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Abstract

Background: The coreceptor tropism testing should be conducted prior to commencing a regimen containing a
CCR5 antagonist for treatment of HIV-1 infection. For aviremic patients on long antiretroviral therapy, proviral DNA
is often used instead of viral RNA in genotypic tropism testing. However, the tropism predictions from RNA and
DNA are sometimes different. We examined the cause of the discrepancies between HIV-1 tropism predictions
based on viral RNA and proviral DNA.

Methods: The nucleotide sequence of the env C2V3C3 region was determined using pair samples of plasma RNA
and peripheral blood mononuclear cell DNA from 50 HIV-1 subtype B-infected individuals using population-based
sequencing. The samples with discrepant tropism assessments between RNA and DNA were further analyzed using
deep sequencing, followed by phylogenetic analysis. The tropism was assessed using the algorithm geno2pheno
with a false-positive rate cutoff of 10 %.

Results: In population-based sequencing, five of 50 subjects showed discrepant tropism predictions between their
RNA and DNA samples: four exhibited R5 tropism in RNA and X4 tropism in DNA, while one exhibited the opposite
pattern. In the deep sequencing and phylogenetic analysis, three subjects had single clusters comprising of RNA- and
DNA-derived sequences that were a mixture of R5 and X4 sequences. The other two subjects had two and three
distinct phylogenetic clusters of sequences, respectively, each of which was dominated by R5 or X4 sequences;
sequences of the R5-dominated cluster were mostly found in RNA, while sequences of the X4-dominated
cluster were mostly in DNA.

Conclusions: Some of HIV-1 tropism discrepancies between viral RNA and proviral DNA seem to be caused
by phylogenetically distinct clusters which resides in plasma and cells in different frequencies. Our findings
suggest that the tropism testing using PBMC DNA or deep sequencing may be required when the viral load
is not suppressed or rebounds in the course of a CCR5 antagonist-containing regimen.
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Background
HIV-1 enters host cells through the binding of the surface
envelope glycoprotein (gp120) to the receptor CD4 and
the principle coreceptor CXCR4 or CCR5, which are
members of the G protein-coupled family of chemokine
receptors. According to coreceptor usage, HIV-1 variants
are designated as X4 (CXCR4-specific), R5 (CCR5-
specific), or R5X4 (using both CCR5 and CXCR4) [1].
Maraviroc (MVC), which is the only CCR5 antagonist
approved by the US Food and Drug Administration,
prevents the binding and entry of R5 viruses exclusively.
Therefore, a coreceptor tropism assay is strongly recom-
mended whenever the use of a CCR5 antagonist is being
considered [2, 3].
Coreceptor usage can be determined using either a

phenotypic or a genotypic assay. The most widely used
phenotypic assay is the Trofile assay (Monogram Biosci-
ences, South San Francisco, CA), which was used in
early clinical trials of MVC [4, 5]. This assay has been
improved and is now available as the enhanced-
sensitivity Trofile assay [6]. Genotypic assays are based
on the sequence of the env V3-coding region, which is
the principal determinant of co-receptor usage, followed
by interpretation using a variety of bioinformatic algo-
rithms. Currently, the most widely interpretation system
for tropism is geno2pheno [co-receptor] (G2P), the per-
formance of which is equivalent to that of phenotyping
for predicting the therapeutic response to MVC [7, 8],
while it has been reported that G2P is not always accurate
for non-B subtypes [9]. Although more evidence supports
the phenotypic assay, genotypic assays are being increas-
ingly used in clinical settings because of their lower cost,
higher throughput, and greater accessibility [3].
Genotypic assays are commonly performed and evalu-

ated using plasma viral RNA in patients when the viral
load is high enough for PCR amplification (ideally >1,000
copies/ml). However, for patients whose viral load is
suppressed by successful antiretroviral therapy (ART), a
genomic assay using viral RNA cannot be performed.
Even in such patients, a tropic assay is needed if a
change to a MVC-containing regimen is considered
because of the adverse effects of or nonadherence to
the current regimen. For such patients, tropism testing
using proviral DNA in peripheral blood mononuclear
cells (PBMCs) is a feasible alternative [3] because pro-
viral DNA decays with a significantly longer half-life
than viral RNA during ART [10, 11]. However, the
coreceptor usage predicted from proviral DNA is not
the same as that from viral RNA in all cases. Studies
comparing DNA and RNA tropism assays have reported
concordance rates ranging from 78 to 100 % [12–23]. In
general, X4-tropic sequences are more frequently drawn
from proviral DNA than from viral RNA (clinical mean-
ings) [12, 17, 18, 20, 23], but opposite results have been

reported in some studies [16, 19, 21]. However, the causes
of these discrepancies are poorly understood.
In this study, we compared the coreceptor tropisms

determined by genotypic assays using viral RNA and
proviral DNA in 50 treatment-naïve patients and ana-
lyzed five paired samples with discrepant tropisms using
deep sequencing, followed by a phylogenetic analysis to
elucidate the cause of such discrepancies.

Methods
Study population
Whole blood samples (anticoagulant, citrate dextrose)
were obtained from 50 treatment-naive patients infected
with HIV-1 who attended the Infectious Disease Clinic
at Keio University Hospital, Tokyo, Japan. This study
was approved by the Ethics Committee of Keio Univer-
sity School of Medicine (approval number, 2011–011).
Written informed consent was obtained from all the
participants.

Sample preparation
Plasma and PBMCs were separated on a Ficoll-Paque
PLUS gradient (GE Healthcare, Tokyo, Japan). RNA was
extracted from the plasma using the QIAamp® Viral
RNA Mini Kit (Qiagen, Tokyo, Japan), and DNA was
extracted from the PBMCs using the QIAamp® DNA
Blood Mini Kit (Qiagen) according to the manufacturer’s
instructions.

Quantitation of viral RNA and proviral DNA
Viral RNA load in plasma was determined at a re-
ference laboratory using COBAS Ampliprep/COBAS
TaqMan HIV-1 v.2.0 assay (Roche Diagnostic, Basel,
Switzerland). Proviral DNA load was determined as
previously described [24].

Drug resistance mutations
Drug resistance mutations were assessed using the HIV-
1 drug resistance testing standardized by the Japanese
external quality assessment program [25].

Population-based sequencing
Population-based sequencing was performed as follows.
The HIV-1 env C2V3C3 region was amplified from 10 μl
of plasma RNA solution (corresponding to RNA from
23 μl of plasma) or 250 ng of PBMC DNA with nested
PCR using a forward primer (5′-GTCAGCACAGT
ACAATGYACACATGG-3′, corresponding to nucleotides
6948–6973 of HXB2 [accession number K03455]) and a
reverse primer (5′-TGTGTTGTATTACAGTAGAAAA
ATTCYCC-3′, 7362–7390) for the first-found PCR,
and a forward primer (5′-GCTGTTAAATGGCAGT
YTAGCAGA-3′, 7001–7024) and a reverse primer
(5′-AATTTCTGGGTCYCCTCCTG-3′, 7318–7337) for
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the second-round PCR. A set of RT and first-round PCR
was performed in 25 μl of reaction mixture containing 1×
PCR Buffer (attached to Platinum® Taq DNA Polymerase,
Life Technologies, Tokyo, Japan), 2 mM MgCl2, 0.2 mM
of each dNTP, 0.2 mM of forward and reverse primers, 2
units of RNasin® RNase Inhibitor (Promega, Tokyo, Japan),
10 units of SuperScript® III Reverse Transcriptase, and
0.1 μl of Platinum® Taq DNA Polymerase (Life Technolo-
gies). Second-round PCR was performed using 1 μl of the
first-round PCR product in 25 μl of reaction mixture con-
taining 1× PCR buffer, 2 mM MgCl2, 0.2 mM of each
dNTP, 0.2 mM of forward and reverse primers, and 0.1 μl
of Platinum® Taq DNA Polymerase. The following cycling
parameters were used: for RT and first-round PCR, 50 °C
for 10 min, 94 °C for 1 min, 5 cycles of 5 s at 94 °C, 10 s at
48 °C and then 30 s at 72 °C, 25 cycles of 5 s at 94 °C, 10 s
at 52 °C and then 30 s at 72 °C, followed by 1 min at 72 °C
and holding at 4 °C; for second-round PCR, 94 °C for
1 min, 5 cycles of 5 s at 94 °C, 48 °C for 10 s and 72 °C for
30 s, 30 cycles of 5 s at 94 °C, 10 s at 60 °C and then 30 s
at 72 °C, followed by 1 min at 72 °C and holding at 4 °C.
The PCR products were purified using the QIAquick®
PCR Purification Kit (Qiagen) and were subjected to bidir-
ectional population sequencing with the second-round
PCR primers and the BigDye® Terminator v1.1 Cycle
Sequencing Kit (Life Technologies) in the 3130xL Genetic
Analyzer, following the manufacturer’s instructions.

Subtyping
Subtyping was performed by the phylogenetic analysis
using the env C2V3C3 sequences of samples and
subtype-specific reference variants obtained from the
Los Alamos HIV databases (http://www.hiv.lanl.gov/).

Deep sequencing
For deep sequencing, RT-nested PCR was performed as
above except for the use of Platinum® Taq DNA Poly-
merase High Fidelity instead of Platinum® Taq DNA
Polymerase. Deep sequencing was performed using the
GS Junior system (Roche Diagnostics, Tokyo, Japan); the
second-round PCR products were purified using the
QIAquick® PCR Purification Kit (Qiagen). The second-
round PCR products were bound with multiplex tags,
allowing 12 samples to be sequenced in both the forward
and reverse directions per run. A library of the resulting
PCR products was produced using the GS Junior Titanium
Sequencing Kit. Emulsion PCR was performed with the GS
Junior Titanium emPCR Kit. The DNA-carrying beads
were deposited into the wells of a PicoTiterPlate (PTP)
device, and the nucleotide sequence was determined using
the GS Junior Titanium Sequencing Kit.
Nucleotide reads from the system were first sorted

using multiplex tags and primers. Sequencing reads with
differences in the tag and primer nucleotide sequences

were excluded. Sequencing reads in which insertions
and deletions (occurring mainly in homopolymeric re-
gions) caused frame-shifts were also excluded. Identical
nucleotide reads were merged and defined as a variant; a
variant with a frequency of less than 1 % was considered
to have been produced by errors during PCR and deep
sequencing. This threshold was based on the observation
that PCR amplification followed by deep sequencing of
three HIV-1 LAI RNA clones, which were obtained
through endpoint dilution, showed that the frequency of
the second-most abundant read was less than 0.64 % of
the most abundant one. The resulting reads were aligned
such that coding frames were maintained.

Data analysis
Viral tropism of each sequence or read obtained using
population-based sequencing and deep sequencing, re-
spectively, was interpreted using G2P 2.5 [26] with a
false-positive rate (FPR) cut-off of 10 % according the
European guidelines [3]. Phylogenetic trees were con-
structed from the C2V3C3 sequences using the neighbor-
joining method and the Maximum Composite Likelihood
model and were assessed using the Bootstrap test (1,000
replicates) performed using MEGA version 6 software
[27]. Putative dual infection was suggested according to
previously proposed criteria: in the env C2V3 region,
when the two clusters in the phylogenetic tree were sepa-
rated by a branch with a bootstrap value >90 % obtained
from more than 500 randomly selected reads, and when
the net mean distance between the two groups was >5 %

Table 1 Characteristics of the patients included in the study

Patients, n 50

Age (years), median (range) 36.5 (21–67)

Sex, n (%)

Male 49 (98)

Female 1 (2)

Route of transmission, n (%)

Homosexual 44 (88)

Heterosexual 6 (12)

HIV-1 subtype, n (%)

Subtype B 50 (100)

CD4 (cells/mm3), median (range) 239.5 (8–596)

Viral RNA load (log10 copies/mL),

median (range) 4.51 (3.00–6.32)

Proviral DNA load (log10 copies/10
6 PBMCs),

median (range) 2.94 (2.24–4.14)

Subjects with drug-resistant virus, n 18

To NRTI 6

To NNRTI 13

To PI 2
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[28, 29]. Statistics was conducted using IBM SPSS Statis-
tics version 21 software (IBM, Tokyo, Japan). The level of
significance was set at 0.05.
Nucleotide sequences reported are available in the

DDBJ databases with the accession numbers AB981480–
AB981579 for population-based sequencing data and
DRX021920–DRX021929 for deep sequencing data.

Results
The characteristics of 50 treatment-naive patients (P1
through P50) included in the study are shown in Table 1.
The majority of participants (88 %) were homosexual
males. The age, CD4 count, and viral load varied widely
among the patients. All the viral strains were typed as
subtype B.
Population-based C2V3C3 sequencing was successfully

performed using plasma RNA and PBMC DNA from the
same blood samples in all the patients. The tropism of
the viral RNA and proviral DNA V3-coding sequences
was predicted using G2P with an FPR threshold of 10 %.
X4 tropism was inferred in 11 samples using viral RNA
and in 14 samples using proviral DNA. There was no
statistically significant difference in CD4 counts between
the subjects with R5 and those with X4 when either viral
RNA or proviral DNA was used for tropism prediction
(Table 2). Discordance in the tropism between the two
compartments was seen in five subjects (10 %). Their
characteristics are shown in Table 3. Four subjects (P10,
P25, P27, and P45) showed R5 virus in the viral RNA
and X4 virus in the proviral DNA, and one subject (P8)
showed X4 virus in the viral RNA and R5 virus in the
proviral DNA. CD4 counts of these subjects were 112
(P8), 390 (P10), 242 (P25), 419 (P27), and 113 (P45)

cells/μl. The env V3 amino acid sequences of these five
discordant samples are shown in Table 4. The numbers
of different amino acids between the viral RNA and the
proviral DNA were 1, 3, 5, 8, and 10 for P8, P27, P10,
P25, and P45, respectively.
The FPRs in the two compartments are plotted in

Fig. 1, yielding a correlation coefficient of 0.803. A
complete agreement in the FPR between the two com-
partments was observed in 26 of the 50 samples. Thir-
teen samples had a higher FPR for the viral RNA, and
11 samples had a higher FPR for the proviral DNA. The
FPRs of the viral RNA and the proviral DNA showed no
statistically significant difference (P = 0.37 using a paired
Student’s t-test). No relationship was found between the
CD4 counts and the FPR (data not shown). A phylogen-
etic analysis of the C2V3C3 region, as shown in Fig. 2,
revealed that paired samples of viral RNA and proviral
DNA formed clusters of sequences with high bootstrap
support, except for two cases (P25 and P45).
To investigate the discrepancy in tropism between the

viral RNA and the proviral DNA in the five discordant
cases at a subpopulation level, we performed a deep se-
quencing analysis of the PCR products from the RNA
and DNA samples. Phylogenetic trees generated from
the deep sequencing data are shown in Fig. 3. In three
cases (P8, P10, and P27) in which the population-based
RNA and DNA sequences were located next to each
other in the phylogenetic tree (Fig. 3), the RNA and
DNA variants generated single clusters when examined
using deep sequencing. The total frequency of the R5
variants was 51.7 % for the RNA sample and 63.1 % for
the DNA sample for P8, 67.2 % for RNA and 36.3 % for
DNA for P10, and 51.7 % for RNA and 41.0 % for DNA
for P27. In the two cases (P25 and P45) in which the
population-based RNA and DNA sequences were phylo-
genetically distant from each other (Fig. 3), variants from
the RNA and DNA samples formed more than two dis-
tinct clusters, supported by bootstrap values of >90 %
and net mean distance of >5 %. P25 had three clusters:
two were dominated by R5-tropic variants, and one was
dominated by X4-tropic variants. P45 exhibited two
clusters: one was composed of R5-tropic variants, and
the other was composed of X4-tropic variants. In both

Table 3 Characteristics of the five patients whose virus showed discordant tropisms between plasma RNA and PBMC DNA

Patient Age Sex Route of transmission CD4 (cells/mm3) Viral RNA load
(log10 copies/mL)

Proviral DNA load
(log10 copies/10

6 PBMCs)
Major drug resistance
mutations

P8 27 male homosexual 112 5.23 3.19 None

P10 26 male homosexual 390 4.80 3.54 L74F, V118I in RT

P25 55 male homosexual 242 4.51 2.62 V179D in RT

P27 52 male homosexual 419 3.76 2.61 M41L, M184V, T215Y,
K103N, V108I in RT

P45 34 male homosexual 113 5.51 2.66 None

Table 2 Relationship between coreceptor Tropisms and
CD4 Counts

Compartment Coreceptor tropism n CD4 counts
(mean ± SD)

P

Plasma RNA R5 39 253 ± 152 0.38

X4 11 201 ± 219

PBMC DNA R5 36 245 ± 154 0.83

X4 14 233 ± 206
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cases, the variants observed in the viral RNA occurred
more frequently in R5-dominant clusters, while the vari-
ants observed in the proviral DNA occurred more
frequently in X4-dominant clusters. Specifically, P25 had
R5 variants at a frequency of 89 % and X4 variants at a
frequency of 11 % in plasma, and R5 variants at 39 %
and X4 variants at 61 % in PBMCs; P45 had R5 variants
at 90 % and X4 variants at 10 % in plasma, and R5
variants at 8 % and X4 variants at 92 % in PBMCs. To
confirm the presence of plural clusters in these two
subjects, we repeated deep sequencing using the same
plasma and PBMC samples, showing that P25 and
P45 had three and two distinct clusters, respectively,
which were characterized by different frequencies of
R5 and X4 variants.

Discussion
Tropism testing is required prior to the administration
of a CCR5 antagonist for the treatment of HIV-1 in-
fected individuals. Although clinical evaluations have
been generally based on plasma-based genotypic assays,
cell-based assays are favored for patients whose viral
load is suppressed by ART but for whom a drug change
is being considered because of adverse effects or regi-
men simplification [3]. Although both assays were pre-
dictive of a virologic response, discrepancies between
genotypic tropism predictions using viral RNA and those
using proviral DNA have been reported in many studies
[16, 18–21, 23].
In this study, we analyzed the tropism of viral RNA

and proviral DNA in 50 treatment-naive HIV-1 infected
patients by population-based sequencing. The results
showed tropism discordance between RNA and DNA
in five patients. We further analyzed the viral RNA and
proviral DNA sequences of these five cases by deep
sequencing. The phylogenetic trees of three of them
showed that both R5-tropic variants and X4-tropic
variants assembled within the same cluster. The total
frequencies of the R5 variants in these cases were
moderately different between the RNA and DNA com-
partments, which almost agreed with the population-
based sequencing results. In general, the emergence of
X4-tropic variants is associated with disease progres-
sion [1]. However, the X4-tropic virus population dose
not increase constantly, and its kinetics sometimes dif-
fers between plasma and replication-competent PBMCs
[30, 31]. The tropism discrepancies observed using
population-based sequencing in these three cases may
have been caused by temporal fluctuations in the ratio

Fig. 1 Scatter plot of FPR values in DNA sample versus those in RNA
samples that were obtained using G2P 2.5 based on population-based
sequencing. Viral tropism was interpreted using an FPR cut-off of 10 %
shown as a dotted line. Tropism-concordant pairs are shown by open
circles, and discordant pairs are shown by closed circles. A correlation
coefficient was 0.803

Table 4 Amino acid sequences of the env V3-coding region of the samples with discordant coreceptor tropism predictions between
plasma RNA and PBMC DNA

Patient Compartment V3 amino acid sequences FPR
(%)

P8 Plasma RNA C A R P N N N T R K S V S M G P G K V M Y A T G A I I G D I R Q A H C 8.7

PBMC DNA C T/
A

R P N N N T R K S V S M G P G K V M Y A T G A I I G D I R Q A H C 14.3

P10 Plasma RNA C T R P N N N T R K S I H I G P G R A F Y A T G D I T G D I R K A H C 40.1

PBMC DNA C T R P N S N T R K S I R I G P G R A F V A T G G I T G D I R K A Y C 1.7

P25 Plasma RNA C T R P N N N T R K S I H I G P G R A F Y A T G D I I G E/
D

I R Q A H C 62.5

PBMC DNA C T R P N S I T R K T I H I G P R R A F Y A T R Q/
R

I I E N I R Q A H C 14.7

P27 Plasma RNA C T R P N N N T R K G R H M G P G G A F W A T G E I I G N I R Q A H C 89.1

PBMC DNA C T R P N N N T R K G I H M G P G G A F W A R G D I I G N I R Q A H C 7.4

P45 Plasma RNA C T R P N N N T I K S I H L G P G Q A L Y T T - D I I G D I R Q A H C 89.1

PBMC DNA C T R P N S N T I R R I P I G P G R A F Y T T G R I - G D I R Q A H C 1.1

Amino acids that differed between DNA and RNA samples from the same patient are indicated in bold
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of R5-tropic to X4-tropic variants in the plasma and
PBMC compartments.
In the other two cases, phylogenetic analysis showed

three clusters for P25 and two clusters for P45 that
were supported by high bootstrap values. Each cluster
was dominated by either R5-tropic variants or X4-
tropic variants. In both cases, the total frequency of the
R5 variants was higher than that of the X4 variants in
the plasma compartment, and the opposite pattern was
observed in the PBMC compartment. Taken together,
these data indicate that the HIV-1 infection in the two
cases was composed of two distinct strains: one strain
was R5-tropic and plasma-oriented while the other
strain was X4-tropic and cell-oriented. Coexistence of
these distinct strains in vivo may have resulted from
dual infection [28, 29], which is defined by either

simultaneous or consecutive infections with different
viral strains.
In general, X4-tropic sequences are more commonly

predicted from proviral DNA than from viral RNA in
population-based sequencing [3] and deep sequencing
[17, 32, 33]. In cases P25 and P45 in this study, variants
belonging to X4-predominant clusters occurred more
frequently in DNA than in RNA. These findings suggest
that X4 variants may be more likely than R5 variants to
reside in cells as proviral DNA. The differential com-
partmentation of R5 and X4 viruses has not yet been
fully explained. One possible explanation is that the R5
virus has a higher replication ability than the X4 virus,
resulting in the production of more R5 virions in the
plasma and the death of cells carrying R5 proviral DNA.
The lower replication ability of the X4 virus may be

Fig. 2 Phylogenetic tree constructed from population-based proviral DNA and viral RNA paired C2V3C3 nucleotide sequences of 50
subjects. R5 viruses in the RNA samples are shown by open circles, and R5 viruses in the DNA samples are shown by open squares; X4
viruses in the RNA samples are shown by filled circles, and X4 viruses in the DNA samples are shown by filled squares. The FPR for each
sequence is shown in parentheses. Two discordant samples (P25 and P45) are indicated by asterisks. A Group O sequence
(O.BE.87.ANT70.L20587) is used as an outlier
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caused by the accumulation of mutations. X4 variants
have been shown to have evolved from R5 populations
through progressive mutations in the env V3-coding
region [34–36]. During this process, the other part of
the viral genome may also suffer from mutations, result-
ing in the deterioration of the replication ability. On the
other hand, the X4 virus has been referred to as a
syncytium-inducing virus because of its ability to induce
syncytia in the MT-2 cell line expressing X4. However,
as Coakley et al. [30] discussed, this syncytium-forming
ability of the X4 virus does not necessarily imply an en-
hanced cytopathogenicity. The R5 virus has been shown
to be equally or more cytopathogenic to its host cells
than the X4 virus [37, 38].

Conclusions
In the present study, we showed that phylogenetically
distinct clusters of HIV-1 variants, which may have been
generated by dual infection, was involved in the discrep-
ancies between HIV-1 tropism predictions from RNA
and DNA. Although the number of patients with trop-
ism discordance between RNA and DNA was small, out
results suggest that the tropism testing using PBMC
DNA or deep sequencing would have to be considered
when the viral load is not suppressed or rebounds in the
course of maraviroc-containing regimens, as previously
proposed by Swenson et al. [32]. Further studies are
needed to address the clinical relevance of tropism dis-
cordance in viral RNA and proviral DNA.

Fig. 3 Phylogenetic trees constructed from proviral DNA and viral RNA C2V3C3 nucleotide sequences obtained from subjects P8 (a), P10 (b), P25
(c), P27 (d), and P45 (e) using deep sequencing. R5 viruses in the RNA samples are shown by open circles, and R5 viruses in the DNA samples are
shown by open squares; X4 viruses in the RNA samples are shown by filled circles, and X4 viruses in the DNA samples are shown by filled
squares. The frequency in the RNA or DNA compartment and the FPR for each sequence are shown in parentheses. A Group P sequence
(P.CM06.U14788.HQ179987) is used as an outlier
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