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Abstract

Background: The digitization of health-related information through electronic health records (EHR) and electronic
healthcare reimbursement claims and the continued growth of self-reported health information through social
media provides both tremendous opportunities and challenges in developing effective biosurveillance tools. With
novel emerging infectious diseases being reported across different parts of the world, there is a need to build
systems that can track, monitor and report such events in a timely manner. Further, it is also important to identify
susceptible geographic regions and populations where emerging diseases may have a significant impact.

Methods: In this paper, we present an overview of Oak Ridge Biosurveillance Toolkit (ORBiT), which we have
developed specifically to address data analytic challenges in the realm of public health surveillance. In particular,
ORBiT provides an extensible environment to pull together diverse, large-scale datasets and analyze them to
identify spatial and temporal patterns for various biosurveillance-related tasks.

Results: We demonstrate the utility of ORBiT in automatically extracting a small number of spatial and temporal
patterns during the 2009-2010 pandemic H1N1 flu season using claims data. These patterns provide quantitative
insights into the dynamics of how the pandemic flu spread across different parts of the country. We discovered
that the claims data exhibits multi-scale patterns from which we could identify a small number of states in the
United States (US) that act as “bridge regions” contributing to one or more specific influenza spread patterns.
Similar to previous studies, the patterns show that the south-eastern regions of the US were widely affected by the
H1N1 flu pandemic. Several of these south-eastern states act as bridge regions, which connect the north-east and
central US in terms of flu occurrences.

Conclusions: These quantitative insights show how the claims data combined with novel analytical techniques
can provide important information to decision makers when an epidemic spreads throughout the country. Taken
together ORBiT provides a scalable and extensible platform for public health surveillance.

Background
Public health surveillance is the continuous, systematic
collection, analysis and interpretation of health-related
data for planning, implementing and evaluating public
health practice. It can serve as an effective vehicle for
monitoring epidemiology of various health problems,

including infectious (e.g., flu, West Nile Virus, Ebola,
etc.) and chronic (e.g., diabetes, cancer, etc.) health
conditions, documenting the impact of interventions
and/or tracking progress of specific health goals, and
serve as an early warning system for impending public
health emergencies [1]. As emerging and re-emerging
pathogens, such as the recent Ebola virus outbreaks in
West Africa [2] and the Middle Eastern Respiratory Syn-
drome (MERS) outbreaks [3], become more prevalent,
developing effective public health surveillance systems is
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a priority for ensuring national security. Additionally,
with the continued increase in the number of asthma,
diabetes and other chronic disease conditions, there is an
immediate need to develop tools that can aid decision
makers (e.g., public health officials, physicians, epide-
miologists and policy/law-makers) with critical informa-
tion that can eventually translate into effective health
policies. With an estimated 50-60 million patients diag-
nosed every year and continued growth of medical
expenses-related to these conditions, the combined effect
of these diseases is an extraordinary socioeconomic bur-
den, which can only be overcome by developing effective
public health surveillance systems.

Public health surveillance is a big data problem
At the core of public health surveillance is the availabil-
ity of health-related data, which can be broadly classified
into two classes: (1) direct sources, which include health
records such as data from clinical and emergency visits,
poison control centers, laboratory results, hospitals, etc.
and (2) indirect sources, which include health relevant
information from school attendance/closure reports,
sales data (for over the counter medications, prescrip-
tion records, etc.), news feeds and social media. Taken
together, these different datasets can exceed several
petabytes of data that have to be integrated and ana-
lyzed to obtain even basic insights into how diseases
spread within geographically separated populations.
With the digitization of health-related information and

web-based platforms that promote self-reporting
(through Twitter, Facebook and other social media
sites), there has been an exponential growth of data
available for public health surveillance. Current plat-
forms for biosurveillance make use of event-based,
unstructured data such as news feed aggregators and
other publicly available data to monitor for emerging
infectious disease spread within geographically distribu-
ted populations. Examples of such systems include the
BioSense 2.0 program [4], GPHIN (Global Public Health
Information Network) [5], PHIN (Public Health Infor-
mation Network) [6], ProMED-Mail [7], HealthMap [8],
Google Flu Trends, Bio-Caster, EpiSPIDER [9], EARS
(Early Aberration Reporting System), BCON (biosurveil-
lance Common Operating Network), PHESS (Indiana
Public Health Emergency Surveillance System), LAHVA
(Linked Animal-Human Health Visual Analytics),
ESSENCE (Electronic Surveillance System for Early
Notification of Community-based Epidemics) [10],
RODS (Real-time Outbreak and Disease Surveillance)
[11], and GEIS (Global Emerging Infections Surveillance
and Reporting System) [12]. A detailed overview of
these systems and their applications is further described
in Shmueli and Burkhom [13]. These systems include
tools for natural language processing (NLP) for parsing

unstructured textual data, basic statistical analyses tools,
time-series counts/ratios as well as geographic infor-
mation system (GIS) based visualization that can sum-
marize to the end-user the nature or urgency of an
emerging infectious disease. It must be noted that
most tools developed are specific to infectious diseases;
although the tools can be used to analyze other non-
infectious diseases, they are very rarely utilized for
monitoring such conditions.
Other public health monitoring systems such as Google

Flu Trends [14] utilize internet search patterns of users to
predict the incidence of flu at local, regional (state-wide)
and national levels. While initial studies have shown that
tools that make use of “proxy” datasets can serve as useful
monitors for emerging diseases [14-16,8,17], recent studies
have demonstrated that the estimates from internet search
patterns can over-estimate the severity of the outbreak
[18,19]. Self-reporting tools such as micro-blogging and
social media are also becoming effective proxies for public
health surveillance [20-24], although such datasets also
have relatively higher noise and teasing out relevant
information for specific disease conditions can be quite
challenging [25].
In recent years, the availability of electronic health

records (EHR) [26,27] and electronic healthcare reimbur-
sement claims (or briefly, claims) [28-30] have proven to
be valuable resources for collecting, monitoring and ana-
lyzing public health-related questions. While EHRs refer
to an individual patient’s medical history collected and
processed at individual medical facilities (such as a clinic
or hospital), claims refer to electronic records of claim
transactions processed by retail pharmacies (and/or
clinics). EHR and claims provide rich and timely informa-
tion regarding prevailing medical conditions in any given
geographic area; however, the use of EHR and claims for
public health surveillance is still in its early stages.
Privacy and security-related concerns, data disparity
across diverse/individual clinics/hospitals, as well the
sheer complexity involved in aggregating and processing
such large-scale structured datasets can pose significant
data analytic challenges for even simple public health
surveillance tasks [31,32].
Thus, within the context of public health surveillance,

the availability of these diverse datasets pose two immedi-
ate ‘big data’ challenges: (1) scalable, seamless and uniform
access to diverse datasets and (2) scalable data analytic
techniques that can provide rich feedback to the end-user
regarding emerging public health emergencies [33]. While
there is significant agreement within the public health
community regarding the use of data analytics and infor-
matics techniques as being central to the success of any
biosurveillance program, the development of machine
learning and data analytic techniques specifically designed
to handle heterogeneous datasets at massive scales has
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been especially challenging. These challenges can be
attributed to the lack of standards and tools that facilitate
data/information exchange and secondly, to the lack of
available data analytic frameworks that can automatically
integrate heterogeneous datasets and analyze them in near
real-time to provide insights into emerging public health
problems. Additionally, the complex etiologies of diseases
pose special challenges in developing analytic tools to
monitor them. For example, the symptoms of the com-
mon flu and a serious outbreak such as West Nile virus
can be very similar, but teasing out these symptoms from
a context specific search of Twitter and other social media
data can be quite challenging. Therefore, there is a need to
develop novel machine learning tools that can not only
handle large datasets, but can also simultaneously examine
heterogeneous data sets to identify emerging patterns of
disease spread across geographically distributed regions.

Oak Ridge biosurveillance toolkit for public health
surveillance and dynamics
In this paper, we outline our recent efforts in developing
novel machine learning tools for public health surveil-
lance addressing the aforementioned big data challenges
[34]. The Oak Ridge Biosurveillance Toolkit (ORBiT) is
being developed as a machine learning platform that pro-
cesses both direct and indirect data sources by integrat-
ing insights from heterogeneous datasets for answering
public health surveillance-related queries. In contrast to
existing systems where the primary emphasis is on data
collection, archival and visualization of specific datasets,
ORBiT is being developed as a distributed, component
based platform for novel statistical and machine learning
tools that can provide insights into spatial and temporal
patterns of public health emergencies. By tightly integrat-
ing the machine learning tools with visual analytics inter-
faces in a web-based framework, ORBiT allows analysts
and other end-users to explore heterogeneous datasets to
detect patterns/correlations across different data streams,
identify emerging disease outbreaks and forecast out-
breaks and monitor control strategies.
We illustrate the applicability of ORBiT to identify,

quantify and describe spatial and temporal patterns of
the 2009-2010 pandemic H1N1 flu within the United
States (US) from an infectious disease surveillance per-
spective. We illustrate how the integration of heteroge-
neous data sources, including publicly accessible data
from the US Centers for Disease Control (CDC), openly
accessible data from Google Flu Trends and claims
obtained from a private organization that consolidates
diagnostic and prescription electronic transactions can
provide timely and novel information regarding how the
2009-2010 influenza pandemic affected the entire US.
Our analysis of these datasets shows that a small number
of distinct temporal patterns govern how the pandemic

spread throughout the country. Additionally, we extract
intrinsic multi-scale patterns from the claims data, mov-
ing successively from local to regional to national pat-
terns. These patterns depict the process by which the
H1N1 flu spread across the entire country in distinct
waves, each with its own unique temporal and spatial sig-
natures. Although this study is a retrospective analysis of
the 2009-2010 flu season, we show that the patterns can
also translate into meaningful insights for future years,
especially to interpret baselines. Taken together, our
study provides a summary of ORBiT capabilities and how
it can be used as a scalable platform for public health
surveillance.

Methods
In this section, we outline how ORBiT can incorporate
claims data to discover spatial and temporal patterns
from the 2009-2010 pandemic H1N1 flu season. The
description of the ORBiT framework is provided else-
where [34]. In this paper, we describe the claims data
and the use of non-negative matrix factorization (NMF)
as a novel technique to analyze claims data to automati-
cally discover spatial and temporal patterns.

Dataset description
Electronic healthcare claims reimbursement data from IMS
Health
IMS Health is a leading consolidator of claims within
the US, collecting over 55-60 million claims every week.
This proprietary dataset therefore constitutes a unique
resource for public health surveillance. Two types of
claims are collected by IMS Health: (1) diagnostic data
(referred to as claims) which processes claims from over
a million medical practitioners/physicians every year
received from all parts of the US, including urban and
rural areas; (2) prescription data (referred to as Rx),
which processes prescription claims from retail pharma-
cies within the US. The claims data consists of over 1
billion claims collected annually and represents over 165
million unique patients. The Rx data consists of over 3
billion claims collected annually and provides for a rich
resource to monitor and track drug delivery and efficacy
across the entire country. IMS Health uses proprietary
technology to protect patient privacy and all of the data
available/used for analysis are HIPAA-compliant.
For this study, we analyzed the IMS Health claims

data from Apr 1, 2009 - Mar 31, 2010, with a total of
nearly one billion records. The claims data was pro-
cessed for flu-related records using the definition shown
below:

• Flu case definition: include only hospital diag-
nosed cases of the flu, namely ICD9 codes 486XX
and 488XX.
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The definition of the flu corresponds to hospital diag-
nosed cases of the flu, which provides a specific count in
terms of the number of flu cases recorded within any zip
code. The reason we focus on this stricter definition is to
count only cases that we know would have been diagnosed
with the flu and exclude other symptoms that perhaps can
bias the observations based on generic symptoms such as
sore-throat, cough and fever. For organizing the data
based on a specific geographic location, we used the provi-
der’s primary five digit zip code that was directly accessible
from the claims data. Note that this assumption is reason-
able, given that the patient’s service provider/pharmacy is
most likely to be co-located unless the patient remotely
consults with his/her provider. In the current study, only
0.0001% of the total records showed different 3 digit zip
codes for the patient and their service provider.
The claims data is usually reported every day with

claims coming into the data warehouse continuously.
However, due to claims submission delays by healthcare
providers and internal data-processing and cleaning,
there is a lag between the service date (i.e., the date on
which the physician issued the diagnosis) versus the date
on which the data was actually loaded/processed with the
IMS Health data warehouses. Since the spatial resolution
of the claims data is at the zip-code level, we defined
local metropolitan areas (for cities) and the different geo-
graphic regions (see below) based on an aggregation of
data from these individual zip codes, thus maintaining
consistency between the definitions of individual zip
codes all the way to the entire nation.
CDC Influenza like Illnesses Network (ILINet) data
The US CDC maintains information on patient visits to
health care providers for influenza like illnesses (ILI),
which consists of more than 2,900 outpatient healthcare
providers with the ability to track more than 30 million
patient visits every year [35]. The data reported every
week consists of the total number of patient visits as well
as the total number of patients with ILI-like symptoms
organized by age groups. ILI cases are defined based on
observing fever (temperature of 100°F or 37.8°C or
greater) and a cough/sore throat without a known cause
other than influenza. The CDC then baselines these
reports based on the state population and defines several
metrics for individual geographic regions. These regions,
known as the Health and Human Services (HHS) regions
are summarized in Table 1. Although there are different
forms of ILI surveillance including influenza-associated
pediatric mortality surveillance and influenza hospitaliza-
tion network (FluSurvNet), for this current study, we
used the publicly available ILINet data [36].
Google Flu Trends data
The Google Flu Trends (GFT) project [14] builds an
automated method for discovering influenza-related
search queries by aggregating historical logs of online

web search queries and developing a log-linear model
that estimates the probability that a query is related to
ILI. This model was validated across CDC-observed ILI
percentages and made available for the public from
http://www.google.org/flutrends/us/#US. We down-
loaded the weekly information available for the same
period covered by the IMS Health claims data (Apr 1,
2009 - Mar 31, 2010).

Using Non-negative matrix factorization (NMF) to extract
spatial and temporal patterns from claims data
One of the many advantages of using claims data for
public health surveillance is that it provides information
about ILI-incidence at individual zip code level resolu-
tion. Unlike the ILINet data, which statistically aggregates
total counts of ILI-symptoms over the entire US from
vast geographic regions, the claims data can be used to
obtain fine-grained details about specific regional varia-
tions and how that may have impacted the quick spread
of the 2009-2010 pandemic flu throughout the US. To
explore the further use of claims data and to perform a
retrospective analysis of the 2009-2010 pandemic flu
within the US, we organized the ILI-related data from
claims into a matrix A, that has the overall dimensions of
Nz × Nt, where Nz represents the total number of zip
codes and Nt represents the total number of time points
(365 days).
Based on the comparison of the ILINet and GFT data

presented above, we hypothesize that the flu incidence pat-
terns are categorical in space and time. This is reasonable,
especially given the geographic vastness of the US, the spa-
tial (individual zip codes) and temporal (daily reports of
ILI-conditions) resolution of the claims data. Given prior
knowledge that there are at least three distinct ‘peaks’
associated with the 2009-2010 pandemic [37], we want to
extract low-dimensional representations for this claims
data. Further, the flu incidence matrices have non-negative
entries (i.e., it is not possible to obtain a negative count of
patients reporting flu symptoms at a zip code). Hence,
we used non-negative matrix factorization (NMF) as a

Table 1. Summary of coverage in IMS claims data

Region States ZGIS Zclaims % coverage

HHS-I CT, ME, MA, NH, RI, VT 1781 813 45.7

HHS-II NJ, NY 2279 1242 54.5

HHS-III DE, DC, MD, PA, VA, WV 4019 1623 40.4

HHS-IV AL, FL, GA, KY, MS, NC, SC, TN 5470 2836 51.8

HHS-V IL, IN, MI, MN, OH, WI 6012 2647 44.0

HHS-VI AR, LA, NM, OK, TX 4134 1744 42.2

HHS-VII IA, KS, MO, NE 3315 996 30.0

HHS-VIII CO, MT, ND, SD, UT, WY 2105 597 28.4

HHS-IX AZ, CA, HI, NV 2382 1391 58.4

HHS-X AK, ID, OR, WA 1551 585 37.7
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technique to extract low-rank approximations from the
claims data.
Given a data matrix A with non-negative values, with

dimensions Nz × Nt, NMF finds low-rank approximation
(s) of the form A = WH, where W (Nz × s) captures
spatial patterns and H (s × Nt) describes temporal pat-
terns within the data. Using the alternate least squares
algorithm proposed by Paatero, available as part of
Matlab, we ran NMF for 1,000 iterations. To identify an
appropriate low-rank subspace (s), we iterated over
s = 1 . . . 15, dividing the original data into training and
testing data. We tracked the residual errors using the
Frobenius norm for both training and testing data. For
each choice of s, we performed a total of 250 iterations.
Once the optimal s was selected, we report the most
stable version of the basis matrices (W, H) by comput-
ing the KL divergence between every pair of the 250
instances of W from the training set and picking W
with the lowest KL divergence value.

Results
Influenza like Illnesses (ILI)-related claims data provide
higher spatial and temporal resolution into ILI-case
counts within the US
One of the primary goals for our study was to quantita-
tively assess the timeliness and coverage (both in space
and time) of the IMS Health claims data. As part of this
exploratory study, we extracted the data as described in
the Methods section and compared this data with CDC
ILINet and GFT datasets. Note that both CDC ILINet
and GFT data are known to be correlated [14,18], how-
ever both datasets correspond to different modalities.
While the CDC ILINet data is primarily focused on
out-patient visits, GFT uses search patterns of users to
identify patterns of influenza occurrence. In spite of the
differences in data collection and curation, we hypothe-
size that the IMS Health claims data, based on the case
definition used in this current study will closely match
the temporal trends observed from the CDC ILINet and
GFT data.
ILI-incidence in claims are consistent with ILINet and GFT
data across HHS regions
We compared the ILI-incidence data at two spatial
scales: (1) the overall country (Figure 1 center panel)
and the ten HHS regions (Figure 1 HHS-I through
HHS-X panels). To ensure that we were comparing
similar quantities, we converted the counts from the
ILI-incidence rates from claims data into percentages, in
a similar way outlined in previous papers. Not surpris-
ingly, the overall US ILI-incidence rates over time
reflects a similar behavior across both the claims and
GFT data. The average agreement (quantified by the
Pearson correlation) between the GFT and claims data
is about 0.9 (with a p-value of 4E-11), even within

individual HHS regions. However, the similarity is less
pronounced with respect to the agreement between the
CDC ILINet data and IMS Health claims data; we spec-
ulate that the publicly available information from ILINet
has several incomplete entries for the same time period.
Therefore, when we compare the data in a similar way
to the GFT approach by removing the missing entries
and extracting time segments which have reported data
available, the agreement increases to about 0.9 (p-value
of 4E-11).
Within the entire nation, the flu incidence peaked

around the time of Oct-Nov 2009, which is reflected in
all the three data streams examined. The percentage
ILI-incidence is significantly less within CDC ILINet
and GFT. We believe that this may be a consequence of
the nature of data collection techniques used in each
case. GFT data relies on a statistical model to identify
search queries related to influenza. The ILINet data is
primarily collected from outpatient visits and covers a
small portion of the primary care facilities within the
entire country. The claims data is, however, dependent
on the primary care physician’s reporting of transac-
tions, which can vary across the nation (see next subsec-
tion). Furthermore, the reported number of cases within
the claims data can be regarded as upper-bound esti-
mates of the true infection (since not all diagnosed
cases of the flu are true positives).
Even across different HHS regions, we observe that

the claims data consistently presents higher number of
ILI cases compared to the CDC ILInet and GFT. In par-
ticular, we note that except for HHS-I and HHS-II,
which show the presence of two distinct peaks in ILI-
incidence (reflected in all the three data streams), all the
other regions consistently show that the peak of the
pandemic occurred around the Oct-Nov 2009 time-
frame. As is well documented from previous studies
[38,37,39], HHS-I and II correspond to the northeast
(states including NY, NJ, CT, ME, MA, NH, RI, VT)
that exhibited a distinct early onset of the flu pandemic
followed by the peak observed in Oct-Nov 2009.
Although we observe that the ILINet data shows the
presence of early onset within HHS-III as well as HHS-
V, both claims and GFT do not show such a pro-
nounced outbreak in these regions. The data from
ILINet does not fully cover the time-span examined,
especially since there are a number of weeks with miss-
ing data. Excluding those missing time-segments across
the entire nation, the overall Pearson correlation
between ILINet and claims data is about 0.86 (p-value =
5.43E-11) indicating that there is significant similarity
between the two datasets.
The coverage of the claims data is not uniform

throughout the country. Although within the different
HHS regions the total ILI-incidence rates are higher on
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average within the claims data, the coverage of ILI inci-
dence within individual HHS regions can vary. As sum-
marized in Table 1 the total number of zip codes within
each HHS region for which claims data is available var-
ies from a minimum of 28.4% to a maximum of 58.4%.
The reporting from the claims data is fairly consistent
across these regions for any given year, as reflected by
the total number of diagnostic records available at these
regions. Through these observations, we can conclude

that the claims data provides similar insights into public
health surveillance as traditional sources such as CDC
ILINet.

Non-negative Matrix Factorization (NMF) identifies
distinct spatial and temporal patterns from the 2009-
2010 pandemic H1N1 flu season
We defined a zip code as having statistically significant
data if it reported at least 10 cases of the flu in any

Figure 1 Temporal trends of ILI incidence from IMS Health claims, CDC ILINet and Google Flu Trends (GFT) during the 2009-2010
pandemic flu show significant similarities. The total incidence of H1N1 pandemic as provided by GFT (blue line) and CDC (red dots) are
plotted together with IMS claims data (black line). Note here that we used the strict definition of the flu (ICD9 codes: 486XX and 488XX). The
temporal trends for the entire US are plotted in the center, followed by the 10 Human and Health Services (HHS) Regions shown around the US
(HHS-I to HHS-X). In all the cases, the agreement between IMS claims data, GFT and CDC ILINet data is quantified by the correlation coefficient,
depicted on the side of each panel. The numbers at the right hand side of every panel represent the correlation coefficient between the IMS
claims and GFT data (top) and the IMS claims with ILINet data (bottom) respectively. These numbers represent all the data from the 52 weeks
collected instead of measuring across the time segments for which CDC ILINet data was available. Note that CDC ILINet data has some missing
values, removing these segments from our analysis actually improves the correlations (see Main Text for discussion). For HHS-IX and HHS-X, the
CDC ILINet data was not fully available at the time of download and hence we have not shown the correlation values.
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given week of the year. This simple threshold based fil-
tering allowed us to remove any zip codes that had very
few cases reported throughout the year. Based on this
simple filtering, the total number of zip codes with
reported flu cases (Nz ) was 14,098 and we used Nt to
be 365 days. Instead of examining weekly reports as dis-
cussed above, we used a daily resolution to fully leverage
the claims data. Further, we also wanted to test the
hypothesis that a daily resolution of the pandemic flu
season will provide fine-grained insights into distinct
patterns of how the flu spread. As summarized in Figure 2,
only a small number of dimensions are sufficient
to describe the pandemic flu outbreak throughout the US.
To select the number of dimensions, we plotted the
reconstruction error (i.e., fraction of unexplained variance)
versus the subspace for the 250 repetitions of NMF
(Figure 2A), and compared this with the reconstruction
error obtained with PCA performed on the original
data (PCAorig) and the scrambled data (PCAscram;
Figure 2B). As observed, the slope of PCAscram is
quite small and relatively constant for increasing sub-
space sizes. This provides a means to estimate the sub-
space size beyond which a given model is explaining
noise rather than correlations in the data [40]. To
visualize this cut-off, in Figure 2C we plot the change
in variance for each added dimension (differences
between successive points in Figure 2B). The recon-
struction error rates of both PCAorig with PCAscram at
subspace around s = 12. Although it is possible to
choose s = 12 and describe the spatial and temporal
patterns, we use a smaller subspace (s = 5) to describe
the 2009 H1N1 pan- demic. This is mainly due to the
fact that we wanted a simpler representation of this
high dimensional space and traded the interpretability of
a lower dimensional representation for the complexity of

patterns when s = 12. Further, lower number of dimen-
sions (s < 5) do not provide a clear separation of the tem-
poral/spatial patterns and hence we have chosen to detail
our analysis with a subspace size of 5.
NMF identifies multi-scale ILI-breakout patterns within
the US
A summary of the five temporal patterns as extracted
from NMF using H is depicted in Figure 3. There are
distinct peaks for each of the five patterns, indicating a
unique phase for the 2009-2010 pandemic flu. Interest-
ingly, the peak of ILI-incidence across each of the tem-
poral patterns is left shifted - indicating a lag period in
the ILI incidence rates observed across the different geo-
graphic regions (see next subsection). Notably, H1 shows
a peak in ILI incidence around day 206-210, corre-
sponding to a time period of Oct 24, 2009; H2 shows
peak about a week earlier (Oct 18, 2009) followed by H3

peaking around Sep 28, 2009 and H4 showing a peak of
Aug 19, 2009. H5 corresponds to an early flu outbreak
observed in the early-middle spring time (May 31-Jun 5,
2009), which was distinctly observed across the North
east HHS regions in Figure 1. Another notable aspect of
H5 is that the early peak of the ILI-incidence is followed
by a secondary peak in and around the same time of
H1, indicating that the likely presence of an early flu
season (in the spring season) also influenced the late
peaks observed in the fall season (see below for explana-
tion of the spatial patterns observed). Thus, these ILI-
breakout patterns provide a succinct summary of how
the 2009-2010 flu season affected the entire country.
As shown in Figure 4, each of the Wi vectors provides a

specific spatial (geographic) pattern during the 2009-2010
pandemic flu season. The advantage of this representa-
tion is that NMF allows us to interpret and visualize the
pandemic flu season as a multi-scale spatial model that

Figure 2 Summary of non-negative matrix factorization (NMF) applied to ILI diagnostic claims claims data. (A) Reconstruction error or
the fraction of unexplained variance for PCA (red) and NMF (black) versus the subspace s selected. (B) Change in reconstruction error for PCA
and NMF as compared to the change in reconstruction error for PCA performed on a scrambled version of the input matrix A. PCAscram shown
in gray line is used to estimate the cut-off number of dimensions, beyond which the dimensionality reduction method explains only noise
within the dataset. For our analysis, s beyond 12 is only explaining noise in the data, as is evident from the intersection between the gray and
black/red lines.
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captures nation-wide, state-wide and zip code specific
behaviors observed during the pandemic flu season.
Specifically, each Wi depicts how the flu encompassed
the entire nation. The matrix representation of W pro-
vides a succinct summary of the flu prevalence across the
individual zip codes, which can be visualized on a geo-
graphic map of the US shown in Figure 4 (labeled
National). In this map, darker colors of red correspond to
a higher flu prevalence in the region, whereas lighter col-
ors (orange, yellow, green and blue) represent a lower flu
prevalence pertaining to a specific spatial pattern.
One of the notable observations from our analysis is

that the flu prevalence patterns reveal distinct areas
were affected by each Wi. For example, while W1 occurs
throughout the US encompassing both the northeast

and northwest regions of the country, W4 is primarily
observed in the southeast and western regions (California)
of the country. The pattern W5 is exclusively observed
within larger metropolitan areas (large cities with at least 1
million people during the 2010 census period). It is also
interesting to point out that all the five patterns are
observed within metropolitan areas, perhaps reflecting the
dynamics of people moving between these large cities. (It
is also important to point out here that additional data
would be required to validate this observation, which we
are not pursuing as part of this paper.)
At the state level, we can describe how the flu pat-

terns uniquely affected different counties/regions, as
shown in Figure 4 (State-wide panel). Here we have
highlighted the state of Tennessee (TN; for which the
coverage of the claims data was about 47%). As a south-
eastern state, TN was widely affected by the H1N1 pan-
demic. While the major cities of TN including Mem-
phis, Nashville, Knoxville and Chattanooga - all exhibit
the five patterns, the individual county areas around the
major cities have unique spatial patterns within each
Wi, depicting that the flu prevalence pattern was indeed
unique to different areas within the state (as highlighted
by the yellow rectangles in the figure). Such an argu-
ment can also be extended to the city/zip code resolu-
tion (right most panel), whereby each pattern captures
how neighborhoods or suburb regions show unique pre-
valence patterns as one navigates the different spatial
patterns from W1 to W5.
Identifying “bridge regions” within break-out patterns in
the US
It is interesting to note that between the different Wi a
small subset of the zip codes act as bridge regions. We
define these bridge regions to be zip codes that exhibit
more than one Wi at the same time-period. These zip
codes, not surprisingly, are concentrated towards the
different suburb regions of the different metropolitan
cities in the state. For example, in the city of Memphis,
there are distinct bridge regions where we observe that
a cluster of three zip codes in the area corresponding
to Bartlett (highlighted by a red rounded rectangle in
Figure 4 across all the three spatial patterns) that exhibit
W2, W3 and W4 patterns. Notably, this region showed
very little flu during the early half of the season.
Another example of a bridge region is highlighted by a
purple circle in Figure 4 where W1, W3 and W4 pat-
terns dominated in the suburbs of East Memphis. Only
the area of Bartlett and Collierville show the presence of
the early and late fly patterns (corresponding with the
spatial pattern W5).
Based on this initial analysis, we can identify bridge

regions at the state-and national-level by aggregating the
spatial patterns to the respective scales. Instead of exam-
ining specific spatial patterns, we examine the most

Figure 3 Five distinct temporal patterns govern how the
pandemic flu spread throughout the US. The normalized
temporal amplitude is plotted against the total number of days
(Apr 1, 2009-Mar 31, 2010). Observe the distinct lag in each of the
five patterns, with successive Hi indicating the peak shift occurring
towards the left (indicted by a gray arrow). These patterns
summarize the different peaks during the H1N1 pandemic. Notably,
H1, H4 and H5 capture the late, middle and early H1N1 pandemic
peaks occurring within the entire country.
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dominant spatial pattern (Wi) in a given state or HHS
region. A dominant pattern is defined as a spatial
pattern that is prevalent in a specific zip code based on
the maximum Wi value(s) within the zip codes that con-
stitute the state (or HHS region). For this study, we
decided to use a simple threshold of 50% to determine
if a spatial pattern was dominant in that state/region. As
summarized in Figure 5, the individual pie charts within
each state captures the percentage contribution of each
Wi that was dominant in that region, which provides an
intuitive visual analysis of the regions impacted by the
2009 H1N1 pandemic.
For the different states, one can identify the most

dominant pattern just by examining how prevalent these
flu patterns were across the different zip codes across a

particular state. While states like Wyoming, North
Dakota, Pennsylvania and others show a dominant, sin-
gle spatial pattern, states such as Georgia, California,
Nevada and Tennessee exhibit typically two patterns that
dominate these regions. Thus, states such as Kentucky
and Tennessee act as bridge regions in the spread of the
pandemic.
Extending this analysis further for each of the HHS

regions, we observe that HHS-IV and HHS-VIII are
dominated by two patterns (completely different in
these regions), where as other HHS regions including
HHS-I-III and HHS-V-VII have a single dominant spa-
tial pattern that is prevalent in at least 50% of the zip
codes in these regions. Interestingly, the entire southeast
acts as a bridge region showing the presence of two or

Figure 4 Multi-scale spatial patterns of H1N1 influenza occurrence in the US. Each of the spatial pattern W discovered from NMF can
examine how the flu spread throughout the US (left hand panels). The nation wide panels depict how W1 pattern is widespread throughout
the US followed by progressively moving down south (W4 ). The spatial pattern W5 depicts flu prevalence only within large metropolitan areas
and southern Florida. One can focus further into state-wide patterns (middle panel) and examine how ILI-patterns affect the state of Tennessee
and towards specific metropolitan areas (e.g., Memphis in Tennessee, right most panels) and capture minor variations in the ILI-patterns
according to different zip-codes. These differences also allow one to identify bridge regions (highlighted by red and magenta circles) that show
more than two ILI-patterns in the same zip code. These analyses can be further extended out towards the state and nation-wide areas.
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more patterns simultaneously occurring within 50% of
the zip codes. Similar observations can be made also
within HHS-IX and HHS-X, where W1 and W2 domi-
nate. We also observe that the northeast part of the
country exhibits only W1 and W5, confirming further
that the early flu peaks were prevalent only in these
regions (apart from other major metropolitan areas). It
is also interesting to note that the very same regions
that show W5 also exhibit a temporal coupling between
the early and late part of the flu. These regions, espe-
cially in the northeast (HHS-II) were affected by an
early peak of the H1N1 pandemic followed by a sus-
tained incidence of the flu even after the entire nation
had more or less recovered from the major outbreaks.

Discussion and conclusion
In this paper, we examined the use of the diagnostic data
to reveal spatial and temporal patterns of how the 2009
H1N1 pandemic affected the entire country. To our
knowledge, the use of NMF in the context of extracting
spatio-temporal patterns of disease spread is novel and the
break out patterns extracted from the claims data provide
specific insights into the 2009 pandemic. The break out
patterns show how different parts of the US were vulner-
able and highlight regions that may have needed additional
attention as the pandemic was spreading through the

nation. The patterns also describe the multi-scale nature
of flu outbreaks beginning with the individual zip code
resolution all the way to the entire nation, capturing the
complex dependencies that may have had an impact in
spreading the pandemic. Our analysis also reveals specific
features of the flu outbreak patterns that highlight the dif-
ferences between both urban (metropolitan) and rural
areas. The patterns extracted are categorical in that they
describe the overall dynamics of the pandemic in distinct
phases through out the nation.While the patterns have intui-
tive interpretative power, more quantitative measures of the
distinct spatial and temporal coupling patterns are required.
At this time, because we have not integrated socio-

economic/census data into our analysis, it is difficult for
us to speculate whether particular demographic factors
(e.g., age-group, socio-economic background or other fac-
tors), population density or other environmental and
climatic factors within these regions lead to the observed
patterns. We also note the relatively sparse coverage of the
claims data across the country and these regions also con-
stitute large parts of the US where the population density
is quite low. A more systematic analysis of the variation in
population of these regions, followed by a statistical com-
parison with the flu diagnostic data would be necessary to
draw additional conclusions regarding the epidemiological
significance of these spatial and temporal patterns.

Figure 5 A small number of regions within the US act as bridge regions for the 2009-2010 H1N1-flu season. Within every state, we
quantify the extent to which the individual spatial patterns are dominant using a pie-chart representation. The colors represent respective spatial
patterns (W1...5), as highlighted in the legend. In the pie-chart, a line in the middle points out the 50% cut-off for a particular flu pattern and is
used as a guide to identify dominant patterns. For the individual HHS regions shown below, we can see a dominant pattern, within the
individual states, (for e.g., MA, CT, MT, CO, MS) more than one pattern dominates indicating the complexity of how the H1N1 flu spread within
these regions. Note that the patterns also correspond to the time when the flu peaked in these individual regions and hence such patterns are
instructive in visually interpreting how the different spread patterns affected an individual state.
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Although in this paper, we do not describe the many
confounding factors (e.g., environmental factors/ climate
factors that have a strong influence on the occurrence of
asthma) that may play a role in the co-occurrence of
asthma and flu, the ability to discover such complex asso-
ciations from claims provides an added capability for
public health surveillance systems to monitor and quickly
identify vulnerable geographic areas/population for pre-
emptive intervention. We must note here that a more
detailed analysis of the spatio-temporal patterns is
required. Additionally, within the scope of this paper, we
have not examined whether these patterns correspond to
other well known algorithms such as Google Flu. Finally,
we must also note that the predictive aspects of our algo-
rithm have also not been fully explored for two reasons:
(1) the data available to us is only from the 2009-2010 flu
season and (2) it is difficult to obtain a baseline behavior
based on a year that showed highly anomalous behavior
in terms of the overall flu incidence across the entire
country. We will explore these questions in greater detail
in a following publication.
While diagnostic information (from claims data) can be

helpful for public health surveillance, additional analyses
of the prescription datasets (Rx) from IMS Health is
necessary to obtain precise insights regarding the pan-
demic spread. The prescription transactions, in addition
to providing counts of patients that were prescribed anti-
viral medications, also record the dosage of these drugs
and hence can provide tighter bounds on the number of
estimated people infected and measure the intensity of
spread. Such a collective integration of claims and Rx
datasets can provide novel insights not only in the con-
text of understanding the flu, but can have a wide impact
in general for more complex disease etiologies and
chronic disease conditions.

Incorporating H1N1 molecular evolutionary information
into ORBiT
The spatial and temporal patterns discovered from the
claims data and NMF can be considered as approximate
representations of epidemiological curves obtained from
traditional disease spread (either compartmental or
agent-based) models. The temporal patterns shown in
Figure 3 indicate different phases of the H1N1 flu epi-
demic. The multi-scale representation of the H1N1 epi-
demiological spread can be used as starting points for
other complex types of analysis. For example, one exten-
sion would be to include evolutionary history of different
H1N1 viral strains. The recent availability of large-scale
sequence databases such as GISAID [41] can provide
insights into specific viral strains that are prevalent
within a geographic region. Tracing the phylogenetic
relationship between different strains of the virus, we can
then estimate parameters for disease spread models [42].

We can also incorporate the evolutionary information
into statistical models [43,30] to understand the how
viral evolution affects the disease spread process. Further,
these patterns can be examined to identify regions that
are vulnerable to specific strains and target them for
early intervention. Such enhancements will be evaluated
in forthcoming publications from our group.

Other capabilities within ORBiT
ORBiT is designed as a toolbox for developing machine
learning tools that can aid public health surveillance.
Within the scope of this paper, we have demonstrated
the use of novel diagnostic (claims) datasets to discover
a small set of spatial and temporal patterns that charac-
terize the 2009-2010 pandemic H1N1 flu. However, we
have not described all the capabilities within ORBiT.
Apart from supporting machine learning algorithms
from direct sources for public health surveillance,
ORBiT can be used in other contexts including
(1) extracting and analyzing emerging, indirect datasets
for public health surveillance, e.g., Twitter [34]; and
(2) integrating datasets such as claims to estimate para-
meters for disease spread models so that one can turn
the analytical power from the aforementioned applica-
tion into predictive models that can aid decision makers
with more accurate insights [44]. We hope to examine
these applications in greater detail in future studies.
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