Dinitrogen Activation Hot Paper

Cleavage of the $\mathbf{N} \equiv \mathbf{N}$ Triple Bond and Unpredicted Formation of the Cyclic 1,3-Diaza-2,4-Diborete (FB) $\mathbf{2}_{\mathbf{2}} \mathbf{N}_{\mathbf{2}}$ from \mathbf{N}_{2} and Fluoroborylene BF

Bing Xu, Helmut Beckers, Haoyu Ye, Yan Lu, Juanjuan Cheng, Xuefeng Wang,* and Sebastian Riedel*
Dedicated to Professor Hansgeorg Schnöckel on the occasion of his $80^{\text {th }}$ birthday

Abstract

A complete cleavage of the triple bond of N_{2} by fluoroborylene (:BF) was achieved in a low-temperature N_{2} matrix by the formation of the four-membered heterocycle $F B(\mu-N)_{2} B F$, which lacks a trans-annular $N-N$ bond. Additionally, the linear complex $F B=N-N=B F$ and cyclic $F B\left(\eta^{2}\right.$ $\left.N_{2}\right)$ were formed. These novel species were characterized by their matrix infrared spectra and quantum-chemical calculations. The puckered four-membered-ring $B_{2} N_{2}$ complex shows a delocalized aromatic two-electron π-system in conjugation with the exo-cyclic fluorine π lone pairs. This work may contribute to a rational design of catalysts based on borylene for artificial dinitrogen activation.

Introduction

The cleavage of the $\mathrm{N} \equiv \mathrm{N}$ triple bond (one of the strongest chemical bond) is a long-standing task in chemistry. ${ }^{[1]}$ Since the discovery of the Haber-Bosch process for producing ammonia from $\mathrm{H}_{2} / \mathrm{N}_{2}$ in the first decade of the $20^{\text {th }}$ century, plenty of transition-metal (TM) complexes have been discovered to activate and functionalize thermodynamically stable and kinetically inert dinitrogen $\left(\mathrm{N}_{2}\right)$ under more ambient conditions. ${ }^{[2]}$ For p-block elements the examples of N_{2} binding are mainly contributed from boron compounds such as borylenes $(: B R) .{ }^{[3]}$ The boron atom in borylene possess both, a lone pair of electrons (HOMO) and an energetically low-lying empty p valence orbital (LUMO). Borylenes are therefore excellent candidate for mimicing transition-metal reactivity. ${ }^{[4]}$ The reaction of N_{2} with free

[^0]phenylborylene, : BPh , under matrix conditions has been shown to yield the linear adduct $\mathrm{PhB}=\mathrm{NN}$ in a triplet ground state, underscoring the use of borylenes as candidates for N_{2} binding (Scheme 1a). ${ }^{[4 e]}$ A boron-based fixation of N_{2} has very recently also been reported using a phenylborylene stabilized by a bulky carbene ligand, [(CAAC)DurB] $(\mathrm{CAAC}=$ cyclic alkylamino carbene, $\mathrm{Dur}=2,3,5,6$-tetramethylphenyl), leading to the end-on bridging complex $\left[\{(\text { CAAC })-\operatorname{DurB}\}_{2}\left(\mu^{2}-\mathrm{N}_{2}\right)\right]^{[4]]}$ in which the $\mathrm{N}-\mathrm{N}$ bond length [1.248(4) \AA] lies in the range of $\mathrm{N}=\mathrm{N}$ double bonds (Scheme 1b). ${ }^{[5]}$

The reaction of laser-ablated boron atoms with N_{2} molecules upon co-deposition onto a cooled (4 K) CsI window has previously been studied. ${ }^{[6]}$ These studies provided a variety of mono and diboron nitrogen compounds of the type $\mathrm{BN}_{2}, \mathrm{~B}_{2} \mathrm{~N}$, and $\mathrm{B}_{2} \mathrm{~N}_{2}$ as well as linear NNBN. ${ }^{[6]}$ It has recently been shown, that addition of CO to the boron $-\mathrm{N}_{2}$ deposits gives rise to CO complexes of the BN_{2} isomers, such as the chain-molecules NNBCO and NBNCO, cyclic (η^{2} $\left.\mathrm{N}_{2}\right) \mathrm{BCO}$, and the diisocyanat $\mathrm{B}(\mathrm{NCO})_{2}{ }^{[7]}$

a) Bettinger 2017 [4e]
b) Braunschweig $2019{ }^{[46]}$

c) A (present work)

d) \boldsymbol{B} (present work)

) C (present work)

Scheme 1. Five different binding modes of N_{2} to borylenes.

Results and Discussion

Here we report on novel fluoroborylene (:BF) : N_{2} compounds, the cyclic diaza-diborete $\mathrm{FB}(\mu-\mathrm{N})_{2} \mathrm{BF}(\boldsymbol{A})$, its linear $\mathrm{FB}=\mathrm{N}-\mathrm{N}=\mathrm{BF}$ isomer (\boldsymbol{B}), and cyclic fluorodiazaboririne, $\mathrm{FB}\left(\eta^{2}-\mathrm{N}_{2}\right)(\boldsymbol{C})$ which was previously predicted ${ }^{[8]}$ (Scheme 1, c-e). They are selectively formed upon codeposition of laser-ablated boron atoms with elemental fluorine in an N_{2} gas stream at cryogenic temperatures ($4 \pm$ 1 K , for experimental details see the Supporting Information). Here, dinitrogen molecules act as both, reactants and host matrix. The cyclic compounds \boldsymbol{A} and \boldsymbol{C} are of aromatic
nature due to the presence of a delocalized 2π electron bond which is in conjugation with the π lone pairs of the exo-cyclic F atoms indicating a type of fluorine specific interactions.

Figure 1 shows infrared spectra obtained after laserablated natural boron atoms co-deposited with a $0.5 \% \mathrm{~F}_{2} /$ N_{2} mixture in a 4 K dinitrogen matrix. The reaction products induced by annealing and photolysis are indicated. In addition to the three novel fluoroborylene : N_{2} products $\boldsymbol{A}-\boldsymbol{C}$ binary boron fluorides $\mathrm{BF}_{n}(n=1-3)$ and the molecular boron nitrides NBN and NNBN ${ }^{[6]}$ were obtained in the present study, while the previously reported diboron compounds BBNN and $\mathrm{BNBN}^{[6]}$ were barely observed (Figure 1 and Table S1). Although BF_{2} and BF_{3} are also produced, ${ }^{[9]}$ the reaction conditions were optimized to achieve a maximum yield of fluoroborylene, BF (see experimental details in the Supporting Information). The strong bands for ${ }^{11} \mathrm{BF}$ and ${ }^{10} \mathrm{BF}$ were found at 1370.6 and $1412.4 \mathrm{~cm}^{-1}$, respectively (Figure 1, Table S2). These optimized conditions enabled us to tentatively assign three weak bands to different ${ }^{10 / 11} \mathrm{~B}$ isotopologues of difluorodiborene, FBBF, at $1327.3\left({ }^{11} \mathrm{~B}^{11} \mathrm{~B}\right), 1348.5\left({ }^{10} \mathrm{~B}^{11} \mathrm{~B}\right)$ and $1370.3 \mathrm{~cm}^{-1}\left({ }^{10} \mathrm{~B}^{10} \mathrm{~B}\right)$ in experiments using a natural boron target in N_{2} and ${ }^{15} \mathrm{~N}_{2}$ matrices (Figure 1 and S3). Owing to its high reactivity, experimental spectra of free FBBF have not yet been reported, although complexes of FBBF with electron-rich transition metals have been investigated. ${ }^{[10]}$

The absorptions associated with the novel fluoroborylene : N_{2} product molecules $\boldsymbol{A}-\boldsymbol{C}$ were unambiguously assigned based on their growth/decay characteristics in different experiments and on their characteristic ${ }^{10 / 11} \mathrm{~B}$ and ${ }^{14 / 15} \mathrm{~N}$ isotope pattern. The novel ring molecule \boldsymbol{A} shows strong bands in the B-F stretching region at 1531.0 and $1558.6 \mathrm{~cm}^{-1}$, which are tracked by weaker ring vibrations at 1090.7 and $1101.5 \mathrm{~cm}^{-1}$. These bands were already observed on deposition, they increased by 50% on annealing to 15 K , and

Figure 1. Excerpts from the $I R$ spectrum obtained using a natural boron target with $0.5 \% \mathrm{~F}_{2}$ in N_{2} matrix: (a) co-deposition of $\mathrm{B}+0.5 \%$ F_{2} for 120 min , (b) after annealing to 15 K , (c) after subsequent $\lambda=273 \mathrm{~nm}$ irradiation for 30 min , and (d) further annealing to 15 K . Unknown species are indicated by asterisks.
continue to grow on irradiation at $\lambda=278 \pm 10 \mathrm{~nm}$, where they reached three-fold on further annealing to 15 K . For a natural boron (${ }^{10} \mathrm{~B}:{ }^{11} \mathrm{~B}=19.9: 80.1$) sample, the vibrational modes of a diboron species with two equivalent boron atoms split into three absorptions with approximately 1:8:16 $\left({ }^{10} \mathrm{~B}^{10} \mathrm{~B}\right.$, ${ }^{10} \mathrm{~B}{ }^{11} \mathrm{~B},{ }^{11} \mathrm{~B}{ }^{11} \mathrm{~B}$) relative intensities. ${ }^{[11]}$ In addition to the two BF stretching bands for the two most abundant isotopologues of \boldsymbol{A} (Tables 1 and S3) the corresponding band associated with the ${ }^{10} \mathrm{~B}^{10} \mathrm{~B}$ species is observed in ${ }^{10} \mathrm{~B}+\mathrm{F}_{2} / \mathrm{N}_{2}$ mixture experiments at $1590.2 \mathrm{~cm}^{-1}$, giving a ${ }^{10} \mathrm{~B} /{ }^{11} \mathrm{~B}$ isotopic ratio of 1.0381. The ${ }^{11} \mathrm{~B}^{11} \mathrm{~B}$ ring vibration observed at $1090.7 \mathrm{~cm}^{-1}$ shift to $1123.8 \mathrm{~cm}^{-1}\left({ }^{10} \mathrm{~B}^{10} \mathrm{~B}\right)$ in these experiments, indicating a ${ }^{10} \mathrm{~B} /$ ${ }^{11} \mathrm{~B}$ isotopic ratio of 1.0303 , a typical boron atom involved isotopic ratio. As shown in Figure 2 the boron isotopic distribution supports the presence of two equivalent boron atoms in this molecule. In experiments using $\mathrm{F}_{2}{ }^{15} \mathrm{~N}_{2}$ mixtures

Table 1: Observed and calculated ($\operatorname{CCSD}(\mathrm{T}) /$ def2-TZVP) vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and isotopic frequency ratios $\left(v\left({ }^{10} \mathrm{~B}\right) / v\left({ }^{11} \mathrm{~B}\right)\right)$ of the $\mathrm{FB}(\mu$ $N)_{2} \mathrm{BF}, \mathrm{FBNNBF}$ and $\mathrm{FB}\left(\eta^{2}-\mathrm{N}_{2}\right)$ molecules. ${ }^{[\mathrm{a]}}$

	$\begin{aligned} & { }^{11} \mathrm{~B}^{11} \mathrm{~B} / /^{11} \mathrm{~B} \\ & \text { calcd }^{[a]} \end{aligned}$	Obs.	$\begin{aligned} & { }^{10} \mathrm{~B}^{11} \mathrm{~B} \\ & \text { calcd }^{[2]} \end{aligned}$	Obs.	$\begin{aligned} & { }^{{ }^{10} \mathrm{~B}^{10} \mathrm{~B} / /^{10} \mathrm{~B}} \\ & \text { calcd }^{[a]} \end{aligned}$	Obs.	${ }^{10} \mathrm{~B} /{ }^{11} \mathrm{~B}$ ratio calcd	Obs.
cyclic FB $(\mu-\mathrm{N})_{2} \mathrm{BF}\left({ }^{1} \mathrm{~A}_{1}\right)$								
	1612.7 (68)	1612.8	1642.2 (88)	1635.8	1662.9 (70)	1660.7	1.0311	1.0297
${ }^{14} \mathrm{~N}$	1538.5 (802)	1531.0	1546.2 (733)	1558.6	1585.1 (850)	1590.2	1.0302	1.0382
	1114.6 (113)	1090.7	1125.4 (115)	1101.5	1140.5 (120)	1123.8	1.0232	1.0303
	1597.1 (57)	hidden	1638.2 (87)	1	1659.2 (64)	1662.8	1.0387	1
${ }^{15} \mathrm{~N}$	1523.2 (785)	1521.4	1541.8 (727)	1542.0	1580.1 (844)	1569.6	1.0377	1.0317
	1093.5 (110)	1077.0	1110.5 (113)	/	1125.8 (118)	1108.5	1.0295	1.0292
linear FBNNBF (${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$)								
${ }^{14} \mathrm{~N}$	2068.8 (927)	2078.2	2099.0 (934)	2108.8	2138.6 (1012)	2147.0	1.0337	1.0331
	976.1 (178)	981.0	977.4 (176)	/	978.9 (174)	983.1	1.0029	1.0021
${ }^{15} \mathrm{~N}$	2049.5(933)	hidden	2079.2 (929)	2073.4	2120.2 (1017)	2125.0	1.0345	1
	962.7(168)	969.4	963.8 (166)	1	964.9 (165)	970.4	1.0023	1.0010
cyclic FB $\left(\eta^{2}-\mathrm{N}_{2}\right)\left({ }^{1} \mathrm{~A}_{1}\right)$								
${ }^{14} \mathrm{~N}$	1704.5(356)	1710.5			1760.6(355)	1765.8	1.0330	1.0323
	1231.6(45)	1229.5			1234.9(46)	1231.0	1.0027	1.0012
${ }^{15} \mathrm{~N}$	1689.6(398)	1700.1			1752.3(340)	,	1.0371	
	1194.8(35)	1192.5			1198.6(33)	1	1.0032	

[a] Scaled frequencies using a uniform scaling factor of 0.969. ${ }^{[27]}$ Intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$ in parentheses. Band positions assigned to B-F stretching modes are given in italics.

Figure 2. Excerpts from the IR spectrum obtained using a ${ }^{10} \mathrm{~B}$ target with $0.5 \% \mathrm{~F}_{2}$ in (a) ${ }^{14} \mathrm{~N}_{2}$ matrix, (b) ${ }^{15} \mathrm{~N}_{2}$ matrix, and (c) $50 \%{ }^{14} \mathrm{~N}_{2}+$ $50 \%{ }^{15} \mathrm{~N}_{2}$ matrix. Natural boron target with $0.5 \% \mathrm{~F}_{2}$ in (d) ${ }^{14} \mathrm{~N}_{2}$ matrix, (e) ${ }^{15} \mathrm{~N}_{2}$ matrix, and (f) $50 \%{ }^{14} \mathrm{~N}_{2}+50 \%{ }^{15} \mathrm{~N}_{2}$ matrix.
(Figure 2) the ${ }^{15} \mathrm{~N}$ counterpart bands were observed at 1569.6 and $1108.5 \mathrm{~cm}^{-1}\left({ }^{10} \mathrm{~B}^{10} \mathrm{~B}\right), 1542.0 \mathrm{~cm}^{-1}\left({ }^{10} \mathrm{~B}^{11} \mathrm{~B}\right)$ and 1521.4 and $1077.0 \mathrm{~cm}^{-1}\left({ }^{11} \mathrm{~B}^{11} \mathrm{~B}\right)$, respectively (Figures S 1). The relative intensities of the bands due to the ${ }^{14} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}$ isotopomers are almost the same in experiments using $50 \%{ }^{14} \mathrm{~N}_{2}$ and $50 \%{ }^{15} \mathrm{~N}_{2}$ mixtures (Figure 2 f). Obviously, two B atoms bind only one ${ }^{14} \mathrm{~N}_{2}$ or ${ }^{15} \mathrm{~N}_{2}$ in this new ring molecule. We also note a good agreement between the observed and calculated frequencies at the B3LYP and $\operatorname{CCSD}(\mathrm{T})$ levels of theory listed in Tables 1 and S3.

The linear isomer \boldsymbol{B} ($D_{\infty \text { h }}$ symmetry, Figure 3) has a singlet ground state and exhibits only two infrared active vibrational modes in the mid-IR region (Table S4, for more computa-

Figure 3. Optimized structures of $\boldsymbol{A} \mathrm{FB}(u-\mathrm{N})_{2} \mathrm{BF}, \boldsymbol{B}$ FBNNBF and C FB$(N N)$ obtained at the B3LYP/6-311++G(3df,3pd) and CCSD $(T) /$ def2TZVP (italic) levels of theory. Bond distances are given in \AA and angles in degree.
tional results on \boldsymbol{B} see Part 1 of the Supporting Information). The antisymmetric $\mathrm{B}-\mathrm{N}$ stretching modes give rise to two bands at $2108.8\left({ }^{11} \mathrm{~B}^{10} \mathrm{~B}\right)$ and $2078.2\left({ }^{11} \mathrm{~B}^{11} \mathrm{~B}\right) \mathrm{cm}^{-1}$ in Figure 1 using a natural boron target, while the antisymmetric F-B vibration is observed only for the most abundant ${ }^{11} \mathrm{~B}^{11} \mathrm{~B}$ isotopologue at $981.0 \mathrm{~cm}^{-1}$ on deposition. Experiments performed with ${ }^{10} \mathrm{~B}$ and N_{2} or ${ }^{15} \mathrm{~N}_{2}$, and ${ }^{11} \mathrm{~B}$ with N_{2} or ${ }^{15} \mathrm{~N}_{2}$ are shown in Figures 2 and S1-S3, and the observed product absorptions are compared to calculated values in Table 1 (for more details see the Supporting Information). These bands disappeared upon 273 nm irradiation, while the bands of \boldsymbol{A} increased simultaneously, suggesting that isomerization is occurring. Note, linear \boldsymbol{B} is isoelectronic to diisocyanate, OCNNCO. ${ }^{[12]}$ Like \boldsymbol{B} also OCNNCO is photosensitive and decomposes rapidly under UV light to produce $\mathrm{N}_{2}+2 \mathrm{CO}$.

Cyclic \boldsymbol{C} (Figure 3) is assigned to a band at $1710.5 \mathrm{~cm}^{-1}$ in Figure 1, and another very small band at $1229.5 \mathrm{~cm}^{-1}$, which corresponds to the $\mathrm{F}-\mathrm{B}$ and $\mathrm{N}-\mathrm{N}$ stretching modes, respectively (Tables 1 and S5). Further experiments were performed using ${ }^{10} \mathrm{~B}$ and N_{2} or ${ }^{15} \mathrm{~N}_{2}$, and ${ }^{11} \mathrm{~B}$ with N_{2} or ${ }^{15} \mathrm{~N}_{2}$, and the absorptions of the corresponding isotopologues were observed at 1765.8 and $1331.0 \mathrm{~cm}^{-1}\left({ }^{10} \mathrm{~B}\right)$, and at 1700.1 and $1192.5 \mathrm{~cm}^{-1}\left({ }^{15} \mathrm{~N}\right.$, Figures S1,S3). These bands were observed on co-deposition, but on annealing to 15 K they disappeared entirely, while the bands due to \boldsymbol{A} increased by 30%.

According to B3LYP/6-311 ++ G (3df, 3pd) calculation linear \boldsymbol{B} is separated from cyclic \boldsymbol{A} by a barrier of 25.0 kcal mol^{-1} and higher in energy by $22.3 \mathrm{kcalmol}^{-1}$ (Figures S5, S11). At this level the predicted $\mathrm{N}-\mathrm{N}$ distance in \boldsymbol{A} is $1.847 \AA$ $(\operatorname{CCSD}(\mathrm{T}) /$ def2-TZVP: $1.886 \AA$), which is significantly longer than for example, the $\mathrm{N}-\mathrm{N}$ single bond of diphenylhydrazine $[d(\mathrm{~N}-\mathrm{N}): 1.394 \AA]^{[5]}$ and indicates a complete splitting of the $\mathrm{N} \equiv \mathrm{N}$ triple bond by the two FB units. The computed B-N distance $(1.434 \AA$ A , Figure 3$)$ is in the range of a conventional $\mathrm{B}=\mathrm{N}$ double bond, like in aminoboranes. ${ }^{[13]}$ The ring inversion barrier of the puckered ring of \boldsymbol{A} was found to be 15.8 kcal mol^{-1} at the B3LYP/6-311++G(3df, 3pd) level of theory (Figure S13).

The proposed aromatic π-electron delocalization in the cyclic compounds \boldsymbol{A} and \boldsymbol{C} is supported by a molecular orbital (MO) analysis and computed nucleus-independent chemical shift (NICS) values. Figures 4 and S14 shows typical π bonding orbitals of the cyclic π-conjugated system \boldsymbol{A}, which consists of the $4 \mathrm{c}-2 \mathrm{e}$ central bonding orbital (HOMO-2) and two further π-bonding orbitals (HOMO-6 and -7), to which the exo-cyclic F atoms clearly contribute. Related puckered 4membered ring aromates have previously thoroughly been analyzed. ${ }^{[14,15]}$

HOMO-2

HOMO-6

HOMO-7

Figure 4. Selected frontier molecular orbitals of $\mathrm{FB}(\mu-\mathrm{N})_{2} \mathrm{BF}$.

The NICS value is among the most popular aromaticity indices. ${ }^{[16]}$ While the NICS index was originally obtained for planar aromatic systems, it has recently been suggested to calculate an average $\operatorname{NICS}(1)_{\mathrm{av}}$ index, $\operatorname{NICS}(1)_{\mathrm{av}}=[$ NICS-$(-1)+\operatorname{NICS}(1)] / 2$, as a probe of aromaticity in nonplanar molecular systems. ${ }^{[17]}$ The large negative NICS(1) ${ }_{\mathrm{av}}$ index of -21 obtained at the center of gravity of \boldsymbol{A} (Figure S15,b) indicates its significant aromatic character, which can be compared to the NICS(1) value obtained for planar \boldsymbol{C} of -12 (Figure S15e).

The selective formation of the products $\boldsymbol{A}-\boldsymbol{C}$ is surprising at first glance, but due to a high dilution of the initially formed reactive intermediates, as well as the subsequent isolation of the products in a solid N_{2} matrix at cryogenic temperatures, possible secondary reactions are efficiently suppressed. The predominant reaction of laser ablated boron atoms with N_{2} molecules ${ }^{[6]}$ depends on whether the boron atoms are in their ${ }^{2} \mathrm{P}\left(2 \mathrm{~s}^{2} 2 \mathrm{p}^{1}\right)$ or first excited ${ }^{4} \mathrm{P}\left(2 \mathrm{~s}^{1} 2 \mathrm{p}^{2}\right)$ state, located 82.5 kcal mol^{-1} higher in energy. ${ }^{[18]}$ Common trivalent boron compounds can usually be traced back to the first excited ${ }^{4} \mathrm{P}$ state, and sub-valent boron compounds such as Lewis-base stabilized borylenes only recently became a rapidly emerging class of highly reactive intermediates. ${ }^{[3,4]}$ However, due to the very low Lewis basicity of N_{2} it seems that ground-state boron atoms are reluctant to react with N_{2} molecules. ${ }^{[6,19 \mathrm{a}]}$ The dissociation energy of the weakly bound B-NN (${ }^{2} \Pi$) adduct with respect to $\mathrm{B}\left({ }^{2} \mathrm{P}\right)+\mathrm{N}_{2}\left(\mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}\right)$is reported to be only $1.2 \mathrm{kcalmol}^{-1} .{ }^{[20]}$ It is interesting that only the high-energy isomer NBN $\left({ }^{2} \Pi\right)$ is observed in the present study (Figures 1, 2). The weakly bound B-NN $\left({ }^{2} \Pi\right)$ adduct is almost isoenergetic with the cyclic isomer $\mathrm{B}\left(\eta^{2}-\mathrm{N}_{2}\right)\left({ }^{2} \mathrm{~A}_{1}\right)$, while the linear trivalent boron isomers BNN $\left({ }^{4} \Sigma_{\mathrm{g}}^{-}\right)$and NBN (${ }^{2} \Pi$) are substantially higher in energy by 7.7 and $22 \mathrm{kcalmol}^{-1}$, respectively ${ }^{[20]}$ Given that the adduct B-NN $\left({ }^{2} \Pi\right)$ is separated from the other three isomers by significant computed energy barriers, ${ }^{[196]}$ the observation of only the highest-energy isomer NBN $\left({ }^{2} \Pi\right)$ could indicate its higher kinetic stability compared to the other isomers under the experimental conditions. A plausible route to the formation of NBN is the reaction of N_{2} molecules upon the deposition with excited ${ }^{4} \mathrm{P}$ boron atoms, which are produced during laser-ablation.

Prominent bands due to NNBN $\left({ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\right)$and BF $\left({ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\right)$in the spectra obtained after deposition (Figure 1) indicates the presence of free N and F atoms in the deposit. These atoms are commonly generated in the hot plasma plume or by photo-decomposition of N_{2} and F_{2} molecules, respectively, as a result of the plasma broadband radiation that is produced during laser ablation. These atoms react very exothermically with boron atoms to yield diatomic NB and FB molecules, respectively, but only NB react further with N_{2} molecules during deposition to yield NNBN. ${ }^{[6]}$ In addition, the lack of mixed ${ }^{14} \mathrm{~N} /{ }^{15} \mathrm{~N}$ isotopologues of NBN in experiments using 1:1 mixtures of ${ }^{14} \mathrm{~N}_{2}$ and ${ }^{15} \mathrm{~N}_{2}$ rule out the formation of NBN from diatomic BN and N atoms, which corroborates our assumption of NBN formation by insertion of excited B atoms into N_{2} molecules.

Our search for FBNN (Figure S19) in the experimental spectra failed, and, in contrast to NBNN and PhB-NN ${ }^{[4 e]}$ free diatomic BF was observed. In agreement with previous
results ${ }^{[8]}$ our calculations revealed that the linear adduct FBNN is endothermic by $23.4 \mathrm{kcal} \mathrm{mol}^{-1}$ compared to $\mathrm{N}_{2}+$ singlet FB (Figure S19). This observation is consistent with the larger singlet-triplet gap of $\mathrm{FB}\left(+80 \mathrm{kcalmol}^{-1}\right)^{[20 \mathrm{aa}]}$ compared to that of diatomic NB $\left(-0.5 \mathrm{kcal} \mathrm{mol}^{-1}\right)^{[206]}$ and $\mathrm{PhB}\left(+31 \mathrm{kcalmol}^{-1}\right) .{ }^{[20 \mathrm{c}]}$

For the formation of the novel FB : N_{2} adducts $\boldsymbol{A}-\boldsymbol{C}$, we have explored both the fluorination of initially formed BN_{2} intermediates and the reaction of fluoroborylene FB with N_{2} molecules (Figures S4, S5). Although the reaction of the BN_{2} species with F atoms is strongly exothermic, preliminary B3LYP/6-311 ++G (3df,3pd) calculations suggest significant reaction barriers, for example, $14 \mathrm{kcalmol}^{-1}$ for the reaction of NBN (${ }^{2} \Pi$) with F atoms (Figure S4). These calculations also revealed that cyclic \boldsymbol{C} is higher in energy by $8.1 \mathrm{kcal} \mathrm{mol}^{-1}$, but kinetically stable to its decomposition into $\mathrm{N}_{2}+$ singlet FB due to a barrier of $42 \mathrm{kcal} \mathrm{mol}^{-1}$ (Figure S5).

Activation of N_{2} molecules and weakening of its π bonds can mainly be attributed to interactions that donate electron density to its π^{*} antibonding orbitals, and remove electron density from the π bonding orbitals of $\mathrm{N}_{2}{ }^{[21]}$ Unlike transition metal complexes, which provide a σ acceptor and a π donor orbital to form N_{2} complexes (Figure 5c), singlet FB can be viewed as an electrophilic σ donor and π acceptor (Figure 5 a). Its side-on attack on N_{2} (Figures 5 c and S 12) enables electron donation from its sigma donor orbital into the $\pi^{*} \mathrm{MO}$ of N_{2} and removal of π-bonding electrons into the π^{*} MO of BF. These bonding interactions are supported by an energy decomposition analysis (EDA). ${ }^{[22]}$ This shows that the two major orbital interactions $\Delta E_{\text {orb }}(1)$ and $\Delta E_{\text {orb }}(2)$, which contribute with -119.3 and $-35.0 \mathrm{kcalmol}^{-1}$ to the total orbital term $\Delta E_{\text {orb }}$ in the transition state of the $\mathrm{FB}+\mathrm{N}_{2}$ reaction, can be attributed to $\sigma(\mathrm{FB})$ donation and $\pi\left(\mathrm{N}_{2}\right)$ backdonation, respectively (Figure S20). Since the reaction between boron and fluorine atoms is strongly exothermic ($182 \mathrm{kcalmol}^{-1}$), ${ }^{[20 \mathrm{aa}]}$ this reaction energy can provide the activation energy for the singlet $\mathrm{FB}+\mathrm{N}_{2}$ during the deposition of the matrix. It can, however, not be excluded that \boldsymbol{C} can also be produced in an exothermic reaction of N_{2} molecules with triplet excited FB $\left({ }^{3} \Pi\right)$, which is $80 \mathrm{kcal} \mathrm{mol}^{-1}$ higher in energy than the singlet ground-state, ${ }^{[20 a, c]}$ and likely formed by UV radiation ($\lambda<357 \mathrm{~nm}$) emitted from the plasma plume.

Figure 5. a) Scheme of the FB acceptor and donor orbitals. Note that FB has two mutually perpendicular π-acceptor orbitals, only one of which is shown. b) Bonding interaction in the transition state of the FB $+\mathrm{N}_{2}$ reaction, c) end-on complex of N_{2} to a transition metal M , see Figure S12.

We recall that \boldsymbol{C} is observed only in freshly deposited samples, and it disappeared already upon annealing to 15 K . Cyclic \boldsymbol{C} is isolectronic to the known diazirinone, $\mathrm{OC}\left(\eta^{2}-\right.$ $\left.\mathrm{N}_{2}\right),{ }^{[23 a]}$ and although \boldsymbol{C} should be more stable because of a higher barrier and a lower dissociation energy, ${ }^{[23 b]}$ the $\mathrm{N}=\mathrm{N}$ bond in \boldsymbol{C} is strongly activated and it reacts readily with a second singlet FB molecule to yield \boldsymbol{A} through a very low energy barrier of $0.5 \mathrm{kcal} \mathrm{mol}^{-1}$ (Figure S5).

Since $\mathrm{B}_{2} \mathrm{~N}_{2}$ isomers were barely observed, they can hardly be considered as starting compounds for the bisfluoroborylene: N_{2} compounds \boldsymbol{A} and \boldsymbol{B}. However, \boldsymbol{A} and \boldsymbol{B} are most likely formed in an exothermic and low-barrier reaction from BF dimer molecules and N_{2} (Figure S5). The two lowest energy BF dimer isomers have been considered, the linear triplet $\mathrm{FB}=\mathrm{BF}$ structure $\left({ }^{3} \Sigma_{\mathrm{g}}^{-}\right)$and a singlet trans-bent isomer of $C_{2 \mathrm{~h}}$ symmetry in a ${ }^{1} \mathrm{~A}_{\mathrm{g}}$ ground state (Table S8). In contrast to the isoelectronic CO dimer, OCCO $\left({ }^{3} \Sigma_{\mathrm{g}}^{-}\right){ }^{[24]}$ both of these BF dimers are more favourable than the diatomic fragments in their ground singlet state. The linear triplet FBBF, which formally arises from a double $\sigma \rightarrow \pi^{*}$ excitation of the two singlet BF fragments, ${ }^{[8]}$ is more stable than the trans-bent isomer by $8 \mathrm{kcalmol}^{-1}$ (Table S8). On the other hand, the trans-bent isomer could be formed through mutual $\sigma \rightarrow \pi$ donor-acceptor interactions of two ground-state singlet BF molecules via a loose and low-energy ($<1.0 \mathrm{kcal} \mathrm{mol}^{-1}$) $C_{2 \mathrm{~h}}$ symmetric transition state ${ }^{[8]}$ Since the computed antisymmetric B-F stretching frequencies of these two isomers are similar (Table S8), our assignment of the experimentally observed B-F stretching frequencies to the trans-bent isomer (Table S8) is therefore very tentative and only supported by its predicted low-barrier formation from two singlet BF molecules. Nevertheless, the positive dissociation energy and the low barrier of formation of trans-bent FBBF from two BF molecules combined with a low barrier for the subsequent reaction with N_{2} molecules of $10 \mathrm{kcalmol}^{-1}$ at the B3LYP/6$311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ level provide a surprisingly selective, lowbarrier route to the title compound \boldsymbol{A} on the singlet potential energy surface (Figure S5).

It was shown that the parent diborene, $\mathrm{HB}=\mathrm{BH}$, is efficiently stabilized by Lewis base ligands L to yield planar adducts $\mathrm{L}(\mathrm{H}) \mathrm{B}=\mathrm{B}(\mathrm{H}) \mathrm{L}$, with $\mathrm{L}=\mathrm{CO}^{[25]}$ or bulky carbene ligands. ${ }^{[26]}$ Preliminary calculations at the B3LYP/6-311++ $\mathrm{g}(3 \mathrm{df}, 3 \mathrm{pd})$ level indeed predict that also the addition of the weak N_{2} donor molecule to FBBF would be strongly exothermic and yield the corresponding adducts $\mathrm{FB}=\mathrm{B}\left(\mathrm{N}_{2}\right) \mathrm{F}$ $\left(C_{\mathrm{s}}, \Delta E=-25.6 \mathrm{kcalmol}^{-1}\right)$ and $\mathrm{F}\left(\mathrm{N}_{2}\right) \mathrm{B}=\mathrm{B}\left(\mathrm{N}_{2}\right) \mathrm{F}\left(C_{2 \mathrm{~h}}, \Delta E=\right.$ $-34.7 \mathrm{kcal} \mathrm{mol}^{-1}$, Table S9 and S10). However, we found no spectroscopic evidence for the predicted formation of these dinitrogen adducts of FBBF in the cryogenic N_{2}-matrix and we note that the adduct $\mathrm{FB}=\mathrm{B}\left(\mathrm{N}_{2}\right) \mathrm{F}$ is still significantly higher in energy than the experimentally observed isomers \boldsymbol{A} and \boldsymbol{B} by 44 and $22 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. The cyclic compound \boldsymbol{A} is both energetically (Figures S4, S5) and kinetically very stable, so that it can be expected that, like the analogous diazirinone, $\mathrm{OC}\left(\eta^{2}-\mathrm{N}_{2}\right),{ }^{[23 a]}$ it could be viable also at ambient conditions.

Conclusion

In conclusion, the two novel cyclic fluorodiazaboririne, $\mathrm{FB}\left(\eta^{2}-\mathrm{N}_{2}\right)(\boldsymbol{C})$, and 1,3-Diaza-2,4-diborete, $(\mathrm{FB})_{2} \mathrm{~N}_{2}(\boldsymbol{A})$, as well as the linear compounds $\mathrm{FB}=\mathrm{BF}$ and $\mathrm{FBNNBF}(\boldsymbol{B})$ were produced from laser-ablated boron atoms and fluorine embedded in an excess of N_{2}. The aromatic nature of the electron-deficient rings of \boldsymbol{A} and \boldsymbol{C}, reinforced by fluorine specific interactions based on electronic contribution from the π lone pairs of the exo-cyclic fluorine atoms, and confirmed by an MO analysis and computation of their NICS index, contributes to their high thermodynamic stability. Their surprisingly selective formation can be traced back to the high reactivity of fluoroborylene intermediates. This work may contribute to exciting applications in dinitrogen fixation and activation.

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (nos. 21371136 and 21873070) and China Scholarship Council. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 387284271—SFB 1349. Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: aromaticity • dinitrogen activation • fluoroborylene . puckered $\mathrm{B}_{2} \mathrm{~N}_{2}$ ring
[1] M. D. Fryzuk, Acc. Chem. Res. 2009, 42, 127-133.
[2] a) T. N. Ye, S. W. Park, Y. F. Lu, J. Li, M. Sasase, M. Kitano, T. Tada, H. Hosono, Nature 2020, 583, 391-395; b) D. Singh, W. R. Buratto, J. F. Torres, L. J. Murray, Chem. Rev. 2020, 120, 5517 5581 ; c) J. K. F. Sebastian, S. Bastian, Y. Y. K. Ekaterina, S. Sven, Chem. Rev. 2021, 121, 6522-6587.
[3] a) R. Kinjo, B. Donnadieu, M. A. Celik, G. Frenking, G. Bertrand, Science 2011, 333, 610-613; b) M. Soleilhavoup, G. Bertrand, Angew. Chem. Int. Ed. 2017, 56, 10282-10292; Angew. Chem. 2017, 129, 10416-10426.
[4] a) M. A. Légaré, G. Bélanger-Chabot, R. D. Dewhurst, E. Welz, I. Krummenacher, B. Engels, H. Braunschweig, Science 2018, 359, 896-900; b) M. A. Légaré, M. Rang, G. Bélanger-Chabot, J. I. Schweizer, I. Krummenacher, R. Bertermann, M. Arrowsmith, M. C. Holthausen, H. Braunschweig, Science 2019, 363, 1329-1332; c) H. Wang, L. L. Wu, Z. Y. Lin, Z. W. Xie, Angew. Chem. Int. Ed. 2018, 57, 8708-8713; Angew. Chem. 2018, 130, $8844-8849$; d) M. A. Légaré, C. Pranckevicius, H. Braunschweig, Chem. Rev. 2019, 119, 8231 -8261; e) K. Edel, M. Krieg, D. Grote, H. F. Bettinger, J. Am. Chem. Soc. 2017, 139, $15151-$ 15159; f) M. J. Drance, J. D. Sears, A. M. Morse, C. E. Moore, A. L. Rheingold, M. L. Neidig, J. S. Figueroa, Science 2019, 363, 1203-1205; g) H. Braunschweig, R. D. Dewhurst, F. Hupp, M. Nutz, K. Radacki, C. W. Tate, A. Vargas, Q. Ye, Nature 2015, 522, 327-330.
[5] D. C. Pestana, P. P. Power, Inorg. Chem. 1991, 30, $528-535$.
[6] a) P. Hassanzadeh, L. Andrews, J. Phys. Chem. 1992, 96, 9177 9182; b) L. Andrews, P. Hassanzadeh, T. R. Burkholder, J. Chem. Phys. 1993, 98, 922-931.
[7] a) G. Deng, S. Pan, G. Wang, L. Zhao, M. Zhou, G. Frenking, Chem. Eur. J. 2021, 27, 2131 -2137; b) G. Deng, S. Pan, J. Jin, G. Wang, L. Zhao, M. Zhou, G. Frenking, Chem. Eur. J. 2021, 27, 412-418.
[8] A. A. Korkin, A. Balkova, R. J. Bartlett, R. J. Boyd, P. v. R. Schleyer, J. Phys. Chem. 1996, 100, 5702-5714.
[9] a) B. Xu, L. Li, Z. Pu, W. J. Yu, W. J. Li, X. F. Wang, Inorg. Chem. 2019, 58, 2363-2371; b) B. Xu, W. J. Li, Z. Pu, W. J. Yu, T. F. Huang, J. J. Cheng, X. F. Wang, Phys. Chem. Chem. Phys. 2019, 21, 25577-25583; c) B. Xu, W. J. Li, W. J. Yu, Z. Pu, Z. Y. Tan, J. J. Cheng, X. F. Wang, L. Andrews, Inorg. Chem. 2019, 58, 13418-13425; d) X. F. Wang, B. O. Roos, L. Andrews, Angew. Chem. Int. Ed. 2010, 49, 157-160; Angew. Chem. 2010, 122, 161 164; e) X. F. Wang, L. Andrews, K. Willmann, F. Brosi, S. Riedel, Angew. Chem. Int. Ed. 2012, 51, 10628-10632; Angew. Chem. 2012, 124, 10780 - 10784; f) X. F. Wang, L. Andrews, F. Brosi, S. Riedel, Chem. Eur. J. 2013, 19, 1397-1409.
[10] a) L. Xu, Q. Li, R. B. King, H. F. Schaefer, Organometallics 2011, 30, 5084-5087; b) L. Xu, Q. Li, R. B. King, New J. Chem. 2019, 43, 8220-8228.
[11] M. F. Zhou, N. Tsumori, Z. H. Li, K. N. Fan, L. Andrews, Q. Xu, J. Am. Chem. Soc. 2002, 124, 12936-12937.
[12] a) G. Maier, M. Naumann, H. P. Reisenauer, J. Eckwert, Angew. Chem. Int. Ed. Engl. 1996, 35, 1696-1697; Angew. Chem. 1996, 108, 1800-1801; b) Q. Liu, H. M. Li, Z. Wu, D. Q. Li, H. Beckers, G. Rauhut, X. Q. Zeng, Chem. Asian J. 2016, 11, 2953 2959.
[13] K. A. Østby, G. Gundersen, A. Haaland, H. Nöth, Dalton Trans. 2005, 13, 2284-2291.
[14] W. C. McKee, J. I. Wu, M. Hofmann, A. Berndt, P. v. R. Schleyer, Org. Lett. 2012, 14, 5712-5715.
[15] T. Goswami, M. Homray, S. Paul, D. Bhattacharya, A. Misra, Phys. Chem. Chem. Phys. 2017, 19, 11744-11747.
[16] A. T. Balaban, Chem. Rev. 2004, 104, 2777-2812.
[17] J. C. Dobrowolski, P. F. J. Lipinski, RSC Adv. 2016, 6, 2390023904.
[18] NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/.
[19] a) A. Papakondylis, E. Miliordos, A. Mavridis, J. Phys. Chem. A 2004, 108, 4335-4340; b) J. M. L. Martin, P. R. Taylor, J. P. Franqois, R. Gijbels, Chem. Phys. Lett. 1994, 222, 517-523.
[20] a) F. Fantuzzi, T. M. Cardozo, M. A. C. Nascimento, J. Phys. Chem. A 2015, 119, 5335-5343; b) M. Lorenz, J. Agreiter, A. M. Smith, V. E. Bondybey, J. Chem. Phys. 1996, 104, 3143-3146; c) M. Krasowska, M. Edelmann, H. F. Bettinger, J. Phys. Chem. A 2016, 120, 6332-6341.
[21] H. Zhang, R. Yuan, W. Wu, Y. Mo, Chem. Eur. J. 2020, 26, 2619 2625.
[22] L. Zhao, M. V. Hopffgarten, D. M. Andrada, G. Frenking, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1345.
[23] a) X. Zeng, H. Beckers, H. Willner, J. F. Stanton, Eur. J. Inorg. Chem. 2012, 3403-3409; b) H. Li, D. Li, X. Zeng, K. Liu, H. Beckers, H. F. Schaefer, B. J. Esselman, R. J. McMahon, J. Phys. Chem. A 2015, 119, 8903-8911.
[24] J. Mato, D. Poole, M. S. Gordon, J. Phys. Chem. A 2020, 124, 8209-8222.
[25] Z. Wang, Z. Chen, H. Jiao, P. v. R. Schleyer, J. Theor. Comput. Chem. 2005, 4, 669-688.
[26] a) Y. Wang, B. Quillian, P. Wei, C. S. Wannere, Y. Xie, R. B. King, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2007, 129, 12412-12413; b) M. Arrowsmith, J. D. Mattock, J. Bohnke, I. Krummenacher, A. Vargasc, H. Braunschweig, Chem. Commun. 2018, 54, 4669-4672.
[27] O. Parisel, M. Hanus, Y. Ellinger, Chem. Phys. 1996, 212, 331351.

Manuscript received: May 25, 2021
Accepted manuscript online: June 11, 2021
Version of record online: June 26, 2021

[^0]: [*] Prof. Dr. B. Xu, H. Ye, J. Cheng, Prof. Dr. X. Wang
 School of Chemical Science and Engineering Department, Shanghai Key lab of Chemical Assessment and Sustainability, Tongji University Shanghai, 200092 (China)
 E-mail: xfwang@tongji.edu.cn
 Prof. Dr. B. Xu, Dr. H. Beckers, Y. Lu, Prof. Dr. S. Riedel
 Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin
 Fabeckstrasse 34-36, 14195 Berlin (Germany) E-mail: s.riedel@fu-berlin.de
 Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.202106984.
 © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

