
Optimization of culture conditions for gamma-aminobutyric acid production by 
newly identified Pediococcus pentosaceus MN12 isolated from ‘mam nem’, a 
fermented fish sauce
Do Thi Bich Thuya, An Tien Nguyen b, Kuan Shiong Khoo c, Kit Wayne Chewd, Margo Cnockaerte, 
Peter Vandammee, Yeek-Chia Ho f,g, Nguyen Duc Huyh, Heriberto Hernández Cocoletzii, and Pau Loke Show c

aHue University of Agriculture and Forestry, Hue University, Hue, Vietnam; bFaculty of Agriculture and Forestry, Dalat University, Dalat, 
Vietnam; cDepartment of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham 
Malaysia, Selangor Darul Ehsan, Malaysia; dSchool of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, 
Bandar Sunsuria, Sepang, Selangor, Malaysia; eLaboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent 
University, Ghent, Belgium; fCivil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 
Darul Ridzuan, Malaysia; gCentre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi 
PETRONAS, Perak Darul Ridzuan, Malaysia; hInstitute of Biotechnology, Hue University, Hue, Vietnam; iFacultad de Ingeniería Química, 
Benemérita Universidad Autónoma de Puebla, Pue, México

ABSTRACT
This study was aimed to identify and optimize the culture conditions for gamma-aminobutyric 
acid (GABA) production by a lactic acid bacterium strain isolated from mam nem, a fermented 
fish sauce. Among the six isolates obtained from mam nem, the MN12 had the most potent 
GABA-producing capability. The strain was then identified to be Pedioccocus pentosaceus by 
employing MALDI-TOF-MS and phenylalanyl-tRNA synthase sequencing methods. The initial 
cell density of 5.106 CFU/mL, monosodium glutamate concentration of 60 mM, initial pH of 7, 
temperature of 45°C and cultivation time of 72 h were found to be the optimal culture 
conditions for highest production of GABA, reaching 27.9 ± 0.42 mM, by this strain. The 
cultivation conditions for GABA production by P. pentosaceus MN12 have been successfully 
optimized, providing a foundation for the development of fermented foods enriched with 
GABA.
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1. Introduction

Gamma-aminobutyric acids (GABA) are a non- 
protein amino acid found in bacteria, plants and 
animals. In mammals, GABA inhibits the neuro
transmitter involving in the nervous system [1], as 
well as in peripheral tissues [2]. Several 

neurological disorders, Alzheimer’s disease and 
seizure for instance, are associated with the deple
tion of GABA in the cells [3,4]. Gamma- 
aminobutyric acid is also involved in multiple 
physiological functions, such as tumor suppres
sion, cortisol visual improvement, cholesterol reg
ulation, cell homeostasis maintenance and 
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immunity enhancement [5–9]. Due to that wide 
range of health benefits, GABA containing foods 
have attracted a lot of research recently. However, 
common sources of food, such as fruits and vege
tables, provide a relatively low level of GABA 
[10,11]. Therefore, fortification of foods with 
a considerable level of GABA from natural sources 
is generally desirable.

Gamma-aminobutyric acid is formed from the dec
arboxylation of L-glutamate by glutamate decarboxy
lase (GAD) [12]. Numerous studies demonstrated that 
GABA can be synthesized by many microorganisms 
including yeast, fungi and bacteria [13], with produc
tion capacity depending upon species and strains [11]. 
Production of GABA by microorganisms has caught 
much attention due to several inherent advantages, 
such as the fast-growing nature of microorganisms 
and the ease of control over the production. In the 
food industry, a great number of products are pre
pared by fermentation with the involvement of var
ious lactic acid bacteria (LAB), many of which are 
promising GABA producers [13]. Therefore, LAB is 
a promising candidate for both food preparation and 
GABA fortification purposes. Many studies showed 
that some fermented foods, such as kimchi [14], fer
mented dairy [15], fermented sausage [16] and fer
mented black raspberry juice [11], have been 
successfully enriched with GABA produced by LAB. 
Nonetheless, it is still very important to screen various 
LAB species and strains that possess GABA- 
producing ability due to the diversity in fermentation 
properties of different LAB.

In Vietnam, mam nem is a popular sauce pro
duced from the fermentation of fishes, particularly 
anchovies. The nature of the fermentation for man 
nem production is quite complex with the proteo
lysis being primary reactions. However, the involve
ment of LAB in the fermentation of man nem is 
significant as they may contribute to the taste and 
flavor of the product. However, LAB strains 
involved in mam nem fermentation have not been 
identified and their GABA-producing capacity has 
not been reported to our knowledge. Therefore, the 
present study reported the screening and the identi
fication of the LAB strains having GABA-producing 
ability isolated from mam nem. A strain of LAB with 
the highest GABA yield was then selected for the 
optimization of the culture conditions to maximize 
GABA production.

2. Materials and methods

2.1. Materials

The mam nem were collected from local markets 
in Hue City, Vietnam. The Ringer’s solution was 
purchased from Sigma-Aldrich, while the De Man, 
Rogosa and Sharpe (MRS) medium were ordered 
from Oxoid, Milan, Italy. All chemicals used were 
of analytical grade.

2.2. Isolation of lactic acid bacteria

Samples of mam nem were homogenized in Ringer’s 
solution, serially diluted, and plated onto MRS agar 
and anaerobically incubated for 48 h at 37°C. The 
colonies were randomly picked up and transferred 
to new MRS agar. The subculture was repeated to 
obtain pure isolates. The isolates were then stained 
with Gram solution and tested with catalase analy
sis. Colonies exhibited as Gram-positive and cata
lase-negative were considered to be LAB, which 
were then stored at −80°C for further analysis.

2.3. Inoculant preparation

The potential LAB isolates were stationarily culti
vated in capped test tubes containing 10 mL of 
MRS broth for 24 h at 37°C. The cell biomass was 
then pelleted by centrifugation at 12,000 rpm for 
5 min at 4°C, followed by washing twice with 
Ringer’s solution. The pellet was resuspended in 
test tube containing 2 mL of Ringer’s solution. The 
cell density was spectrophotometrically measured 
at wavelength of 600 nm prior to use as inoculants.

2.4. Screening of GABA-producing LAB

The selected isolates were grown in MRS broth 
containing 60 mM of monosodium glutamate at 
initial pH of 6.2 for 24 h at 37°C. The GABA 
accumulated was quantified using an HPLC 
method mentioned below.

2.5. Identification of LAB strains by MALDI-TOF 
MS

The isolates presenting high GABA-producing cap
ability were identified by MALDI-TOF MS method. 
The third-generation bacterial cells were collected 
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after growth on MRS agar for 48 h at 37°C. Samples for 
MALDI-TOF MS analysis were prepared as previously 
reported by Freiwald and Sauer [17]. Briefly, the cells 
were suspended in 300 µL Milli-Q water and inacti
vated by adding 900 µL of absolute ethanol. After 
mixing, the cells were collected by centrifugation at 
14,000 rpm for 3 min. The protein was extracted by 
resuspending the pelleted cells in 50 µL of 70% formic 
acid and 50 µL of acetonitrile. The protein-containing 
supernatant was harvested by centrifugation at 
14,000 rpm for 3 min and 1 µL of solution was spotted 
onto a 384 Opti-TOF stainless steel MALDI target 
plate (AB Sciex, The Netherlands). The spot was 
then dried at ambient temperature and overlaid with 
1 µL of acetonitrile/water/trifluoroacetic acid (50/48/2 
(v/v/v)) solution containing 0.5% (w/v) α-cyano 
-4-hydroxycinnamic acid (α-CHCA) and subse
quently dried in ambient air. The MALDI-TOF MS 
analysis was conducted following method described 
by Nguyen et al. [18]. All analyses were carried out in 
duplicate.

2.6. Molecular identification of LAB strains

The isolates that could not be identified after compar
ing with MS profiles of reference strains in the data
base were then genotypically identified by sequencing 
the phenylalanyl-tRNA synthase (pheS) gene. Total 
genomic DNA was extracted in the alkaline lysis buffer 
following a method described by Niemann et al. [19]. 
To amplify the pheS gene, a primer set of pheS-21-F 
(5ʹ-CAYCCNGCHCGYGAYATGC-3ʹ) and pheS-23- 
R (5ʹ-GGRTGRACCATVCCNGCHCC-3ʹ) were used 
and the PCR protocol was performed as described by 
Naser et al. [20]. The PCR products were sequenced, 
and the nucleotide sequences were aligned and com
pared with pheS sequence database using 
BioNumerics 7 software (Applied Math).

2.7. Optimization of culture conditions for GABA 
production

The effect of culture conditions on GABA produc
tion was evaluated using the one-factor-at-a-time 
approach, which means one factor was varied to 
estimate the effect of that factor on GABA accu
mulation by the LAB strain while the other factors 
were kept constant. The optimization parameters 
of interest in this study included the concentration 

of monosodium glutamate (0–2%), initial pH 
(4–9), initial cell density (5.105–5.107 CFU/mL), 
culture temperature (30°C–50°C) and culture 
time (24–120 h). The GABA accumulated in the 
culture media was quantified by using an HPLC 
method mentioned below.

2.8. Measurement of GABA content

The supernatants were obtained from MRS cul
tures by centrifugation at 12,000 rpm at 4°C for 
5 min, and then 10-fold diluted with deionized 
water. Dissolved proteins were removed from the 
supernatants by an addition of 1 mL of 3% sulfo
salicylic acid and centrifuged at 6,000 rpm for 
5 min. The derivatization of GABA was carried 
out as described by Syu et at. [21] with minor 
modification. Briefly, GABA in the supernatants 
was derivatized by dabsylation with 4 mM 
4-dimethylaminoazobenzen-4-sulfonyl chloride at 
70°C for 20 min. Then, 0.5 mL of ethanol was 
added to the reaction mixtures and the reaction 
was ended by incubation in an ice bath. The dab
syl-GABA solution was centrifuged at 16,000 rpm 
at 4°C for 5 min and passed through 0.22 µm 
membrane for HPLC analysis. The HPLC system 
for dabsyl-GABA quantification consisted of 
Shimadzu LC-20A solvent delivery pump 
(Shimadzu, Japan) coupled with a Supelco C18 
column (250 m x 4,6 mm i.d., 5 μm particle size) 
and a Shimadzu SPD-20A UV-Vis detector set at 
465 nm wavelength. The mobile phase was 25 mM 
ammonium acetate buffer containing 0.1% acetic 
acid/acetonitrile (26/74 (v/v)). The analysis was 
carried out with an isocratic eluent mode with 
a flow rate of 1 mL/min. The column was main
tained at a temperature of 55°C. A calibration 
curve of the GABA standard solutions at concen
trations of 0, 2.4, 4.8, 7.2 and 9.6 mM was plotted 
and used to calculate the concentration of GABA 
accumulated in the culture media.

2.9. Statistical analysis

Data were reported as mean ± standard deviation of 
triplicates. One-way ANOVA was performed to 
detect the difference between the means, followed 
by Tukey’s HSD and Duncan’s multiple range tests 
to compare the means obtained from the screening 
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of LAB isolates and optimization of culture condi
tion studies, respectively. Data on time course study 
of pH, cell growth and GABA production were ana
lyzed by repeated measures ANOVA. The differ
ences were considered statistically significant at 
P ≤ 0.05. All analyses were conducted using SPSS 
v.16.0 (SPSS Inc, Chicago, IL USA).

3. Results and discussion

3.1. Screening of GABA-producing LAB

The screening of GABA-producing LAB is important 
for further application in food industry as this group 
of microorganisms is a potent source of natural 
GABA, a bioactive agent that possesses various health 
benefits [22]. In this study, 30 LAB isolates have been 
obtained from mam nem samples and 6 of them 
presented high GABA-producing capability 
(Figure 1) with GABA yields ranging from around 
880 to 1,680 mg/L when grown in MSR medium 
supplemented with 60 mM of monosodium glutamate 
(MSG) for 24 h at 37°C. These isolates were named as 
MN2, MN3, MN4, MN5, MN9, and MN12. The var
iation in GABA production between different isolates 
observed in the present study may be related to the 
environment-dependent GAD activity. It was 
reported that GABA is produced in response to envir
onmental stresses via the alteration of GAD activity 

[23]. As each microorganism favors a particular envir
onmental condition, the same culture condition used 
in this study may introduce different stress levels to the 
isolates, which impacted the GAD activity, conse
quently resulting in a deviation in GABA production. 
Nevertheless, these data emphasized the significance 
of LAB strains present in a traditional fermented 
product, particularly mam nem. Among the six iso
lates, the MN12 produced highest extracellular GABA, 
reaching a concentration of 16.3 ± 0.2 mM. Therefore, 
this isolate was selected for further studies.

3.2. Identification of LAB isolates

The LAB isolates classification was identified by 
MALDI TOF MS analysis. The resulting spectra 
grouped in 13 well-separated clusters with Pearson’s 
correlation coefficients ranging from 63.4% to 92.7%. 
One cluster, designated as cluster G, included 11 LAB 
isolates with highly similar spectra, which were 
obtained from mam nem, and other fermented foods 
including nuoc mam and ruoc (data not shown). These 
isolates remained unidentified after comparison of 
their MALDI TOF MS spectra with those in an in- 
house developed database. Two randomly selected 
isolates were identified by pheS sequence analysis as 
Pediococcus pentosaceus (the pheS gene similarity level 
toward a P. pentosaceus reference strain with NCBI 
accession No. AM749815 was 98% and 100%, 
respectively).

3.3. Optimization of culture conditions for 
GABA production of P. pentosaceus MN12

3.3.1. Effect of initial cell density
As individual cells function as a GABA production 
unit [13], the cell density obviously has a great impact 
on the yield of GABA. Therefore, the effect of different 
initial cell densities of P. pentosaceus MN12 on extra
cellular GABA accumulation in the culture was inves
tigated in the current study. The environmental 
conditions including initial pH, incubation tempera
ture, time, and MSG concentration were kept constant 
at 6.2, 37°C, 24 h, and 60 mM, respectively. Results 
showed that a maximum GABA concentration in the 
culture medium of 17.3 ± 0.07 mM was reached at an 
initial cell density of 5.106 CFU/mL (Figure 2). At 
a lower cell density, the cells might need to adjust to 
a nutrient-surplus environment, which may delay the 

Figure 1. GABA-producing capability of different LAB iso
lates from mam nem. Cells were grown with initial cell 
density of 107 CFU/mL in MRS broth supplemented with 
60 mM of MSG for 24 h at 37°C. Concentration of GABA in 
culture supernatants were quantified by an HPLC method. Data 
are means ± SD of GABA production from triplicate experi
ments. Bars without a common letter differ significantly 
(P < 0.05).
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GABA peak yield. In contrast, at a higher initial cell 
density, stress might be imposed on the cells [24], 
which consequently interferes with GABA synthesis 
by the cells. Li et al. [25] reported that high cell density 
increases GABA synthesis. However, our current 
study clearly demonstrated that the maximum 
GABA yield of P. pentosaceus MN12 was obtained at 
an appropriate initial cell density. This result was in 
agreement with previous research of Ratanaburee et al. 
[26], showing that maximal amounts of GABA in 
a Thai fermented pork sausage were produced by 
Lactobacillus namurensis NH2 and Pediococcus pento
saceus HN8 at a 106 CFU/g, which was relatively lower 
than other experimented cell densities of 107 and 108 

CFU/g.

3.3.2. Effect of glutamate concentration
Gamma-aminobutyric acid (GABA) is produced from 
the bioconversion of glutamate catalyzed by GAD in 
many species including LAB [27]. Several microor
ganisms, Corynebacterium glutamicum for instance, 
have a strong amino acid-producing ability, enabling 
GABA production from endogenous L-glutamate 
[28]. However, most LAB are not capable of synthe
sizing enough L-glutamate for GABA production pur
poses. Therefore, the supplementation of MSG to the 
culture media is indispensable as MSG can be easily 
hydrolyzed to L-glutamate [13]. Herein, MSG was 

supplemented to the culture medium of 
P. pentosaceus MN12 at various concentrations. As 
a result, the content of GABA increased proportion
ally to the increments of MSG concentration from 0 to 
60 mM (Figure 3). The GABA peak of 17.6 ± 0.24 mM 
was obtained in the culture medium supplemented 
with 60 mM of MSG. At higher MSG concentrations, 
however, the production of GABA by P. pentosaceus 
MN12 was reduced substantially. This reduction 
might be due to the elevation in osmotic pressure of 
the culture medium caused by increased MSG con
centration, consequently disturbing the metabolism as 
well as GABA synthesis of the cells [22]. It was con
cluded from this experiment that the MSG concentra
tion of 60 mM in culture medium was the most 
suitable for GABA production by this LAB strain.

3.3.3. Effect of initial pH
The pH of culture medium is a crucial condition 
affecting GABA production of different bacteria as it 
alters the bacterial growth and the activity of glutamate 
decarboxylase [11,14,25,29,30]. In addition, GABA 
synthesis of several LAB species has been documented 
to vary greatly depending upon initial pH values of the 
culture medium [11,25]. Therefore, in the present 
work, we investigated the effect of initial pH on 
GABA production by P. pentosaceus MN12. As can 
be seen from Figure 4, the GABA yield increased 

Figure 2. Effect of initial cell density on the GABA produc
tion of P. pentosaceus MN12. Cells were grown in MRS broth 
supplemented with 60 mM of MSG at 37°C for 24 h. 
Concentration of GABA in culture supernatants were quantified 
by an HPLC method. Data are means ± SD of GABA production 
from triplicate experiments. Bars without a common letter differ 
significantly (P < 0.05).

Figure 3. Effect of monosodium glutamate (MSG) concen
tration on the GABA production of P. pentosaceus MN12. 
Cells were grown in MRS broth with initial cell density of 5.106 

CFU/mL at 37°C for 24 h. Concentration of GABA in culture 
supernatants were quantified by an HPLC method. Data are 
means ± SD of GABA production from triplicate experiments. 
Bars without a common letter differ significantly (P < 0.05).
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gradually from an initial pH 4 to 7 and subsequently 
dropped markedly at higher initial pH. At initial pH 7, 
the concentration of GABA in the media reached 
a maximum level of 18.1 ± 0.13 mM. This result 
indicated that an initial neutral pH was favorable for 
GABA accumulation by P. pentosaceus MN12, albeit 
the glutamate decarboxylase activity being highest at 
pH 5 [31]. It must be noted, however, the pH in the 
culture medium is changed during fermentation pro
cess by bacteria, consequently bringing the pH to the 
level more appropriate for GABA synthesis [11,29]. It 
was also shown in this research that higher medium 
pH led to a substantial reduction in GABA production 
level, which may be due to the inhibition of cell growth 
caused by an alkaline environment.

3.3.4. Effect of culture temperature
Temperature has been demonstrated to have strong 
impact on GABA production of LAB as both cell 
growth and GAD activity are temperature-dependent 
[13]. Therefore, it is essential to uncover the optimum 
incubation temperature for GABA accumulation by 
P. pentosaceus MN12 to maximize the yield. In the 
current work, the cells were cultivated in MSR broth 
in optimal conditions of initial cell density, MSG con
centration, and initial pH as determined above, fol
lowed by GABA content monitoring after 24 h. 
Gamma-aminobutyric acid concentration in the med
ium increased proportionally with the increase of 

temperature from 30°C to 45°C (Figure 5). The highest 
extracellular GABA level of 25.1 ± 0.44 mM was 
obtained at 45°C, suggesting that this temperature was 
optimal for GABA production by P. pentosaceus 
MN12. However, the higher temperature at 50°C 
resulted in a marked decline in the concentration of 
GABA produced by the strain, indicating a negative 
impact of this temperature. Culture temperature affects 
GABA production due most likely to its influence on 
GAD activity. According to Yang et al. [32], GAD 
activity increases to a maximum in response to the 
increase in the temperature to a certain degree, then 
decreases gradually with further increase of the tem
perature. The pattern of GABA accumulation by the 
MN12 strain as a function of temperature observed in 
this study suggested a connection to that variation of 
GAD functionality. Nevertheless, further studies are 
needed to elucidate the relationship between the activity 
of P. pentosaceus MN12-derived GAD and 
temperature.

3.3.5. Time course study of pH, cell growth and 
GABA accumulation
A time course study was conducted to elucidate the 
interrelationship between the changes of pH, cell 
growth, and GABA accumulation by the MN12 strain 
with respect to time. Figure 6 shows the culture med
ium pH dropped from 7 to around 4.8 within the first 
24 h (Figure 6(a)), concomitant with the increase in 

Figure 4. Effect of initial pH on the GABA production of 
P. pentosaceus MN12. Cells were grown in MRS broth with 
initial cell density of 5.106 CFU/mL at 37°C for 24 h. 
Concentration of GABA in culture supernatants were quantified 
by an HPLC method. Data are means ± SD of GABA production 
from triplicate experiments. Bars without a common letter differ 
significantly (P < 0.05).

Figure 5. Effect of temperature on the GABA production from 
P. pentosaceus MN12. Cells were grown in MRS broth with initial 
cell density of 5.106 CFU/mL at initial pH 7 for 24 h. Concentration of 
GABA in culture supernatants were quantified by an HPLC method. 
Data are means ± SD of GABA production from triplicate experiments. 
Bars without a common letter differ significantly (P < 0.05).
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cell growth (Figure 6(b)) and extracellular GABA 
concentration (Figure 6(c)), suggesting that lactic 
acid fermentation and GABA synthesis happened 
concurrently. Also, this fermentation brought the pH 
to the level optimal for GAD, which was 4.5 to 5 
[31,33]. In the next 48 h, medium pH increased 
slightly to around 5 with a further increase in cell 
growth and GABA accumulation. This slight increase 
in pH might be due to the consumption of H+ by GAD 
to produce GABA (net charge +1), which were 
exported extracellularly in exchange of glutamate 
(net charge 0), making the culture medium slightly 
more alkaline [34]. After 72 h of fermentation, the cell 
density reached a maximum, which corresponded to 
a peak of GABA production of 27.9 ± 0.42 mM. 
However, prolonged cultivation time beyond 72 h 
may lead to a depletion of nutrients in the medium, 
cell death and autolysis of the dead cells, which con
sequently resulted in a reduction in cell numbers 
(Figure 6(b)). In addition, due to this nutrient short
age, the extracellular GABA might be taken back to the 
cells and degraded to succinic semialdehyde and sub
sequently to succinate by the GABA aminotransferase 
and succinate semialdehyde dehydrogenase enzymes, 
respectively, for energy demand [13], leading to 
a decrease in GABA accumulation observed in this 
study (Figure 6(c)).

At optimal culture conditions, the GABA- 
producing ability varies greatly depending on LAB 
species. For example, the GABA concentration pro
duced by Lactobacillus acidophilus BCRC 14,079 iso
lated from commercial yogurt was ~2.2 mM, whereas 
Lactobacillus brevis NL192 was able to yield 
~2000 mM of GABA [13]. In this regards, 
P. pentosaceus MN12 can be considered a moderate 
GABA producer. However, the growth and fermenta
tion ability of the MN12 in an environment of very 

high salinity might make this strain to be essential in 
the fermented food industry. In addition, compared 
with P. pentosaceus LMG 11,488 and P. pentosaceus 
IFK-11, which had capabilities of synthesizing GABA 
up to 0.58 mM and 19.98 mM [35], respectively, the 
MN12 strain obtained from mam nem as reported in 
this study might have a greater potential application in 
the food industry.

4. Conclusions

In summary, six GABA-producing LAB strains were 
successfully isolated from mam nem with MN12 being 
the most potent candidate. The MN12 isolate was then 
identified to be P. pentosaceus MN12. The optimal 
conditions for the highest level of GABA yielded by 
this strain were initial density of 5.106 CFU/mL, MSG 
concentration 60 mM, initial pH of 7, temperature of 
45°C, and cultivation time of 72 h. At the optimal 
conditions, a GABA content of 27.9 ± 0.42 mM was 
accumulated in the culture medium. To the authors’ 
best knowledge, this research is the first of its kind to 
identify P. pentosaceus MN12 from mam nem, 
a fermented sauce made from fish, and to optimize 
the GABA production of this strain by modifying 
culture conditions. The results from this study provide 
a background for further development of functional 
fermented foods that P. pentosaceus is the primary 
fermentation bacterium.

Research highlights

● Six GABA-producing bacterial strains were iso
lated from mam nem, a fermented fish sauce

● The most potent strain for GABA production 
among the six was Pedioccocus pentosaceus MN12

Figure 6. Effect of fermentation time on pH (a), cell growth (b) and GABA accumulation (c) by P. pentosaceus MN12. Cells 
were grown in MRS broth in optimal conditions for 120 h. The measurements of pH, cell growth and GABA content were taken at 
24 h intervals. Data are means ± SD from triplicate experiments. Means without a common letter differ significantly (P < 0.05).
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● Culture conditions for the highest production 
of GABA by the strain were successfully 
optimized.

● The maximal yield of GABA produced by 
P. pentosaceus MN12 under optimal condi
tions were 27.9 ± 0.42 mM.
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