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ABSTRACT
Various neurodegenerative disorders are associated with increased brain iron content. Iron is known to
cause oxidative stress, which concomitantly promotes cell death. Whereas endolysosomes are known to
serve as intracellular iron storage organelles, the consequences of increased iron on endolysosomal
functioning, and effects on cell viability upon modulation of endolysosomal iron release remain largely
unknown. Here, we show that increasing intracellular iron causes endolysosomal alterations associated
with impaired autophagic clearance of intracellular protein aggregates, increased cytosolic oxidative stress
and increased cell death. These effects are subject to regulation by NAADP, a potent second messenger
reported to target endolysosomal TPCNs (2-pore channels). Consistent with endolysosomal iron storage,
cytosolic iron levels are modulated by NAADP, and increased cytosolic iron is detected when
overexpressing active, but not inactive TPCNs, indicating that these channels can modulate
endolysosomal iron release. Cell death triggered by altered intralysosomal iron handling is abrogated in
the presence of an NAADP antagonist or when inhibiting RAB7A activity. Taken together, our results
suggest that increased endolysosomal iron causes cell death associated with increased cytosolic oxidative
stress as well as autophagic impairments, and these effects are subject to modulation by endolysosomal
ion channel activity in a RAB7A-dependent manner. These data highlight alternative therapeutic strategies
for neurodegenerative disorders associated with increased intracellular iron load.
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Introduction

Whereas iron is an essential element for many biological
processes, increases in intracellular iron cause cellular damage
through hydroxyl radical production. Accumulation of iron
occurs in many neurodegenerative diseases, and is especially
pronounced in the basal ganglia, which may explain the associ-
ation of increased iron with a variety of movement disorders
including Parkinson disease.1,2 It remains unclear whether iron
accumulation is a primary event, or secondary to the neurode-
generative process. However, as iron accumulation also occurs
during healthy aging, and as aging is a major risk factor for
neurodegeneration, iron dyshomeostasis likely plays an impor-
tant role in the mechanisms underlying cellular demise.

Within cells, iron can be incorporated into the intracellular
labile iron pool and iron-containing proteins, stored in ferritin as a
soluble, nontoxic form, or stored in endolysosomes.1,3,4 Interest-
ingly, numerous neurodegenerative diseases including Parkinson
disease are associated with lysosomal dysfunction,5 suggesting the
possibility that iron overload may be a contributing factor. How-
ever, the precise cellular events triggered by endolysosomal iron

dyshomeostasis, and the iron release channels responsible for
modulating metal homeostasis remain unclear.

Endolysosomes contain a variety of cation channels includ-
ing TPCN1 (2-pore channel 1) and TPCN2, and MCOLN1
(mucolipin 1)/TRPML1, MCOLN2/TRPML2 and MCOLN3/
TRPML3, respectively. Both TPCN and MCOLN channels are
known to function as calcium release channels with roles in
endolysosomal transport and fusion processes.6-8 However,
they can also conduct ions other than calcium, with TPCN1
and TPCN2 also reported to be permeable to sodium,9,10 and
MCOLN1 and MCOLN2 permeable to iron and zinc,11,12

indicating that these channels may play a more general role in
controlling cation and heavy metal homeostasis in endolysoso-
mal organelles.13

In this study we show that cellular iron overload is associated
with endolysosomal deficits, autophagic impairments, enhanced
cytosolic oxidative stress and cell death. These effects are regulated
by TPCN channels in a manner sensitive to NAADP and a highly
selective NAADP antagonist,28 as well as to RAB7A activity. These
findings have broad implications for our understanding of
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intracellular iron handling and provide novel insights into possible
innovative modifying therapies for common neurodegenerative
diseases involving iron dyshomeostasis.

Results

Increased intracellular iron mediates cytotoxicity
and oxidative stress

We analyzed iron levels in postmortem samples from control
and Lewy body disease patients. A significant increase in total
iron content was observed in substantia nigra samples from
patients with disease as compared to age-matched controls,
consistent with previous studies reporting increased iron load
in distinct neurodegenerative diseases (Fig. 1A).29-31

In serum, iron is found in highly soluble form, and bound to
the iron transport protein transferrin (Tf). Tf binds Fe3C, which
allows it to bind to TFRC (transferrin receptor), followed by recep-
tor-mediated endocytosis,32 and such Tf-mediated Fe3C uptake
also seems to play a crucial role for neuronal iron acquisition.33

Once in the acidic lumen of endolysosomes, iron is subsequently
released from Tf as Fe2C, and reduced iron transported across the
endolysosomal membrane into the cytosol.34 To model alterations
in iron homeostasis in vitro, we employed ferric ammonium cit-
rate (FAC) which has been reported to increase intracellular iron
levels both in vitro and in vivo, concomitant with increased cell
death.35,36 Indeed, treatment of HEK293T cells with FAC caused a
dose-dependent increase in total cellular iron content (Fig. 1B),
and treatment of a variety of distinct cell types caused a dose- and
time-dependent increase in apoptosis (Fig. 1C to F). The extent of
cell death induced by increased intracellular iron load was similar
among distinct cell lines, but more pronounced in cells with dopa-
minergic features such as PC12 or SH-SY5Y cells (Fig. S1). A
dose- and time-dependent increase in apoptosis was also observed
when increasing intracellular iron by application of FeCl2, which
becomes rapidly oxidized (Fe3C) (Fig. 1G). Moreover, the FAC-
mediated increase in cell death was abolished when treating cells
with dynasore (a cell-permeable dynamin inhibitor),37 confirming
that receptor-mediated endocytosis is largely responsible for iron
uptake in our cultured cell systems (Fig. S2).

Chelatable iron can potently induce oxidative stress, as it con-
verts hydrogen peroxide to highly reactive hydroxyl radicals via
the Fenton reaction. Indeed, FAC treatment caused a dose-depen-
dent increase in the level of oxidized proteins (protein carbonyls)
as analyzed by the oxyblot assay (Fig. 2A, B). In addition, transfec-
tion of cells with a reduction-oxidation-sensitive green fluorescent
protein (ro-GFP) to allow for real time visualization of the oxida-
tion state of the indicator38 showed that FAC treatment caused a
dose-dependent increase in the cytosolic oxidation state in living
cells, similar to treatment with hydrogen peroxide (Fig. 2C, D).

Iron-mediated stress impairs autophagic clearance
and causes endolysosomal alterations

As oxidative stress induces autophagy,39 we analyzed FAC-
mediated autophagy induction in MAP1LC3B/GFP-LC3B-
transfected cells (Fig. 3A). Increasing intracellular iron by
either FAC or FeCl2 caused a significant, dose- and time-depen-
dent accumulation of autophagosomes (Fig. 3B, C), and

western blotting for endogenous proteins from FAC or FeCl2-
treated cells indicated an increase in the levels of LC3B-II as
well as SQSTM1/p62, a classical macroautophagy substrate
(Fig. 3D, E).40

To more precisely determine how iron overload may affect
autophagic flux, we employed a pH-sensitive tagged LC3B
construct consisting of a tandem fusion of the red, acid-insensi-
tive mCherry and the acid-sensitive GFP (td-tag-LC3B).41 Td-
tag-LC3B emits yellow (green merged with red) fluorescence in
nonacidic structures (autophagosomes), but will appear as red
only in autolysosomes due to the quenching of GFP in the acidic
environment (Fig. 3F, G). Inducing autophagic flux by applica-
tion of torin 142 caused a pronounced increase in both early and
late autophagic structures (Fig. 3G). In contrast, treatment of
cells with either FAC or FeCl2 significantly increased the percent-
age of yellow puncta, indicating an impairment in autophagic
maturation (Fig. 3G).

To obtain further evidence for a FAC-mediated deficit in
productive autophagy, cells were transfected with mutant poly-
glutamine-expanded HTT (huntingtin) fragment (HTTQ74), an
aggregate-prone protein that can be employed as an exogenous
reporter for protein homeostasis.43 Simultaneous FAC treat-
ment was found to cause an increase in the percentage of trans-
fected cells with HTTQ74 aggregates (Fig. 4A, B). Whereas the
presence of HTTQ74 on its own was not detrimental to cell sur-
vival, it aggravated cell death in the presence of iron overload
(Fig. 4C). Thus, increasing intracellular iron content seems to
be associated with a deficit in the autophagic clearance of aggre-
gate-prone proteins and increased cell death, mechanistically
mimicking events associated with various neurodegenerative
disorders.44-49

To determine how iron overload and protein aggregation
may mutually affect each other, we preincubated cells either in
the absence or presence of FAC for 24 h, followed by HTTQ74

expression in the absence of FAC. Cells pretreated with FAC
displayed an increase in protein aggregation as compared to
untreated cells, which was paralleled by an increase in cell death
(Fig. 4D). Conversely, we transfected cells with HTTQ74 and
challenged them with or without FAC for the last 24 h of
expression. Under these conditions, cells challenged with FAC
also displayed increased protein aggregation associated with
increased cell death (Fig. 4E). Thus, iron overload is able to sen-
sitize cells for subsequent protein aggregation, while also able to
enhance existing protein aggregation.

Lysosomes play critical roles in cellular homeostasis, and
numerous neurodegenerative diseases are associated with a dys-
function of these organelles, often associated with compensatory
lysosome proliferation.5 Indeed, augmenting intracellular iron
load was found to increase both the number and size of lysosomes
as indicated by staining against LAMP2 (Fig. 5A to C), or by deter-
mining total LAMP2 content by western blotting (Fig. 5D). Similar
results were observed in cells transfected with LAMP1-GFP, a late
endosomal/endolysosomal marker (Fig. 5E to I).50 Interestingly,
FAC treatment not only increased the number and size of endoly-
sosomes and total LAMP1 content as determined by western blot-
ting (Fig. 5D), but also caused the appearance of very large
endolysosomal structures (Fig. 5H, I).

Apart from the observed impairment in autophagic flux
associated with a decrease in the clearance of protein
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aggregates, additional evidence for endolysosomal dysfunction
was obtained by measuring endolysosomal pH by acridine
orange (AO), a lysosomotropic metachromatic fluorochrome

which accumulates in acidic organelles, shifting its emission to
longer wavelengths.51,52 When excited with blue light, AO
emits red fluorescence at high concentrations (in acidic

Figure 1. Increased iron is associated with neurodegeneration in vivo and mediates cytotoxicity in vitro. (A) Total iron levels (normalized to tissue wet weight) of sub-
stantia nigra samples from age-matched control and Lewy-body disease patients (LBD) as analyzed by atomic absorption spectroscopy. Graph represents mean § SEM
(n D 5; �, P < 0.05). (B) Total iron levels as analyzed by atomic absorption spectroscopy from HEK293T cells left either untreated (ctrl), or treated with the indicated
concentrations of FAC for 48 h. Graph represents mean § SEM (n D 3; �, P < 0.05). FAC treatment causes a time- and dose-dependent increase in apoptosis in
HEK293T cells (C), HeLa cells (D), primary dermal fibroblasts (E) or dopaminergic PC12 cells (F). (G) FeCl2 treatment causes a time- and dose-dependent increase in
apoptosis in HEK293T cells. Graphs represent mean § SEM (n D 3; �, P < 0.05, ��, P < 0.005).
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organelles), and green fluorescence at low concentrations (in
cytosol and nucleus). The number of AO-loaded acidic organ-
elles per cell was almost entirely abolished when dissipating
endolysosomal pH by either bafilomycin A1 (BAF) or nigericin,
and was significantly reduced upon treatment of cells with
either FAC or FeCl2 (Fig. 6A,B). Together, these data indicate
that cellular iron overload causes both structural and functional
changes in endolysosomal organelles.

Iron-mediated alterations are regulated by NAADP
and TPCN channels

We next aimed to determine whether there is a possible link
between increased intracellular iron, endolysosomal deficits
and TPCN channels, known to be sensitive to a cell-permeant
version of NAADP (NAADP-AM) and the NAADP antagonist
Ned-19.20,28 Whereas NAADP-AM or Ned-19 were without
effect in the absence of increasing intracellular iron load,

NAADP-AM potentiated the effects of FAC or FeCl2 on apo-
ptotic cell death (Fig. 7A, B), cytosolic oxidation state (Fig. 7C)
and autophagosome accumulation (Fig. 7D, E). The percentage
of cells with HTTQ74 aggregates and concomitant enhanced cell
death was similarly potentiated (Fig. 7F), as was the number
and size of endolysosomal structures induced upon FAC treat-
ment (Fig. S3). Conversely, Ned-19 abolished all the iron over-
load-mediated effects (Fig. 7A to G, Fig. S3).

To determine which of the NAADP-sensitive channels may
be involved in modulating the cellular alterations mediated by
increased intracellular iron, we expressed tagged versions of the
distinct channels, which were expressed to similar degrees and
localized to endolysosomal structures, as previously described
(Fig. S4).8 Overexpression of either TPCN1 or TPCN2
increased the apoptosis induced by FAC or FeCl2 treatment,
which could be further potentiated by NAADP-AM (Fig. 8A,
B; Fig. S5). In contrast, expression of channels containing
mutations in a residue of the putative pore-forming helix53,54

and shown to act as dominant-negative versions of either

Figure 2. Increased iron load causes oxidative damage. (A) Oxyblot assay performed on HEK293T cells in the absence (ctrl) or presence of FAC treatment as indicated.
DNPH, 2,4-dinitrophenylhydrazine. (B) Oxyblot levels were quantified (fold change as compared to control), and bars represent mean § SEM (n D 3; ��, P < 0.005).
(C) Representative experiment detecting oxidation in HEK293T cells upon addition of hydrogen peroxide, and reversal by DTT. Images were taken using an emission
wavelength of 535 nm and 400 nm and 480 nm excitation wavelengths. Images were taken at 1 min intervals, and ratiometric values are depicted in pseudocolor cali-
brated using the color scale on the right. Concentration of chemicals and times of addition are indicated by arrows. Scale bar: 10 mm. (D) Quantification of oxidation
induced by either hydrogen peroxide or increasing concentrations of FAC applied during 48 h, respectively. Bars represent mean§ SEM (nD 3; �, P< 0.05, ��, P< 0.005).
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TPCN1 (TPCN1L273P) or TPCN2 (TPCN2L265P) abolished the
FAC or FeCl2-mediated increase in apoptosis observed with
wild-type channels, and prevented the NAADP-mediated
potentiation of cell death (Fig. 8A, B; Table 1). This was not
due to differences in expression levels or aberrant subcellular
localization, as both wild-type and mutant channels were
expressed to similar degrees and properly localized to endolyso-
somal structures (Fig. S4). The effects of FAC or FeCl2 in
TPCN1- or TPCN2-expressing cells were abolished by Ned-19

(Fig. 8C, D; Fig. S5), suggesting that they were dependent on
proper channel functioning and regulated in an NAADP-medi-
ated manner. Thus, expression of active endolysosomal TPCN
channels potentiates the deleterious effects of increasing intra-
cellular iron content in a manner further potentiated by
NAADP-AM and reversed by Ned-19.

MCOLN1 and MCOLN2 are permeable to iron,11 but such
iron permeability has not been investigated for TPCNs. Since
MCOLN1 has been reported to form heterodimers with TPCN2,

Figure 3. Iron overload impairs autophagic flux. (A) Representative examples of HEK293T cells transfected with GFP-LC3B either in the absence (ctrl) or presence of FAC
for 48 h. Scale bar: 10 mm. Quantification of the number of GFP-LC3B dots per cell in the absence (ctrl) or presence of the indicated amounts and times of FAC (B) or
FeCl2 application (C). Bars represent mean§ SEM (nD 3; �, P < 0.05; ��, P< 0.001). (D) Cells were either left untreated (ctrl) or treated as indicated, and extracts analyzed
for endogenous LC3B-I/-II, SQSTM1 and TUBA. (E) Quantification of LC3B-II:TUBA or SQSTM1:TUBA from experiments of the type described in (D). Bars represent mean §
SEM (n D 3; �, P < 0.05; ��, P < 0.005). (F) Representative examples of HEK293T cells transfected with td-tag-LC3B either in the absence (ctrl) or presence of FAC for 48 h.
Scale bar: 10 mm. (G) Left: Quantification of the number of yellow and red td-tag-LC3B dots per cell either in the absence (ctrl) or presence of torin 1, FAC or FeCl2 as indi-
cated. Right: Quantification of the percentage of yellow td-tag-LC3B dots per cell either in the absence (ctrl) or presence of torin 1, FAC or FeCl2 as indicated. Bars repre-
sent mean § SEM (n D 3; ���, P < 0.001).
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and to a lesser degree with TPCN1,55 we wondered whether the
observed iron-mediated effects of the TPCNs may be due to
their heterogenous interactions with MCOLN1 channels. Expres-
sion of TPCN2 caused an increase in FAC-mediated apoptosis
which was abolished when coexpressing the TPCN2 pore mutant
(Fig. 9). Similarly, expression of MCOLN1 caused an increase in
FAC-mediated apoptosis abolished when coexpressing a
MCOLN1 mutant (MCOLN1T232P) defective in iron conductance
(Fig. 9, Table 1).11 Coexpression of TPCN2 with MCOLN1
caused an additive increase in FAC-mediated apoptosis. How-
ever, coexpression of mutant MCOLN1T232P along with TPCN2
did not abolish the TPCN2-mediated increase in cell death in
the presence of FAC. Similarly, coexpression of mutant TPCN2
did not abolish the MCOLN1-mediated increase in cell death in
the presence of FAC (Fig. 9). Therefore, TPCN and MCOLN
channels seem to function independently from each other in
mediating the cellular effects of increased intracellular iron.

To further probe the role of TPCNs, we performed
shRNA experiments.53,56 Silencing of both TPCN1 and
TPCN2 increased apoptosis under basal conditions, and
also increased apoptosis upon FAC treatment, suggesting
that TPCN channels may be important for cell survival
under our cell culture conditions (Fig. S6). Notably, and in
contrast to untransfected cells, cell death in knockdown
cells was not further modulated by either NAADP-AM or
Ned-19 (Fig. S6), indicating that the modulation of iron-

mediated cell death by NAADP-AM and Ned-19 as
reported here is largely mediated by TPCN channels.

NAADP and TPCN channels regulate endolysosomal
and cytosolic iron levels

Increased intraorganellar iron load may be responsible for the
observed effects of FAC treatment on endolysosomal structure
and functioning, and modulation of TPCN channels may cause
endolysosomal iron release, followed by increased cytosolic oxi-
dative stress and eventual cell death. To demonstrate iron accu-
mulation in endolysosomes, we stained for endolysosomal iron
using the sulphide-silver method.11,57 Cells were either left
untreated, treated with FAC or FeCl2, or treated with Fe3C-dex-
tran, which is endocytosed and exclusively accumulates in
endolysosomes.11 As previously described, Fe3C-dextran-loaded
cells displayed significantly more iron staining as compared to
control cells, which often localized to the vicinity of the
nucleus, typical for the intracellular positioning of endolyso-
somes (Fig. 10A). Similarly, FAC or FeCl2-treated cells dis-
played a significant increase in iron staining as compared to
control cells, which was mostly localized to a perinuclear area
(Fig. 10A, B). Cells expressing TPCN1 or TPCN2 displayed a
further FAC or FeCl2-mediated increase in iron staining, and
such increased staining was largely abolished when treating
cells with NAADP-AM, but not Ned-19 (Fig. 10C, D).

Figure 4. Increased intracellular iron causes deficits in clearance of aggregate-prone protein associated with increased cell death. (A) Representative examples of HEK293T cells
transfected with HTTQ74-HA either in the absence (ctrl) or presence of FAC for 48 h. Arrows point to aggregates. Scale bar: 10 mm. (B) Quantification of the percentage of cells
displaying HTTQ74-HA aggregates in the absence (ctrl) or presence of the indicated amounts of FAC applied during 48 h. Bars represent mean § SEM (n D 3; �, P < 0.005; ��,
P < 0.001). (C) Quantification of the percentage of apoptosis in untransfected or HTTQ74-HA expressing cells either in the absence (ctrl) or presence of the indicated amounts
of FAC applied during 48 h. Bars represent mean § SEM (n D 3; �, P < 0.05). (D) Cells were pretreated in the presence or absence of 50 mM FAC during 24 h before transfec-
tion as indicated, followed by quantification of the percentage of cells displaying aggregates (left) and apoptosis (right). Bars represent mean § SEM (n D 3; �, P < 0.05; ��,
P < 0.005). (E) Cells were transfected as indicated, and either left untreated, or treated with 50 mM FAC during the last 24 h as indicated, followed by quantification of the
percentage of cells displaying aggregates (left) and apoptosis (right). Bars represent mean § SEM (n D 3; ���, P < 0.001).
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Moreover, no NAADP-AM-mediated alterations in iron stain-
ing were observed in cells expressing mutant TPCN1 or
TPCN2, consistent with those mutants acting as dominant-
negative pore mutants (Fig. 10E, F).

We next measured the levels of free (chelatable) cytosolic
iron levels upon modulation of TPCN channels using a fluores-
cence-based iron dequenching imaging method.11 FAC treat-
ment caused an increase in cytosolic iron which was

Figure 5. Increasing intracellular iron causes endolysosomal alterations. (A) Representative images of HEK293T cells stained with LAMP2 either in the absence (ctrl) or
presence of FAC incubation for 48 h. Scale bar: 10 mm. (B) Quantification of the number of LAMP2-positive structures per cell in the absence or presence of FAC treatment.
Bars represent mean§ SEM (nD 3; �, P < 0.05; ��, P < 0.005). (C) Quantification of the size of LAMP2-positive structures in the absence or presence of the indicated con-
centrations of FAC. Bars represent mean§ SEM (nD 3; �, P < 0.05; ��, P < 0.005). (D) Cells were treated with FAC for 48 h, and extracts analyzed for levels of LAMP2 (top)
or LAMP1 (bottom), with TUBA as loading control. (E) Representative images of live HEK293T cells transfected with LAMP1-GFP and either left untreated (ctrl) or incubated
with FAC for 48 h. Scale bar: 10 mm. (F) Quantification of the number of LAMP1-GFP-positive structures per cell equal or smaller than 1 mm in diameter, in the absence or
presence of the indicated concentrations of FAC for 48 h. Bars represent mean § SEM (n D 3; ��, P < 0.005). (G) Quantification of the number of LAMP1-GFP-positive
structures per cell bigger than 1 mm in diameter, in the absence or presence of the indicated concentrations of FAC for 48 h. Bars represent mean § SEM (n D 3; �,
P < 0.05; ��, P < 0.001). (H) Quantification of the percentage of transfected cells with at least one LAMP1-GFP-positive structure with a diameter of between 1 to 3 mm.
Bars represent mean § SEM (n D 3; �, P < 0.05). (I) Quantification of the percentage of transfected cells with at least one LAMP1-GFP-positive structure with a diameter
larger than 3 mm. Bars represent mean § SEM (n D 3; �, P < 0.05).
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potentiated by NAADP-AM and sensitive to the NAADP
antagonist Ned-19 (Fig. 11A, B). In cells expressing wild-type
but not mutant TPCN2, FAC treatment further increased cyto-
solic iron levels in a manner sensitive to NAADP-AM and
reverted by Ned-19 (Fig. 11C, D). Identical findings were
observed in cells expressing TPCN1, but not mutant TPCN1
(Fig. 11E). Altogether, these data indicate that iron accumulates
in endolysosomal compartments, and that both endolysosomal
TPCN channels can regulate cytosolic iron homeostasis subject
to modulation by NAADP-AM and Ned-19.

Iron-mediated cytotoxicity is regulated by RAB7A activity

Apart from NAADP, TPCN channels have been reported to be
modulated by the small GTPase RAB7A.22 Thus, we next won-
dered whether the enhanced FAC-mediated apoptosis in
TPCN-expressing cells may be regulated by the coexpression of
various RAB7A constructs. Whereas coexpression of wild-type
RAB7A was without effect, the constitutively active, GTP-
locked RAB7AQ67L mutant further enhanced the FAC-medi-
ated increase in apoptosis observed upon TPCN2 expression
(Fig. 12A, Table 1). Interestingly, coexpression of the domi-
nant-negative, GTP binding-defective RAB7AT22N mutant fully
abolished the effects of TPCN2 on enhancing apoptosis in the
presence of increased iron load (Fig. 12A), and this could not
be modulated by NAADP-AM (Fig. 12B). Conversely, Ned-19
abolished the effects of TPCN2 expression on FAC-mediated
apoptosis irrespective of the presence of the various RAB7A
constructs (Fig. 12C). These data suggest that RAB7A may act
downstream from NAADP to regulate TPCN2 activity.

The enhancement of FAC-mediated apoptosis in the
presence of constitutively active RAB7A was not observed
in cells coexpressing TPCN1, but enhanced cell death in the
presence of FAC in TPCN1-expressing cells was also
blocked when coexpressing dominant-negative RAB7A
(Fig. 12D). Together, these data suggest that the behavior of
TPCN channels are modulated by dominant-negative
RAB7A, whereas constitutively active, GTP-locked RAB7A
only potentiates the effects of TPCN2.

Further evidence for the RAB7A-mediated regulation of
TPCN2 activity in the context of cell death induced by iron
overload was obtained by overexpressing a triple mutant
TPCN2 version (TPCN2[3A]; Q33A,V34A,P36A) previously
shown to display drastically reduced binding to RAB7A
(Table 1).22 This mutant increased FAC-mediated apoptosis to
a comparable degree as wild-type TPCN2, and in contrast to
the dominant-negative, inactive TPCN2 pore mutant
(Fig. 13A). However, the effects of FAC on apoptosis in the
presence of TPCN2[3A] were not further potentiated by cata-
lytically active RAB7A (Fig. 13B).

Finally, a pharmacological RAB inhibitor58 (CID1067700)
reverted the FAC-induced apoptosis in the presence of TPCN2,
as well as in the presence of TPCN2 and either wild-type or
constitutively active RAB7A (Fig. 13C). As CID1067700 has
been reported to compete with the GTP binding capacity of
RAB7A,58 these data support the notion that the potentiating
effect of the RAB7AQ67L mutant is indeed due to enhanced
activity (Fig. 13C). Together, these data indicate that TPCN
channels mediate release of iron from acidic stores, and that
their function can be modulated by altering the GTPase activity
of RAB7A.

Figure 6. Increasing intracellular iron causes alterations in endolysosomal pH. (A) Representative images of live HEK293T cells either left untreated (ctrl), or treated with
BAF, FAC or FeCl2 as indicated, followed by staining with acridine orange. Scale bar: 10 mm. (B) Quantification of the number of acridine orange-positive structures per
cell in the absence (ctrl) or presence of treatments as indicated. Bars represent mean § SEM (n D 3; ��, P < 0.005; ���, P < 0.001).
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Discussion

The present study shows for the first time that increased endolyso-
somal iron load causes deficits in the proper structure and func-
tion of these organelles, increased cytosolic oxidative stress and
eventual cell death. These events are associated with increased
autophagy initiation but impaired autophagic completion, as indi-
cated by the decreased clearance of protein aggregates. The
observed effects are potentiated by NAADP-AM and reverted by
Ned-19, implicating a role for endolysosomal NAADP-sensitive
cation channels. Indeed, overexpression of active but not inactive
TPCN channels aggravates iron-induced cell death in a manner
sensitive to NAADP-AM and Ned-19. Moreover, both endolyso-
somal iron staining and iron-sensitive fluorescence imaging indi-
cate that TPCN channels mediate endolysosomal iron release in a

manner modulated by NAADP-AM. The iron-mediated effects
on cell death are also shown to be regulated by the activity of
RAB7A, a regulator of endolysosomal and autophagic trafficking
steps. Together, these studies highlight novel approaches which
may have beneficial effects in treating diverse disorders associated
with altered iron handling. Interestingly, modulating TPCN chan-
nels and RAB7A activity have also recently been shown to revert
various cellular deficits related to pathogenic LRRK2, mutations
which cause Parkinson disease,59,60 indicating that they may com-
prise more general therapeutic targets for neurodegenerative disor-
ders beyond iron dyshomeostasis.

Increased brain iron has been associated with several sporadic
and genetic disorders manifesting as movement disorders.2 Since
increased iron content may secondarily contribute to the disease
process, strategies to modulate intracellular iron handling may

Figure 7. NAADP-mediated modulation of effects associated with increased iron load. Dose-dependent increase in FAC-mediated (A) or FeCl2-mediated (B) apoptosis in
HEK293T cells is potentiated upon 12 h incubation with 100 nM NAADP-AM, and abolished upon 12 h incubation with 1 mM Ned-19. Graphs represent mean § SEM
(n D 3; �, P < 0.05; ��, P < 0.005). (C) Quantification of oxidation induced by either hydrogen peroxide or increasing concentrations of FAC (48 h) in the absence or pres-
ence of NAADP-AM or Ned-19, respectively. NAADP-AM slightly potentiates, and Ned-19 potently inhibits FAC-mediated oxidation. Bars represent mean § SEM (n D 3; �,
P < 0.05, ��, P < 0.005). FAC-mediated (D) or FeCl2-mediated (E) increase in autophagosome numbers is potentiated by NAADP-AM and reverted by Ned-19. Quantifica-
tion of the number of GFP-LC3B dots per cell in the absence or presence of FAC, and in the absence or presence of NAADP-AM or Ned-19, respectively. Bars represent
mean § SEM (n D 3; �, P < 0.05; ��, P < 0.005). (F) Quantification of the percentage of cells displaying HTTQ74-HA aggregates (left) or apoptosis (right) in the absence or
presence of FAC, and in the absence or presence of NAADP-AM. Bars represent mean § SEM (n D 3; �, P < 0.05; ��, P < 0.005). (G) Quantification of the percentage of
cells displaying HTTQ74-HA aggregates (left) or apoptosis (right) in the absence or presence of FAC, and in the absence or presence of Ned-19. Bars represent mean §
SEM (n D 3; �, P < 0.05; ��, P < 0.005).
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prove beneficial. However, this requires a better understanding of
the mechanisms and molecular players regulating intracellular
iron handling. Our current data suggest various possible targets
including NAADP-sensitive endolysosomal cation channels and
RAB7A activity.

Lysosomes have emerged as important mediators of metal
homeostasis.4 Indeed, our iron imaging data indicate that a signifi-
cant amount of iron can be stored in endolysosomal organelles.
Increased iron content seems associated with lysosomal prolifera-
tion, an enlargement of endolysosomal structures, an increase in
endolysosomal pH and a deficit in autophagic flux. It remains pos-
sible that an alteration in the relative ion fluxes through the vari-
ous endolysosomal cation channels may cause the observed
deficits in proper late endocytic and autophagic trafficking and
endolysosomal size via altered fusion and fission of late endosomes
and lysosomes.61 However, application of BAPTA-AM, which
chelates both calcium as well as iron, reverted the NAADP-medi-
ated increase in cell death in TPCN-transfected cells (Fig. S7),
which at least excludes altered sodium fluxes through TPCN chan-
nels9,10 as being implicated in the observed effects. In addition, the
involvement of impaired iron homeostasis is further supported by

previous observations that increased levels of intralysosomal iron
induce an enlargement of lysosomes and an overall increase in
intralysosomal pH.11,62

The observed increase in cytosolic oxidative stress upon iron
load was found to be modulated by NAADP-AM and Ned-19,
indicating the involvement of endolysosomal NAADP-sensitive
channels in controlling cytosolic prooxidant iron levels. The spe-
cific NAADP-mediated modulation suggests that alterations in
oxidative stress are not merely a consequence of lysosomal rup-
ture or altered lysosomal membrane permeability. In agreement
with this, the NAADP antagonist Ned-19 reverted the observed

Figure 8. Expression of TPCN channels potentiates FAC-mediated cell death in a NAADP- and Ned-19-sensitive manner. Quantification of apoptosis mediated by FAC
(A) or FeCl2 (B) in HEK293T cells expressing either wild-type or dominant-negative TPCN1 or TPCN2 channels, respectively, in either the absence or presence of 100 nM
NAADP-AM. Bars represent mean § SEM (n D 3; �, P < 0.05). Quantification of apoptosis mediated by FAC (C) or FeCl2 (D) in cells expressing either wild-type or
dominant-negative TPCN1 or TPCN2 channels, respectively, in either the absence or presence of 1 mM Ned-19. Bars represent mean § SEM (n D 3; �, P < 0.05).

Table 1. Summary of the different mutant versions of TPCN1, TPCN2, MCOLN1 and
RAB7A constructs used in the present study and their functional consequences.

Mutant Molecular purpose

TPCN1L273P pore mutant, dominant-negative
TPCN2L265P pore mutant, dominant-negative
TPCN2[3A] defective in binding to RAB7A
MCOLN1T232P defective in iron conductance
RAB7AQ67L constitutively active, GTP locked
RAB7AT22N dominant-negative, GTP binding-deficient

Figure 9. TPCN2 and MCOLN1 function independently from each other to mediate
iron-induced cytotoxicity. Cells were cotransfected with the indicated constructs,
and cell death analyzed in either the absence or presence of 50 mM FAC for 48 h.
Bars represent mean § SEM (n D 3; �, P < 0.05; ��, P < 0.005).
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iron-mediated increase in oxidative stress, autophagosome num-
bers, deficits in autophagic protein aggregate clearance and struc-
tural endolysosomal alterations. It remains unclear whether
autophagy induction is a consequence of increased cytosolic oxi-
dant stress39 or a result of the impairment of trafficking and deg-
radative capacity along the late endolysosomal pathway, but it is
reasonable to assume that both processes contribute to the altera-
tions observed here.

Endolysosomes seem to function as iron storage organelles
conferring at least partial protection from cell death in the con-
text of iron overload, as evidenced by the observation that
inducing endolysosomal iron efflux causes increased cyto-
plasmic oxidative stress and enhanced cytotoxicity. At the same
time, increased endolysosomal iron also interferes with proper
autophagic clearance. Whereas this does not seem to alter cell
survival under basal conditions, it becomes detrimental to cell

Figure 10. NAADP-mediated alterations in endolysosomal iron levels in control and TPCN-expressing cells. (A) Representative images of HEK293T cells either left
untreated (ctrl), treated with FAC, FeCl2 or Fe

3C-dextran as indicated, and stained for intracellular iron using the sulphide-silver method. Scale bar: 10 mm. (B) Quantifica-
tion of the number of iron-positive structures per cell in the absence (ctrl) or presence of 48 h treatment with 50 mM FAC or 50 mM FeCl2 as indicated. Bars represent
mean § SEM (n D 3; ��, P < 0.005). Quantification of the number of iron-positive structures in cells expressing TPCN1 (C) or TPCN2 (D) in the absence (ctrl) or presence
of 48 h treatment with 50 mM FAC or 50 mM FeCl2, respectively, and in the presence or absence of 100 nM NAADP-AM or 1 mM Ned-19 for the last 12 h as indicated.
Bars represent mean § SEM (n D 3; ���, P < 0.001). Quantification of the number of iron-positive structures in cells expressing dominant-negative mutants of TPCN1
(E) or TPCN2 (F) in the absence (ctrl) or presence of 48 h treatment with 50 mM FAC or 50 mM FeCl2, respectively, and in the presence or absence of 100 nM NAADP-AM
or 1 mM Ned-19 for the last 12 h as indicated. Bars represent mean § SEM (nD 3; ���, P < 0.001).
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Figure 11. TPCN channel-expressing cells have increased free iron levels modulated in an NAADP-mediated fashion. (A) Representative examples of dequenching of
TPCN2-RFP-transfected HEK293T cells upon incubation with FAC and either 100 nM NAADP-AM (top row), or 100 nM NAADP-AM and 1 mM Ned-19 (bottom row). Trans-
fected cells show more dequenching of the iron-sensitive fluorescence as compared to untransfected cells, and dequencing is abolished in the presence of 1 mM Ned-19.
Dequenching was achieved by preloading the cells with an iron-sensitive dye (Phen Green SK), followed by addition of the membrane-permeable transition metal chela-
tor, 2,2�-bipyridyl, which chelates free cellular iron, causing a concomitant increase in Phen Green SK fluorescence. Scale bar: 10 mm. (B) Quantification of the 2,2�-bipyr-
idyl-induced normalized change of peak fluorescence (peak deltaF:F0) in the absence or presence of FAC, NAADP-AM or Ned-19 as indicated. Bars represent mean § SEM
(n D 3; �, P < 0.05; ��, P < 0.005). (C) Example of 2,2�-bipyridyl-induced normalized changes in fluorescence (deltaF:F0) in either wild-type or mutant TPCN2-expressing
cells (average of 30 to 40 cells each) in the presence of FAC and NAADP-AM as indicated. Green trace indicates absence of fluorescence dequenching upon addition of
4,4�-bipyridyl, a 2,2�-bipyridyl analog which cannot bind iron. (D) Quantification of the 2,2�-bipyridyl-induced normalized change of peak fluorescence (peak deltaF:F0) in
either wild-type or mutant TPCN2-expressing cells, in the absence or presence of FAC, NAADP-AM or Ned-19 as indicated. Bars represent mean § SEM (n D 3; �,
P < 0.05; ��, P < 0.005). (E) Quantification of iron dequenching as described above in either wild-type or mutant TPCN1-expressing cells. Bars represent mean § SEM
(nD 3; �, P < 0.05).
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survival under conditions which require enhanced autophagic
flux, as evidenced by the finding that expression of aggregate-
prone HTTQ74 protein causes an increase in apoptosis in the
presence of FAC. Thus, endolysosomal iron storage may act as
a “double-edged sword” for cell survival. It may play a cytopro-
tective role under basal conditions which do not require auto-
phagic activity, while becoming a liability issue under cellular
conditions requiring productive autophagy for cell survival,
such as protein aggregation-induced stress.

Iron overload was found to enhance protein aggregation and
cell death both when occurring before protein aggregation was
triggered, as well as when aggregation was already existent.
Whereas these data do not allow to draw conclusions as to
which event comes first, they are consistent with in vivo data
reporting damaging effects of neonatal iron supplementation
on neurodegeneration in a mouse model of Huntington disease,
and with the reported beneficial effects of an iron chelator on
motor phenotypes in adult mice of the same mouse model.63,64

The primary pathway for cellular iron uptake occurs via recep-
tor-mediated endocytosis of iron-bound transferrin, reduction of
iron, and subsequent release from late endosomes and lysosomes
into the cytosol.32-34 Once in the cytosol, iron enters the labile iron
pool and is stored in ferritin, from which it can be mobilized again
as needed via autophagy-dependent and -independent pro-
cesses,65-67 ending with the lysosomal degradation of ferritin-iron
complexes and subsequent transport of reduced iron into the cyto-
sol. Thus, both extracellular iron uptake and intracellular iron
mobilization require transport of reduced iron across the

endolysosomal membrane. A variety of transporters have been
described to serve this role, including DMT1, NRAMP1 and
MCOLN channels.11,68 TPCN channels are ubiquitously
expressed, are permeable to various ions including calcium and
sodium7,9,10 and are localized to endolysosomal structures. Over-
expressed TPCN and MCOLN channels are exclusively localized
to endolysosomal structures as well, since their expression is not
associated with altered whole-cell currents,54,55 excluding the pos-
sibility that they are mistargeted to the plasma membrane to cause
an inward influx of iron from the extracellular medium. Thus, our
current data indicate that TPCN channels also mediate iron
release from endolysosomal organelles, adding to the list of endo-
lysosomal iron-conducting channels. This feature of TPCN chan-
nels is not due to heterodimerization with the iron-conducting
MCOLN channels,55 and it depends on proper channel function-
ing, as not observed with the nonconducting TPCN pore-mutants.
Therefore, both MCOLN and TPCN channels seem able to inde-
pendently control iron homeostasis in endolysosomal organelles.

The iron-mediated effects observed here were potentiated by
NAADP-AM and blocked by Ned-19, a highly specific NAADP
antagonist.28 TPCN channels are crucial for NAADP-mediated
calcium release from endolysosomal stores,14-17 and our present
data indicate that TPCN-mediated endolysosomal iron release is
also modulated by NAADP-AM and Ned-19. Ned-19 was without
effect on apoptosis, oxidative stress, autophagosome accumulation,
HTTQ74 aggregation or endolysosomal iron accumulation on its
own, but was able to revert all of the above-mentioned FAC-medi-
ated alterations. Moreover, Ned-19 was able to revert the effects of

Figure 12. RAB7A expression modulates iron-mediated cytotoxicity in TPCN-channel-expressing cells. (A) Quantification of apoptosis in HEK293T cells coexpressing either
wild-type or mutant TPCN2, and either empty control vector (pCMV), RAB7A, GTP-locked RAB7AQ67L or GTP binding-defective RAB7AT22N, respectively, in the absence or
presence of FAC. Bars represent mean § SEM (n D 3; �, P < 0.05). (B) Quantification of apoptosis in cells coexpressing the indicated constructs, and either in the absence
or presence of FAC and NAADP-AM as indicated. Bars represent mean § SEM (n D 3; �, P < 0.05). (C) Quantification of apoptosis in cells coexpressing the indicated
constructs, and either in the absence or presence of FAC and Ned-19 as indicated. Bars represent mean § SEM (n D 3; �, P < 0.05). (D) Quantification of apoptosis in the
absence or presence of FAC in cells coexpressing either wild-type or mutant TPCN1, and either empty vector or various RAB7A constructs as described above. Bars repre-
sent mean § SEM (n D 3; �, P < 0.05).
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NAADP-AM on increasing cytosolic iron, confirming its exquisite
specificity as an NAADP antagonist. Finally, the iron-mediated
apoptosis in TPCN knockdown cells was not further modulated
by NAADP-AM or Ned-19. Therefore, even though it is likely
that additional endolysosomal channels such as DMT1, NRAMP1
and MCOLN can contribute to iron efflux from endolysosomes,
the modulation by NAADP-AM and Ned-19 as reported here is
mediated via TPCN channels. While the precise molecular binding
partner(s) for NAADP and Ned-19 remain to be identified,18,19

this suggests that NAADP antagonists may prove beneficial in
reverting endolysosomal iron dyshomeostasis associated with
enhanced cytotoxicity.

The effects of increased intracellular iron on cell death were
also modulated by RAB7A activity, with a GTP-locked mutant
version of RAB7A enhancing cell death in TPCN2-expressing
cells, but not in cells expressing TPCN1. As both TPCN1 and
TPCN2 channels were expressed to similar degrees, the
observed differential effects of active RAB7A on FAC-mediated
apoptosis may be explained either by subtle differences in the
subcellular localization of TPCN1 and TPCN2 along the endo-
cytic pathway with respect to RAB7A,69,70 or to differences in
the affinity by which the 2 channels interact with RAB7A. The
effect of active RAB7A requires interactivity with TPCN2, as it
was not observed in the presence of a mutant TPCN2 channel
displaying normal ion conductance but defective in RAB7A
interactivity.22 In addition, a pharmacological RAB inhibitor58

abolished the effects of iron overload on cell death in TPCN2-

expressing cells. Thus, and similar to the reported regulation of
calcium conductance,22 RAB7A activity also seems to modulate
TPCN2-mediated events related to iron.

Interestingly, even though the increase in iron-mediated cell
death in TPCN1-expressing cells was not potentiated in the
presence of active RAB7A, coexpression of a dominant-nega-
tive RAB7A mutant defective in GTP binding did abolish iron-
mediated cytotoxicity in both TPCN1- and TPCN2-expressing
cells. This may be due to both TPCN channels requiring some
basal RAB7A activity for proper functioning. In agreement
with this, iron-induced cell death was not reverted with the
dominant-negative RAB7A mutant in cells expressing the
TPCN2 mutant defective in RAB7A binding. However, it
remains possible that at least some beneficial effects of altering
RAB7A activity are not related to directly modulating TPCN
activity, but rather to additional effects on endolysosomal traf-
ficking, positioning, acidity, autophagy or lysosome reforma-
tion, respectively.23,24,71-75 In summary, our study provides
evidence that NAADP-sensitive ion channels, and RAB7A
activity modulate the iron storage capacity of endolysosomal
organelles. The NAADP-mediated regulation of iron handling
seems to involve both TPCN isoforms, highlighting the impor-
tance of those channels for proper intracellular iron homeosta-
sis, and suggesting that NAADP antagonists and RAB7A
inhibition may provide novel therapeutic approaches toward
restoring cellular function in a variety of diseases associated
with increased iron load.

Figure 13. TPCN2-mediated modulation of iron-induced cytotoxicity is dependent on RAB7A activity. (A) Quantification of apoptosis in HEK293T cells expressing TPCN2, a
TPCN2 mutant defective in RAB7A binding (TPCN2[3A]) or a dominant-negative pore mutant (TPCN2L265P), in the absence or presence of FAC, respectively. Bars represent
mean§ SEM (nD 3; ��, P< 0.005). (B) Quantification of apoptosis in cells coexpressing wild-type or RAB7A binding-deficient TPCN2 (TPCN2[3A]) and either empty vector
(pCMV), wild-type RAB7A, GTP-locked RAB7A (RAB7AQ67L) or GTP binding-defective RAB7A (RAB7AT22N) in the absence or presence of FAC. Bars represent mean § SEM
(n D 3; ��, P < 0.005). (C) Quantification of apoptosis in cells cotransfected with TPCN2 and either empty vector (pCMV), or various RAB7A constructs as indicated, in the
absence or presence of FAC and 5 mM CID1067700 for 4 h as indicated. Bars represent mean § SEM (n D 3; ��, P < 0.005).
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Materials and methods

Reagents

Reagents included ammonium iron(III) citrate (Sigma Aldrich,
F5879), ferric chloride (Sigma Aldrich, 44939), 2,2-bipyridyl
(Sigma Aldrich, 366-18-7), 4,4-bipyridyl (Sigma Aldrich, 533-
26-4), hydrogen peroxide (Sigma Aldrich, H10009),
CID1067700 (Sigma Aldrich, 1067700), dynasore hydrate
(Sigma Aldrich, D7693), bafilomycin A1 (Sigma Aldrich,
B1793), nigericin (Sigma Aldrich, N7143), iron dextran (Sigma
Aldrich, D8517), BAPTA-AM (Invitrogen, B6769), acridine
orange (Calbiochem, 113000), and torin 1 (Tocris Bioscience,
4247). Trans-Ned-19 and a cell-permeant version of NAADP
(NAADP-AM) were synthesized as previously described.28,76

DNA constructs and site-directed mutagenesis

Human TPCN1-mRFP, TPCN1L273P-mRFP, TPCN2-mRFP and
TPCN2L265P-mRFP have been previously described.53,54,59 Triply
mutated TPCN2-mRFP (Q33A,V34A,P36A), shown to abolish
binding of TPCN2 to RAB7A,22 was generated by site-directed
mutagenesis (QuikChange, Stratagene), and identity of the con-
struct verified by DNA sequencing of the entire coding region.
Cytosolic ro-GFP was a generous gift from S. Remington (Univer-
sity of Oregon, Eugene, USA), and MCOLN1 a generous gift from
R. Puertollano (NIH, Bethesda, USA). Human GFP-RAB7A,
GFP-RAB7AQ67L and GFP-RAB7AT22N have been previously
described,59 and were generous gifts from Dr. S. Ponnambalam
(University of Leeds, Leeds, UK). HTTQ74-HA was a generous gift
from Dr. D. Rubinsztein (Cambridge University, UK), LAMP1-
GFP was a generous gift from Dr. E. DellAngelica (UCLA, USA),
GFP-LC3B has been previously described,59 the td-tag-LC3B con-
struct was a generous gift from Dr. T. Johansen (University of
Tromso, Norway) and has been previously described,41 shRNA
plasmids coexpressing GFP to allow for easy identification of
knockdown cells have been previously described,53,56 and
LAMP1-RFP was from Addgene (Addgene, 1817; deposited by
Walter Mothes laboratory).

Cell culture and transfections

HEK293T, HeLa, rat dopaminergic neuroendocrine PC12, and
human primary dermal fibroblasts were cultured as previously
described.59,77,78 Human dopaminergic SH-SY5Y cells were cul-
tured in DMEM/F-12 GLUTAMAX supplement (Gibco,
31331) containing 10% fetal bovine serum (Gibco, 10270),
2 mM glutamine, 100 U/ml penicillin and 100 ml/ml strepto-
mycin (Gibco, 15140) on collagen-coated plasticware. For col-
lagen-coating, rat tail collagen type I (BD Biosciences, 354236;
Lot. 2229980; 3.8 mg/ml solution) was added to 100-mm dishes
(140 ml) or to 35-mm wells (24 ml), respectively, and evenly
spread using a plastic spreader. Collagen was allowed to dry at
room temperature for 30 minutes, followed by extensive rinsing
with sterile H2O and medium before seeding cells, and cells
were subcultured at a 1:3 ratio.

In all cases, cells at 70 to 80% confluency were transfected with
Lipofectamine 2000 (Invitrogen, 12566014) according to the man-
ufacturer’s specifications for 4 h, followed by addition of fresh
medium. Single transfections were performed using 3.5 mg of

plasmid of interest and 10 ml of Lipofectamine 2000. For double-
transfections, 2.5 mg of each plasmid were employed. Transfected
cells were replated the next day at a 1:3 ratio onto poly-L-lysine-
coated coverslips (Sigma Aldrich, P2636) in 6-well plates, followed
by incubation with distinct compounds as indicated before analy-
sis. To assure that the detected iron was intracellular and not
accessible to an extracellular iron chelator, FAC-treated cultures
were washed twice with phosphate-buffered saline (PBS; Gibco,
10010023) in the presence of deferoxamine (1 mM; Sigma Aldrich,
D9533).79

Cell extracts and western blotting

Cells were rinsed once in ice-cold PBS (Gibco, 10010023) and
resuspended in 1 ml of lysis buffer (1% SDS [Sigma Aldrich,
L4390] in PBS containing 1 mM PMSF, 1 mM Na3VO4 and
5 mM NaF) per 100-mm dish, or 160 ml of lysis buffer per well
of a 6-well plate. Extracts were boiled for 5 min, sonicated and
centrifuged at 10,000 g for 10 min at 4�C. Protein concentrations
of supernatant fractions were estimated using the BCA assay
(Thermo Fisher Scientific/Pierce Protein Biology, 23227). Sam-
ples (30 mg) were resolved by SDS-PAGE, transferred onto poly-
vinylidene difluoride membranes (Amersham Hybond/GE
Healthcare Life Sciences, 10600021), and probed with primary
antibodies overnight at 4�C. Primary antibodies included mouse
monoclonal anti-LAMP2 (8H4B4, 1:2000; Santa Cruz Biotech-
nology, 18822), mouse monoclonal anti-LAMP1 (H4A3 1:2000;
Santa Cruz Biotechnology, 20011), mouse monoclonal anti-
TUBA/a tubulin (clone DM1A, 1:10,000; Sigma Aldrich, T6199),
rabbit polyclonal anti-GFP (1:2000; Abcam, ab6556), rabbit poly-
clonal anti-LC3B (1:500; Cell Signaling Technologies, 2775),
mouse monoclonal anti-SQSTM1 (1:500; BD Transduction Lab-
oratories, 610833) and rabbit polyclonal anti-RFP (1:1000;
Abcam, ab62341). Membranes were washed and incubated with
secondary antibodies (anti-rabbit HRP-conjugated antibody
(1:2000; Dako Cytomation, P0448) or anti-mouse HRP-conju-
gated antibody (1:2000; Dako Cytomation, P0447)) for 90 min
at room temperature, followed by detection using ECL reagents
(Roche Diagnostic GmbH; 120150200001). A series of timed
exposures were undertaken to ensure that densitometric analyses
were performed at exposures within the linear range, and films
were scanned and densitometric analysis performed using Quan-
tityOne (Bio-Rad).

Determination of oxidative stress

Cellular oxidative stress levels were determined using the OxyBlot
Protein Oxidation Detection Kit (Millipore EMD, S7150) essen-
tially according to manufacturer’s instructions. Briefly, 20 mg of
protein in lysis buffer (1% SDS in PBS containing 1 mM PMSF,
1 mM Na3VO4, 5 mM NaF, 2% b-mercaptoethanol) was incu-
bated with 2,4-dinitrophenylhydrazine (DNPH) (included in the
Detection Kit) for 15 min at room temperature. Samples were
then neutralized before resolving them on a 10% SDS-PAGE gel,
and transferred to nitrocellulose. Membranes were blocked in 5%
milk, incubated with a rabbit anti-2,4-dinitrophenylhydrazine
antibody (included in the Detection Kit) overnight at 4�C, fol-
lowed by incubation with HRP-conjugated secondary antibodies
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for 1 h. Immunocomplexes were visualized by chemiluminescence
using the ECL method.

For determination of oxidation status in live cells, cells were
transfected with ro-GFP38 and treated with FAC as indicated.
After 48 h, cells were washed twice with Hanks balanced salt solu-
tion (10 mM HEPES pH 7.4, 140 mM NaCl, 5 mM KCl, 1.3 mM
MgCl2, 2 mM CaCl2, 1 g/l D-glucose), and imaged on a Leica
TCS-SP5 confocal microscope (Leica Microsystems, Mannheim,
Germany) using a 63X 1.4 NA oil UV objective (HCX PLAPO
CS). Dual-excitation ratiometric imaging was performed at 400
and 480 nm, with emission wavelength at 535 nm, using Leica
Applied Systems (LAS AF6000) image acquisition software. Fluo-
rescence images were background-corrected by manual selection
of background regions, and approximately 30 cells were measured
for each condition. Images were taken at 1-min intervals, and
where indicated, cells were perfused with buffer solution contain-
ing 1 mM H2O2 or 1 mM DTT (ThermoFisher Scientific, R0861),
respectively.

Endolysosomal iron staining

Endolysosomal iron was stained using a modified sulphide-sil-
ver method using the FD RapidTimmStain Kit (FD Neurotech-
nologies, PK701) as previously described.11,57 Briefly, cells
grown on coverslips were either left untreated, or treated with
50 mM FAC, 50 mM FeCl2 or 50 mM Fe3C-dextran for 48 h.
Under the latter conditions, endocytosed iron is expected to be
localized exclusively to endolysosomes, and iron staining is typ-
ically observed in the vicinity of the nucleus. Cells were then
washed in phosphate buffer and fixed with 2% glutaraldehyde
in 0.1 M Na-cacodylate buffer (Sigma Aldrich, 70114) contain-
ing 0.1 M sucrose (pH 7.2) for 2 h at room temperature. Fixed
cells were rinsed in warm distilled water, and sulphidated with
sulphide solution for 10 min, followed by 3 incubations in
0.1 M phosphate buffer for 5 min each. The development was
performed using FD RapidTimmStain Kit components for
20 min at 30�C in the dark, and the reaction stopped by trans-
ferring coverslips to warm distilled water. Cells were protected
from light, and rinsed in distilled water 3 times for 5 min each.
Coverslips were then dehydrated in graduated ethanol solutions
(50%, 75%, absolute ethanol) and mounted using Canada Bal-
sam (Sigma Aldrich, C1795). Phase contrast images were
acquired using an Olympus IX81 microscope (Olympus Corpo-
ration, Tokyo, Japan) using a 100x objective, and iron-positive
structures quantified using NIH ImageJ software.

Iron dequenching imaging and quantification

Iron dequenching assays were performed essentially as
described.11 Briefly, cells were incubated in Hanks balanced salt
solution (10 mM HEPES, 140 mM NaCl, 5 mM KCl, 1.3 mM
MgCl2, 2 mM CaCl2, 1 g/l D-glucose, pH 7.4) and incubated with
20 mM of the diacetate of Phen Green SK (Invitrogen, P14312), an
iron-sensitive fluorescent indicator, for 20 min at 37�C. Phen
Green SK fluorescence after loading is dependent on the intracel-
lular concentrations of both the indicator itself and of chelatable
iron which quenches the indicator’s fluorescence. Therefore, after
recording baseline fluorescence for 5 to 10 min, a nonfluorescent
membrane-permeable iron chelator (2,2�-bipyridyl; 5 mM) was

added in excess to remove the iron from the Phen Green SK indi-
cator, which leads to an increase in fluorescence. An analog of 2,2�-
bipyridyl (4,4�-bipyridyl; 5 mM) without iron chelating capacity
was used as negative control.

Fluorescence measurements were performed on an Olympus
IX81 microscope using a 40x air objective. Green fluorescence
of the Phen Green SK compound was excited at 488 nm, and
emission collected through a 505 nm long-pass filter. Quantita-
tive fluorescence measurements were performed by minimizing
acquisition time to once per min so as to minimize photo-
bleaching of the dye. For each experiment, an average of 30 to
40 cells were analyzed, with single cell fluorescence determined
from confined regions of interest. Because many variables
including dye loading can contribute to the variation of basal
fluorescence of Phen Green SK, the normalized change of fluo-
rescence (peak delta F/F0) was used as readout to estimate the
change in cytosolic iron levels.11

Acridine orange staining

Cells were cultured on polylysine-coated 35-mm glass-bottom
dishes (IBIDI Biosciences, 81156), and either left untreated or
treated with 50 mM FAC or 50 mM FeCl2 for 48 h, or with
400 nM BAF (2h) or 25 mM nigericin (5 min) as indicated.
Cells were loaded with 5 mg/ml acridine orange (AO) in com-
plete medium for 15 min at 37�C, and images acquired on a
Leica TCS-SP5 confocal microscope using a 63X 1.4 NA oil UV
objective (HCX PLAPO CS) and single excitation (488 nm
Argon Laser line and 655 to 721 nm and 508 to 548 nm emis-
sion band passes, respectively), and images quantified using
NIH ImageJ software.

Immunocytochemistry, quantitative image analysis
and determination of apoptosis

For immunocytochemistry, transfected cells were replated at a
1:3 ratio onto coverslips and processed at the indicated times
after transfection essentially as described.59,78 Primary antibod-
ies included a mouse monoclonal anti-LAMP2 antibody (1:50;
Santa Cruz Biotechnology, 18822), a mouse monoclonal anti-
LAMP1 antibody (1:100; Santa Cruz Biotechnology, 20011), a
mouse monoclonal anti-EEA1 antibody (1:100; BD Transduc-
tion Laboratories, 610457), a mouse monoclonal anti-TSG101
antibody (1:100; Abcam, ab30871), a mouse monoclonal anti-
Flag antibody (1:500; Sigma Aldrich, F1804), and a rabbit poly-
clonal anti-HA antibody (1:100; Sigma Aldrich, H6908). Sec-
ondary antibodies included goat anti-rabbit or goat anti-mouse
Alexa Fluor 488-conjugates or Alexa Fluor 555-conjugates
(1:1000; Invitrogen, A11034, A21428, A11001, A21422). Cells
were mounted using ProLong Gold AntiFade mounting
medium (Invitrogen, P36930), and images acquired on a Leica
TCS-SP5 confocal microscope using a 63X 1.4 NA oil UV
objective (HCX PLAPO CS). Images were collected using single
excitation for each wavelength separately (488 nm Argon Laser
line and a 500 to 545 nm emission band pass; HeNe Laser line
and a 556 to 673 emission band pass; 405 nm UV diode and a
422 to 466 nm emission band pass (12.5% intensity)). 10 to 15
image sections of selected areas were acquired with a step size
of 0.3 mm, and z-stack images analyzed and processed using
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Leica Applied Systems (LAS AF6000) image acquisition soft-
ware. The same laser intensity was used for image acquisition
of individual experiments.

For live cell fluorescence microscopy, transfected cells were
reseeded onto 35-mm glass-bottom dishes the following day
and imaged on a Leica TCS-SP5 confocal microscope using a
63X 1.4 NA oil UV objective (HCX PLAPO CS) as described
above.

Autophagic activity was evaluated as previously described59,77

by quantifying the average number of GFP-LC3B puncta per
cell, or in the case of td-tag-LC3B experiments, the average num-
ber of both yellow and red structures per cell. Quantifications
were performed from images acquired on a Leica TCS-SP5
confocal microscope using a 63X 1.4NA oil UV objective as
described above. To determine the number and size of intracellu-
lar structures per cell, cells were circled, and a modified NIH
ImageJ macro (GFP-LC3 macro) was employed as previously
described.59 For each condition per experiment, maximal inten-
sity projections of an average of 20 independent cells were
analyzed.

For detection of apoptosis, fixed cells were mounted using
mounting medium containing DAPI (Vector Laboratories,
H1200) and visualized on a Zeiss microscope (Zeiss Interna-
tional, G€ottingen, Germany) using a 100x oil-immersion objec-
tive. For each experiment, 100 cells from random fields were
quantified, and condensed or fragmented nuclei scored as apo-
ptotic cells.

Human tissue samples, cell extracts and atomic absorption
spectroscopy

Freshly frozen brain samples from deceased human subjects
were collected at autopsy following informed consent from the
next of kin under a protocol approved by the local ethics com-
mittee. Metal analysis using atomic absorption spectroscopy
was performed essentially as described.80 Frozen substantia
nigra samples (0.07 g) from 5 healthy controls and 5 age-
matched Lewy body disease patients were homogenized in
500 ml chilled lysis buffer containing pure HNO3 at 65�C for
2 h. Samples were diluted 1:10 in double-distilled water and
assayed on an atomic absorption spectrometer (AAFlame,
AA800, S/N8566, Perkin Elmer, Norwalk, USA). The remain-
der of the sample was centrifuged at 3,500 g for 30 min at 4�C,
and the supernatant fraction analyzed for total protein concen-
tration using a Bradford assay (Thermo Scientific, 23227). Total
iron content of each sample was measured in triplicate, and the
concentrations determined from the standard curve were nor-
malized to protein concentration or wet tissue weight. FAC-
treated cells were pelleted, pellets resuspended in lysis buffer
containing pure HNO3 at 65�C for 2 h, and processed as
described above.

Statistical analysis

Data are represented as mean § s.e.m. Statistical comparisons
were made using analysis of variance (ANOVA), and post-hoc
Bonferroni analysis. A P value < 0.05 was considered statisti-
cally significant.

Abbreviations

AO acridine orange
BAF bafilomycin A1

DAPI 4,6-diamidino-2-phenylindol
dihydrochloride

DNA deoxyribose nucleic acid
FAC ferric ammonium citrate
GFP green fluorescent protein
LAMP lysosomal-associated membrane protein
MAP1LC3B/LC3B microtubule-associated protein 1 light

chain 3B
MCOLN/TRPML mucolipin
NAADP nicotinic adenine dinucleotide phosphate
RFP red fluorescent protein
ro-GFP reduction-oxidation-sensitive GFP
SDS sodium dodecyl sulfate
SQSTM1/p62 sequestosome 1
TPCN 2-pore channel
TUBA a tubulin
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