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Abstract
The term “antitumor immunity” refers to innate and adaptive immune responses
which lead to tumor control. Turning the immune system into a destructive force
against tumors has been achieved in a broad range of human cancers with the
use of non-specific immunotherapies, vaccines, adoptive-cell therapy, and,
more recently with significant success, through blockade of immune
checkpoints. Nevertheless, the efficacy of these approaches is not universal,
and tools to identify long-term responders and primarily refractory patients are
warranted. In this article, we review recent advances in understanding the
complex mechanisms of antitumor immunity and how these developments can
be used to address open questions in a setting of growing clinical indications
for the use of immunotherapy.
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Introduction
Using the immune system to fight cancer has been confirmed as 
one of the major breakthroughs in oncology, yielding the possibil-
ity of long-term clinical benefit and prolonged survival. Despite 
the recent advances with immune checkpoint-directed approaches, 
the concept of “immunotherapy” dates back to the 19th and early 
20th century with Wilhelm Busch, William B. Coley, and Paul 
Ehrlich and comprises distinct strategies, including vaccines, non-
specific cytokines, and adoptive cell therapies1. The introduction 
of monoclonal antibodies targeting co-receptors of immune 
activation resulted in unprecedented benefits in the management 
of distinct malignancies, with exceptional results in melanoma, 
renal cell carcinoma, Merkel cell carcinoma, lung cancer, urothelial 
carcinoma, and other neoplasms2–7.

Nevertheless, despite the certainties already available that are  
redefining the landscape of cancer treatment, several questions 
emerged to daunt clinicians and scientists: how do we select the 
best candidates for therapy? What factors are involved in primary 
and acquired resistance? What are the best biomarkers to guide 
treatment decisions and rationalize costs? How do we pick the 
best combinations to optimize outcomes?

Elucidating the mechanisms regulating the interactions between  
the immune system and cancer cells is critical in order to provide 
tools to address the growing number of open questions, overcome 
resistance, and broaden the benefits of immunotherapy to more 
patients.

The tumor-host immune system interaction and role 
of co-receptors
The immune system can be activated by tumor antigens and,  
once primed, can elicit an antitumor response which in some cases 
can result in tumor destruction. Unfortunately, the successful  
development of antitumor immunity is often hampered by a  
plethora of factors that can directly determine the adequacy of the 
immune response. The singular event illustrated by a cytotoxic 
lymphocyte interacting with a tumor cell holds a background of 
a series of complex mechanisms, encompassed under the con-
cepts of “immunosurveillance” and “immunoediting”8,9. Critical 
aspects in the tumor–immune system interface include the process-
ing and presentation of released antigens by antigen-presenting  
cells (APCs), interaction with T lymphocytes, subsequent  
immune/T-cell activation, trafficking of antigen-specific effector 
cells, and, ultimately, the engagement of the target tumor cell by the 
activated effector T cell10,11. Nevertheless, although often successful 
in preventing tumor outgrowth, this “cancer-immunity cycle” can 
be disrupted by artifices involved in immune escape and develop-
ment of tolerance, culminating with the evasion and proliferation  
of malignant cells9–11.

T-cell activation relies on the interaction of the T-cell receptor 
with antigens presented as peptides through the major histocom-
patibility complex (MHC) by the APC. Tumor antigens are clas-
sified as tumor-specific antigens (TSAs), derived from cancer-
germline genes, point mutations or oncogenic viruses and unique 
to tumor cells, or tumor-associated antigens (TAAs), which include 
differentiation antigens (tyrosinase, gp100, Melan-A/MART-1, 
carcinoembryonic antigen, prostate-specific antigen, prostatic 

acidic phosphatase, etc.) and peptides associated with genes 
overexpressed in tumors (survivin, erbB-2 or CD340, RAGE-1, 
PRAME, and WT1)12,13. HLA downregulation has been shown to 
result in decreased antigenicity and therefore acts as a mechanism 
of immune evasion14.

While the recognition of peptide–MHC by the TCR plays a cen-
tral role in the process of T-cell-mediated immunity, additional 
cell-surface co-receptors are mandatory for the modulation of the 
immune response, either positively or negatively15,16. Two of these 
inhibitory co-receptors, called immune checkpoints, are involved 
in adaptive immune resistance and T-cell tolerance and have been 
exploited clinically with the development of checkpoint-blocking 
monoclonal antibodies. The two receptors include the cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4, also known as CD152) 
and the programmed cell death receptor 1 (PD-1 or CD279) and its 
ligand (PD-L1, also named CD274 or B7-H1)16. Additional inhibi-
tory receptors include B- and T-cell attenuator (BTLA or CD272), 
lymphocyte-activation protein 3 (LAG-3 or CD223), T-cell immu-
noglobulin and mucin protein-3 (TIM-3, also termed hepatitis A 
virus cellular receptor 2 – HAVCR2 – or CD366), and V-domain 
immunoglobulin-containing suppressor of T-cell activation 
(VISTA, B7H5, or programmed death 1 homolog – PD-1H)16–18. 
Also potential targets for therapeutic manipulation, co-stimulatory 
receptors associated with positive modulation of the immune 
synapse include CD27, CD28, CD137, inducible T-cell costimu-
lator (ICOS or CD278), herpesvirus entry mediator (HVEM, also 
known as tumor necrosis factor receptor superfamily member 
14 – TNFRSF14), and glucocorticoid-induced TNFR-related 
protein (GITR or tumor necrosis factor receptor superfamily 
member 18 – TNFRSF18). It is important to highlight, however, 
that the list of co-receptors and ligands encompasses both 
co-inhibitory and co-stimulatory molecules other than those 
aforementioned, some of which are not fully characterized.

The mobilization of these components of the adaptive immune 
system involved in antitumor immunity, including CD4+ helper 
T cells and CD8+ effector T cells, are largely influenced by a 
milieu of variables that involve intrinsic tumor characteristics, 
microenvironment factors, and genetic/epigenetic determinants19.

Tumor antigenic potential
Antigens are paramount in immune responses mediated by T cells; 
indeed, histologies that served as proofs of concept for the develop-
ment of immunotherapy, including melanoma and renal cell carci-
noma, have long been characterized as potentially “immunogenic” 
or “antigenic”19,20. Antigen-directed T-cell activation can result 
from the presentation of tumor self-peptides or peptides/neoanti-
gens that emerge from aberrant gene products. As a consequence, 
the tumor genomic landscape or mutational load would represent a 
logical surrogate of the immunogenicity or “foreignness” of distinct 
malignancies through the generation of neoepitopes21,22.

Indeed, prolonged patient survival has been associated with an 
increased number of somatic missense mutations and mutational 
epitopes23. More importantly, a correlation between the muta-
tional burden and clinical benefit has been seen in the setting of 
immune-checkpoint blockade24–26. Snyder et al. was able to dem-
onstrate an association between outcomes following anti-CTLA-4 

Page 3 of 8

F1000Research 2016, 5(F1000 Faculty Rev):2545 Last updated: 20 OCT 2016



therapy in melanoma and a high mutational load. Of note, although 
a high mutational load increased the probability of an “immuno-
genic” neoepitope signature, these variables were not completely 
overlapping. An even more intriguing finding was that candidate 
neoepitopes were homologous to distinct viral and bacterial anti-
gens24. Some similar findings were reported by Van Allen and col-
leagues based on an expanded cohort of 110 patients with meta-
static melanoma; using transcriptome data, a correlation among the 
expression of cytolytic genes, neoantigen load, and clinical benefit 
to CTLA-4 was also demonstrated25.

The mutational landscape was also found to be a determinant of 
clinical benefit from PD-1 blockade in patients with non-small-cell 
lung cancer (NSCLC); moreover, responses were more frequent in 
the setting of environmental exposure to tobacco, determined using 
a molecular signature of smoking that also correlated with a higher 
number of non-synonymous mutations26. Serving as a strong proof 
of principle, blockade of PD-1 resulted in clinically meaning-
ful activity in patients with mismatch repair (MMR) deficiency- 
associated tumors27, characterized by a large number of somatic 
mutations and rich in expression of immune inhibitors (PD-1, 
PD-L1, LAG-3, and indoleamine 2,3 dioxygenase [IDO])28. 
Nevertheless, the correlation among mutational burden, the 
generation of neoantigens/neoepitopes, and the activation of 
antigen-specific T cells is not linear and neoepitopes may not be 
universally presented by the MHC29,30. Some studies have also 
suggested that mutational load may be prognostic but not neces-
sarily predictive for responses to PD-1 therapy in melanoma31. In 
addition, while clonal neoantigens may drive CD8+ T-cell 
responses and predict responses to PD-1 and CTLA-4 blockade, 
the clinical impact of subclonal mutations is largely debatable 
and arguably marginal, despite being associated with increased 
mutational load32.

Albeit intuitive, the tumor antigenic potential is not driven solely 
by the total mutational load, as other antigens can also be immuno-
genic. Additional insults to the DNA other than the number of muta-
tions can result in potentially neoantigenic epitopes, and oncogenic 
viruses could be determinant in the cancer–host immune system 
interaction and antigenicity. In Merkel cell carcinoma, the presence 
of Merkel cell polyomavirus (MCPyV) DNA and tumor-infiltrat-
ing lymphocytes and the expression of PD-L1 support the existence 
of intrinsic antitumor immunity33. Indeed, PD-1 blockade resulted 
in meaningful clinical activity in Merkel cell carcinoma patients, 
particularly in those associated with MCPyV, despite a lower muta-
tional burden in this subgroup4.

While most studies have investigated the mutational profile of 
tumors as a surrogate for “tumor antigenicity” as a potential pre-
treatment biomarker of responsiveness to checkpoint blockade, a 
recent study specifically examined the mutational profile of resist-
ant lesions that arose in patients with melanoma who previously 
benefitted from PD-1 therapy. Although the number of patients 
examined in this series was small (n=4), some secondary resistant 
lesions had mutations in the interferon (IFN) (JAK mutations) and 
antigen-presentation (beta-2-microglobulin) pathways, suggesting 
possible mechanisms of immune escape from PD-134. Additional 
study in larger patient cohorts would be of value.

Tumor microenvironment factors and pre-existing 
host immune conditions
Despite the central role of intrinsic antigenicity, tumor immuno-
genicity is directly influenced by a plethora of immunomodulatory 
factors co-existing in the tumor microenvironment that derive from 
both tumor cells and host cells. Also intuitive, the concept that 
“inflamed” or “hot” tumors may derive greater benefit from immu-
notherapy is supported by mounting evidence.

The characterization of the T-cell infiltrate has been associated 
with both innate antitumor immunity and benefit from immune- 
checkpoint blockade. The density of antigen-specific effector 
T cells within the tumor microenvironment and invasive margin 
is a predictor of survival in patients with colorectal cancer, and 
the concept that pre-treatment adaptive immune responses and 
immune infiltrates directly influence the natural course of different 
malignancies is consistent across different studies35,36. Pre-existing 
CD8+ T cells located at the invasive tumor margin are aligned with 
expression of PD-1 and PD-L137. Additionally, increased CD8+ 
T-cell infiltrates within the tumor microenvironment directly 
correlated with benefit from PD-1 blockade37,38. An association 
between absolute lymphocyte count in the peripheral blood of 
patients who received anti-CTLA-4 therapy and clinical benefit 
has also been shown as an increase in lymphocyte count during 
treatment or at baseline39,40. Also, anti-CTLA-4 treatment was 
demonstrated to result in newly detected CD8+ T-cell responses 
measured in post-treatment samples, suggesting that CTLA-4 
blockade has a direct role in increasing T-cell priming41.

Increased levels of IFN-γ and expression of ICOS on peripheral 
lymphocytes and tumor-infiltrating lymphocytes has been demon-
strated in the setting of CTLA-4 blockade42, providing the rationale 
for additional combined approaches. CD4+ T cells with increased 
ICOS expression also correlated with an increase in effector/ 
regulatory T-cell ratio43.

Factors involved in the modulation of the tumor and immune 
microenvironment are also crucial in understanding the tumor–host 
immune system interaction. In metastatic melanoma samples, cell 
lines, and xenografts, T-cell and macrophage recruitment occurred 
more frequently in association with the expression of a subset of 
chemokines (CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10) 
associated with an “inflamed” phenotype44,45. Indeed, CXCL9 and 
CXCL10, ligands of CXCR3, were incorporated in a gene signa-
ture associated with responses to anti-PD-1 treatment and indica-
tive of an inflamed microenvironment46. Similarly, the presence of 
tumor-reactive cells correlated with endogenous accumulation of 
type I IFNs (IFN-α, IFN-β, IFN-ε, IFN-κ, and IFN-ω)47. In a topic 
of significant clinical relevance, the regulation of genes associ-
ated with IFN signaling was achieved with the use of azacitidine, a 
DNA methyltransferase inhibitor, through the epigenetic regulation 
of gene promoters normally silenced48.

Nevertheless, T-cell infiltration is also accompanied by the induc-
tion of tolerance mechanisms largely involved in the abrogation of 
an effective antitumor immune response. These so-called inhibi-
tory pathways involve the expression of IDO and PD-L1, induced 
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by IFN-γ, and recruitment of FoxP3+CD4+ (regulatory T) cells 
through CCL22 in the setting of CD8+ T-cell activation49.

In melanoma lesions and other malignancies, the expression of  
PD-L1 has been associated with the presence of tumor-infiltrating 
lymphocytes, IFN-γ expression, and improved survival in some 
studies33,50–52. While straightforward, using the expression of PD-L1 
as a biomarker poses a series of caveats and uncertainties. PD-L1  
is expressed in macrophages and, in the setting of immune activa-
tion, in B, T, myeloid, and dendritic cells (DCs) as well as in non-
hematopoietic and endothelial cells53. Indeed, the early clinical 
development of anti-PD-1 agents already suggested that tumors 
rich in PD-L1 expression were more likely to respond to therapy54, 
although this correlation is imperfect. It is important to emphasize 
that PD-L1 expression occurs along a spectrum of positivity and 
is dynamic and heterogeneous between and within tumors. The 
expression of PD-L1 can occur constitutively, or it can be induced 
upon T-cell activation49,50,55. In addition to analytical technical issues 
detecting PD-L1, pre-testing factors (distribution, cell population 
by which PD-L1 is expressed, etc.) and intrapatient, intertumor  
heterogeneity pose significant limitations to the interpretation of 
PD-L1 expression56.

Similarly, the expansion of regulatory T cells and myeloid-
derived suppressor cells (MDSCs) also represents a mechanism 
of immune escape, suggesting that additional immunosuppressive 
factors may need to be targeted to increase antitumor immunity. 
In murine models, inhibition of MDSC trafficking by CXCR2 
deficiency or CXCR2 signaling blockade increased the efficacy 
of anti-PD-1 therapy57. It has been demonstrated in pre-clinical 
models that inhibition of regulatory T cells may be necessary for 
anti-CTLA-4-induced antitumor activity58. Moreover, the efficacy 
of anti-CTLA-4 therapy has been associated with regulatory T-cell 
depletion in the presence of Fcγ receptor-expressing macrophages, 
suggesting that the mechanisms involved in immune activation 
may be more diverse than anticipated59.

In addition to the aforementioned factors related to pre-existing 
immune conditions and regulation within the tumor microenviron-
ment, antitumor immunity can also be affected by a very particular 
variable: the host microbiota. Across different studies, intestinal 
commensal bacteria have been shown to influence T-cell differenti-
ation, APC activation, and antitumor immunity modulation60,61. In a 
demonstration of this principle, fecal material transfer between two 
murine populations resulted in infiltration of tumor-specific CD8+ 
T cells and delayed tumor growth, an effect attributed to the colo-
nization by Bifidobacterium species. Of note, in addition to innate 
antitumor immunity, oral administration of Bifidobacterium also 
potentiated the antitumor effect of PD-L1 blockade62.

Genetic, epigenetic, and signaling modulators of the 
immune response
If it is now well established that immune responses can be influenced 
by genomic correlates, including the burden of non-synonymous 
mutations, emerging evidence suggests that specific genetic vari-
ables are also involved in direct modulation of antitumor immunity.

Distinct somatic mutations have been shown to be related to intra-
tumoral immunity. As an example, restoration of p53 signaling 
has been associated with the activation of tumor-directed innate 
immune cells, natural killer cell recruitment, and chemokine  
production63,64. Another study showed a low mutational burden was 
associated with PD-L1 negativity and worse survival65. In melanoma 
cell lines, disruptive mutations of JAK1 or JAK2 (downstream 
elements of IFN signaling) have been shown to abrogate PD-L1 
expression upon exposure to IFN-γ, suggesting a mechanism for 
innate resistance to PD-1 blockade66. In NSCLC samples, expres-
sion of PD-L1 and PD-L1 gene amplification correlated with 
simultaneous amplification of JAK2, whereas JAK2 inhibition 
resulted in reduced expression of PD-L1 protein67. Conversely, 
PI3K-AKT pathway activation resulting from PTEN loss has 
been shown to correlate with immunoresistance mediated by 
PD-L1 and PD-L2 expression in preclinical models as well as in 
a clinical series55,68. An immune translation of somatic events has 
also been reported for aberrations involving STAT3/ALK signal-
ing and EGFR mutations69,70. In melanoma metastases, muta-
tions involved in activation of the WNT/β-catenin pathway were 
associated with a non-T-cell inflamed phenotype and T-cell 
exclusion from the tumor microenvironment71.

Besides T-cell activation, DC mobilization can be modulated by 
distinct genetic pathways involved in innate immune sensing of 
immunogenic tumors. As an example, knockout mice deficient 
for the transcription factor Batf3, involved in DC recruitment and 
activation through type I IFNs, show impaired CD8+ T-cell acti-
vation72. As a corollary, tumor-infiltrating DCs can be artificially 
manipulated in order to induce antitumor immunity, as demon-
strated in preclinical models in which intratumoral delivery of 
mRNA involved in the activation of cross-presenting DCs resulted 
in T-cell responses73. Similarly, defective spontaneous T-cell prim-
ing has been demonstrated in models lacking the cytosolic receptor 
stimulator of IFN genes complex (STING), which is involved in 
type I IFN and proinflammatory cytokine responses. In line with 
these observations, vaccines with STING ligands were able to 
induce DCs, PD-L1 upregulation, and antigen-specific T-cell acti-
vation in preclinical models74.

Conclusions
It is well known that the characterization of basic mechanisms 
underlying antitumor immunity has paved the way for the develop-
ment of therapeutic strategies to manipulate antitumor immunity 
for favorable patient benefit. The interplay among different factors 
driving the tumor–host immune response is not fully characterized, 
and the complexity of these factors has been summarized by Blank 
and colleagues as the “cancer immunogram”75. The understand-
ing of these multiple regulatory pathways involved in antitumor 
immunity is crucial not only for patient selection and therapeu-
tic decisions but also for improving outcomes through combined 
approaches. In addition, despite the significant clinical results and 
survival improvements seen in patients with some cancers, primary 
and acquired/secondary resistance to immunotherapy remain chal-
lenges. Future research will be critical in addressing the large body 
of questions which remains to be answered.
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