed by Bioscope (Life

Technologies), and analysis of mapped reads (31,825,850 reads in

hADSC_1 and 42,009,231 reads in hADSC_2) was performed by

Cufflinks [60].

Cell Culture
Human WAT-progenitor cells were isolated from human flank

subcutaneous fat lipoaspirate (Lonza, Switzerland) and maintained

in mesenchymal stem cell growth medium (Lonza). For adipogen-

esis, 2-d post-confluent cells were treated with an induction

medium containing 0.5 mM IBMX, 10 mg/ml insulin, and 1 mM

dexamethasone (MDI). The induction medium was changed every

2 d. Forskolin (40 mM, Sigma-Aldrich) was added to the medium

as noted. Antisense oligonucleotide against miR-196a (Anti-miR

miRNA inhibitor, AM10068, Ambion) was transfected according

to the manufacturer’s instruction. The fat progenitor cells were

isolated from inguinal white adipose tissue (WAT) or interscapular

BAT (iBAT) of C57Bl/6 mice using a standard method [61].

Adipogenic induction was performed by treating the cells with the

induction medium for 2 d.

Western Blot Analysis
Western blotting was performed with antibodies against Hoxc8

(1:1,000, ab86236, abcam), C/EBPb (1:200, sc-150, Santa Cruz

Biotechnology, CA), UCP1 (1:1,000, U6382, Sigma-Aldrich),

PGC-1a (1:1,000, ab54481, abcam), b-actin (1:5,000, AC-15,

Sigma-Aldrich), and GAPDH (1:5,000, ab8245, abcam). The

secondary antibodies (GE Healthcare) were used at a 1:1,000

dilution ratio. Immunoreactive bands were detected with Chemi-

LumiOne L (Nacalai Tesque) or ECL plus (GE Healthcare).

Densitometry was performed with the ImageJ software (NIH;

http://rsb.info.nig.gov/ij/).

Immunocytochemistry
Immunocytochemistry was performed using antibodies against

Hoxc8 (1:200, MMS-286R, Covance), Hoxc6 (1:200, ab41587,

Abcam), Pgc-1a (1:300, ab54481, Abcam), or UCP1 (1:500,

ab10983, Abcam) as previously described [59]. The primary

antibodies were detected using anti-mouse-Alexa Fluor 546, anti-

mouse-Alexa Fluor 488, or anti-rabbit-Alexa Fluor 546 (1:1,000,

Invitrogen). Cells were counterstained with CellTracker Green

Bodipy (Invitrogen), Bodipy 493/503 (D3922, Invitrogen), and 49-

6-diamidino-2-phenylindole (DAPI, Invitrogen).

Mice
These experiments were approved by the Ethics Committee for

Animal Experiments of the Osaka University Graduate School of

Medicine. Male outbred C57Bl/6 mice were used. For acute cold-

exposure studies, 3- to 4-mo-old male mice were housed at 4uC for

5 h. For b3-adrenaline receptor stimulation, CL-316,243 (Sigma),

at 0.5 mg/kg, was injected intraperitoneally once daily for 7 d.

Transgenic mice with fat-specific forced expression of miR-196a

were generated using a transgene encoding miR-196a driven by

the enhancer/promoter of the aP2 gene [30], and littermates were

used as the wild-type controls.

Histological Analysis
Inguinal fat sections were fixed in 10% buffered formalin and

stained with hematoxylin-eosin. For immunohistochemistry,

paraffin-embedded sections were incubated with antibodies

against UCP1 (1:1,000, ab10983, Abcam) followed by detection

using ABC Vectastain-Elite kit (Vector Labs). Nuclei were
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counterstained with modified Mayer’s hematoxylin (Diagnostic

BioSystems).

miRNA In Situ Hybridization
Inguinal WAT depots of mice were dissected after perfusion and

fixation with Tissue Fixative (Genostaff), embedded in paraffin,

and sectioned at 6 mm. The sections were de-waxed with xylene

and rehydrated. The sections were fixed with 4% paraformalde-

hyde (PFA) for 15 min, treated with 8 mg/ml proteinase K for

30 min at 37uC, re-fixed with 4% PFA, and placed in 0.2 N HCl

for 10 min. The sections were acetylated with 0.1 M tri-

ethanolamine-HCl, pH 8.0, and 0.25% acetic anhydride for

10 min. After being washed with PBS, the sections were treated

with PBS at 80uC for 5 min. The sections were hybridized with 39-

digoxygenated probes (18 pmol/ml, miR-196a-AS-LNA1: cCcaA-

caAcaTgaAacTacCta, Control (Ctrl)-LNA1: cGacTacAcaAat-

CagCgaTtt, capitals denote LNA) in Probe Diluent-1 (Genostaff)

at 50uC for 16 h and washed in 56 HybriWash (Genostaff) at

50uC for 20 min, 50% formamide in 26HybriWash at 50uC for

20 min, twice in 26HybriWash at 50uC for 20 min, and twice in

0.26 HybriWash at 50uC for 20 min. The sections were treated

with 0.5% blocking reagent (Roche) in TBST for 30 min and

incubated with anti-DIG AP conjugate (1:1,000, Roche) for 2 h at

RT. The sections were washed twice with TBST and incubated in

a solution with a composition of 1,000 mM NaCl, 50 mM MgCl2,

0.1% Tween-20, 100 mM Tris-HCl, pH 9.5. Coloring reactions

were performed with NBT/BCIP solution (Sigma) overnight

followed by counterstaining with Kernechtrot stain solution

(Mutoh).

Metabolic Measurements
Mice were given a standard diet or a high-fat diet (20.4%

protein, 33.2% fat, 46.4% carbohydrates by calories; MF+;

Oriental Yeast Co., Japan). Metabolic measurements were

performed on 3- to 4-mo-old mice with similar body weight that

were given a standard diet. Food intake and body weight were

measured daily and weekly, respectively. For glucose tolerance

tests, the mice were deprived of food for 16 h and were injected

intraperitoneally with glucose (2 g/kg). For insulin tolerance tests,

the mice were allowed ad libitum access to food followed by an

intraperitoneal injection of human insulin (0.75 U/kg, Eli Lilly).

The plasma concentration of glucose was measured with a

Glucometer (Sanwa Kagaku Kenkyusho, Japan), and insulin was

measured with an ELISA (Morinaga Institute of Biological

Science, Japan). Indirect calorimetry was performed under 12 h

light and dark cycles beginning at 8:00 a.m. and 8:00 p.m.,

respectively. After 1 d of acclimation, V̇O2 and V̇CO2 were

recorded every 3 min over 3 d using the Metabolism Measure-

ment System (MK-5000, Muromachi Kikai, Japan). Energy

expenditure (EE) was calculated using the equation of Weir: EE

(kcal/kg/h) = (3.8156V̇O2)+(1.2326V̇CO2). For body tempera-

ture measurement, mice were housed singly and unrestrained and

had free access to food and water. Body temperature was

measured using a rectal probe (Perimed, Sweden).

Native ChIP Assays
Chromatin immunoprecipitation was performed as previously

described [62] with 3T3-L1 preadipocytes expressing Flag-tagged

human Hoxc8. Primer sequences are listed in Text S1.

Luciferase Assays
The C/EBPb39-luciferase constructs (C/EBPb-Luc) were gen-

erated by cloning the 39 sequence of the human C/EBPb gene

(+1,021 to +1,837) into the downstream of luciferase gene in pGL3

promoter plasmid (Promega). Dual luciferase assays were per-

formed as previously described [62] with 3T3-L1 preadipocytes.

Trichostatin A (330 nM, Sigma-Aldrich) was added 4 h after

transfection as indicated. Mission siRNA (Sigma) for HDAC3

(sense: 59GUAUCCUGGAGCUGCUUAATT, antisense: 59UU

AAGCAGCUCCAGGAUACTT) was transfected using Neon

transfection system (Invitrogen).

Immunoprecipitation Analysis
Nuclear extracts were prepared as previously described [62]

from 3T3-L1 preadipocytes transfected with Flag-Hoxc8, pretreat-

ed with Protein G Sepharose beads (Amersham Bioscience), and

incubated with anti-Flag M2 Affinity Gel (A2220, Sigma-Aldrich)

or control mouse IgG AC (Santa Cruz) overnight at 4uC. The

beads were washed 3 times with nuclear isolation buffer containing

500 mM NaCl and 0.15% NP-40. Purified proteins were

subjected to immunoblotting using antibodies against HDAC1

(3:1,000, Millipore), HDAC2 (1:2,000, H3159, Sigma), and

HDAC3 (1:500, ab16047, Abcam).

Statistics
The statistical analysis was performed with StatView 5.0

software, JMP8 (SAS Institute, NC) and SPSS (IBM). All results

are expressed as mean 6 SEM. The data were compared using

ANOVA, followed by Dunnett’s test for pairwise comparisons

against controls and by Tukey’s test for multiple comparisons. For

the analysis of energy expenditure, a one-way analysis of covariance

(ANCOVA) was conducted. The body weight was used as the

covariate. Statistical significance was defined as p,0.05.

Accession Numbers
The RNA-seq data have been submitted to the NCBI Sequence

Read Archive (SRA). The accession number is SRA048274.1.

Supporting Information

Figure S1 The gene-expression analysis in human WAT-

progenitor cells. (A) The summary of the microarray results from

human WAT-progenitor cells transduced with Hoxc8 or control

vector followed by adipogenic induction for 14 d. The expression

levels were compared to those in the untreated cells and the fold

changes in the expression levels are shown. (B) The immunoflu-

orescence analysis of HOXC8 and PGC-1a in human WAT-

progenitor cells induced to undergo differentiation for 14 d. The

nuclei are stained with DAPI. The scale bar indicates 100 mm. (C)

The immunofluorescence analysis of HOXC6 in human fat

progenitor cells left untreated (Undifferentiated) or induced to

undergo differentiation for 14 d (Adipogenic induction). The

HOXC6 expression is maintained in the differentiated cells

(arrowheads) that exhibit multiple vesicles. The nuclei are stained

with DAPI. DIC, differential interference contrast. The scale bar

indicates 50 mm. (D) The tissue distribution of HOXC6 expression

in mice. The data are normalized to 18S. All data are presented as

means 6 SEM.

(TIF)

Figure S2 Hoxc8 expression in mouse tissues. Hoxc8 expression

is higher in white adipose tissue (WAT) than in brown adipose

tissue (BAT) and other tissues. The real-time PCR results are

normalized to b-actin.

(EPS)

Figure S3 The expression of miR-196a and Hoxc8 in SVF and

adipocyte fraction. (A) miR-196a expression levels in SVF and
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adipocyte fraction from mice treated with CL-316,243 or saline.

The results are normalized to U6. (B) Western blot analysis of

Hoxc8 in SVF and adipocyte fraction from mice treated with CL-

316,243 or saline.

(EPS)

Figure S4 The expression analysis for miR-196a. (A) miR-196a

expression is upregulated during differentiation in the human

WAT-progenitor cells. The results are normalized to U6. (B) The

miR-196a expression is upregulated by treatment with forskolin in

human WAT-progenitor cells. The results are normalized to U6.

(C) The miR-196a expression levels in different tissues of the wild-

type mice. The results are normalized to U6. (D) The miR-196a

expression is not altered significantly during the differentiation of

iBAT-derived SVF cells (conventional brown adipogenesis). The

results are normalized to U6. All data are presented as means 6

SEM. * p,0.05.

(EPS)

Figure S5 The expression analysis of Hoxc8 in iBAT-derived

SVF cells. (A) Immunoblots of Hoxc8 in iBAT-SVF cells treated

with or without adipogenic induction cocktail. The results of

WAT-SVF cells were shown for comparison. b-actin served as a

loading control. (B) Immunofluorescence analysis of Hoxc8 in the

undifferentiated iBAT-SVF cells. The nuclei are stained with

DAPI. The scale bar indicates 50 mm.

(TIF)

Figure S6 The analysis of human HOXC8 39UTR. (A) The

scheme of constructs. Human HOXC8 39UTR sequence was

inserted to the 39 end of HOXC8 cDNA to generate pCX4-

HOXC8-wild-type (wt) 39UTR. The miR-196a complementary site

was deleted to generate pCX4-HOXC8-DmiR-196-BS (binding

site). (B) Immunoblots of HOXC8 in human WAT-SVF cells

transduced with retroviral vector-encoded HOXC8, HOXC8-

wt39UTR, HOXC8-DmiR-196-BS, or control EGFP. The trans-

duced cells were treated with or without adipogenic induction

cocktail. b-actin served as a loading control. (C) The qRT-PCR

analysis of brown-fat genes in the transduced cells induced to

undergo differentiation for 14 d. The results are normalized to 18S.

All data are presented as means 6 SEM; * p,0.05.

(EPS)

Figure S7 The effects of Hoxc8 knockdown on the expression of

brown fat genes. (A) The qRT-PCR analysis of adipogenesis-related

genes in mouse WAT-SVF cells transduced with control shRNA or

shRNA against Hoxc8 followed by adipogenic induction. The

results were normalized to b-actin. The data are presented as means

6 SEM; ** p,0.01. (B) Immunoblots in mouse SVF cells transduced

with control shRNA, shRNA against Hoxc8, or miR-196a encoded

by lentiviral vectors. b-actin served as a loading control.

(TIF)

Figure S8 Gene expression analysis in the WAT-progenitor cells

derived from the miR-196a mice. (A) The fluorescent microscopic

view of the SVF cells derived from the aP2-miR-196a mice

maintained without adipogenic induction. The scale bar indicates

100 mm. (B) The miR-196a expression levels in the WAT-

progenitor cells derived from inguinal WAT of the WT and

miR-196a mice. Data were normalized to U6. (C,D) The Western

blot (C) and immunofluorescence (D) analysis of Hoxc8 in the

WAT-progenitor cells. The scale bars indicate 30 mm. (E) A

confocal 3-D image of an inguinal WAT from a miR-196a mouse.

The vasculature and nuclei were visualized using anti-CD31

antibody and DAPI, respectively. V, vasculature; F, fat cells. (F)

The gene expression analysis in WAT-progenitor cells induced to

undergo adipogenesis for 14 d. Data are presented as the mean 6

SEM. * p,0.05, ** p,0.01 versus WT.

(TIF)

Figure S9 miR-196a functions in a cell-autonomous manner. (A)

The qRT-PCR analysis of miR-196a in human WAT-SVF cells

transduced with lentiviral vector-encoded miR-196a. The results

are normalized to U6. (B) Immunoblots of HOXC8 in human

WAT-SVF cells transduced with miR-196a or control miR-LacZ.

b-actin served as a loading control. (C) The qRT-PCR analysis of

brown fat genes in human WAT-SVF cells transduced with miR-

196a or control miR-LacZ followed by adipogenic induction. All

data are presented as means 6 SEM. * p,0.05.

(TIF)

Figure S10 The miR-196a expression levels in tissues of the

miR-196a mice. The qRT-PCR analysis of miR-196a in tissues of

the miR-196a mice. The results are normalized to U6. All data are

presented as means 6 SEM.

(EPS)

Figure S11 The weight reduction in the miR-196a mice is

attributable to a reduced fat accumulation. (A) Body length does

not differ significantly between the WT and miR-196a mice

(n = 6). (B) The organ weights for the WT and miR-196a mice fed

a high-fat diet for 16 wk (n = 3). The weight of the inguinal fat,

epididymal WAT and liver is significantly lower in the miR-196a

mice than in the WT mice. The WT mice exhibit more severe

fatty livers than the miR-196a mice. All data are presented as

means 6 SEM. * p,0.05. (C) The appearance of the organs from

the WT and miR-196a mice fed a high-fat diet for 16 wk.

(TIF)

Figure S12 Oxygen consumption rates and energy expenditure

in the WT and miR-196a mice fed a high-fat diet. (A) Oxygen

consumption rates (V̇O2) in the WT and miR-196a mice (n = 6)

under a high-fat diet. (B) The energy expenditure in the WT and

miR-196a mice (n = 6) under a high-fat diet calculated based on

V̇O2 and V̇CO2 values and averaged separately for the light and

dark phases (n = 6).

(EPS)

Table S1 ANCOVA analysis for energy expenditure by body

weight.

(EPS)

Text S1 TaqMan probes and ChIP primers.

(PDF)
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