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Abstract

Survival analysis is a technique for identifying prognostic biomarkers and genetic vulnerabilities in cancer studies. Large-scale
consortium-based projects have profiled >11 000 adult and >4000 pediatric tumor cases with clinical outcomes and multiomics
approaches. This provides a resource for investigating molecular-level cancer etiologies using clinical correlations. Although cancers
often arise from multiple genetic vulnerabilities and have deregulated gene sets (GSs), existing survival analysis protocols can report
only on individual genes. Additionally, there is no systematic method to connect clinical outcomes with experimental (cell line) data.
To address these gaps, we developed cSurvival (https://tau.cmmt.ubc.ca/cSurvival). cSurvival provides a user-adjustable analytical
pipeline with a curated, integrated database and offers three main advances: (i) joint analysis with two genomic predictors to identify
interacting biomarkers, including new algorithms to identify optimal cutoffs for two continuous predictors; (ii) survival analysis not
only at the gene, but also the GS level; and (iii) integration of clinical and experimental cell line studies to generate synergistic biological
insights. To demonstrate these advances, we report three case studies. We confirmed findings of autophagy-dependent survival in
colorectal cancers and of synergistic negative effects between high expression of SLC7A11 and SLC2A1 on outcomes in several cancers.
We further used cSurvival to identify high expression of the Nrf2-antioxidant response element pathway as a main indicator for lung
cancer prognosis and for cellular resistance to oxidative stress-inducing drugs. Altogether, these analyses demonstrate cSurvival’s
ability to support biomarker prognosis and interaction analysis via gene- and GS-level approaches and to integrate clinical and
experimental biomedical studies.
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Introduction
Survival analysis, or, more broadly, time-to-event analy-
sis, assesses the statistical association between potential
risk factors and the time to an event such as death or
disease recurrence [1, 2]. In both basic and clinical cancer
biology studies, survival analysis is an important tech-
nique for identifying prognostic biomarkers and genetic
vulnerabilities. Experimentally, it is useful for hypothesis
generation and mechanistic inference. Clinically, it may

help stratify patients into subgroups with distinct risk
profiles and guide therapeutic decisions [3, 4].

Since 2006, consortium-based projects, such as The
Cancer Genome Atlas (TCGA) and the Therapeutically
Applicable Research to Generate Effective Treatments
(TARGET), have gathered clinicopathologic data along
with multiomics molecular profiles of more than 15 000
adult and pediatric human tumors across diverse cancer
types [5–7]. Such large data resources allow exploration
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into cancers at the molecular level, using clinical corre-
lations at an unprecedented scale [6].

Despite the importance of survival analysis and the
richness of tumor molecular datasets, we find that
currently available tools do not fully exploit the potential
of survival analysis (Supplementary Table 1, see Supple-
mentary Data available online at Briefings in Bioinformatics
online). First, existing tools can only analyze one
genomic predictor at a time, typically mutation or
expression of an individual gene [8–24]. However, cancer
often occurs due to multiple (epi)genomic alterations,
creating highly connected molecular networks where
different alterations synergize to cause malignancy.
Cross talk can happen between different factors in
cancers, for example microRNA (miRNA) expression and
deoxyribonucleic acid (DNA) methylation [25]. In survival
analysis, incorporating more than one predictor could
identify interactions between molecular alterations.
Such interaction analysis could also be used to screen for
synthetic lethality or to identify compensatory targets
for nontargetable drivers [26–29]. This, in turn, could
facilitate the development of combination therapies (e.g.
drug cocktails), which have higher efficacy and milder
adverse effects than monotherapies (aka one-gene-one-
drug) approaches [30, 31]. Second, existing tools support
analysis only at the single-gene level [8–24]; however,
molecular dysregulations in cancers may involve GSs
[32], in which a collection of genes act in concert.
For example, a GS may represent a specific pathway
(e.g. transforming growth factor-β-mediated SMAD
signaling), biological process (e.g. cell cycle), disease (e.g.
hereditary nonpolyposis colorectal cancer) or treatment
(e.g. chemotherapy) [33, 34]. Given this, analysis of
prognostic biomarkers at the GS level rather than at the
single-gene level should be informative [35–37]. Third,
experimentally derived cancer cell line viability data [38–
40] and multiomics profiling [41] provide valuable in vitro
information on genetic dependencies and interactions;
however, no existing tool connects clinical data to such
experimental studies. This hinders identifying suitable
preclinical cell line tools to investigate molecular
mechanisms underpinning poor prognosis.

Motivated by the lack of suitable tools to address the
above challenges, we developed cSurvival (Figure 1). Its
major advances are as follows.

(i) Joint analysis with two genomic predictors on a
wide range of individual cancer types or combinations
of cancer types, including new algorithms to search for
optimal cutoffs in combinations of two continuous pre-
dictors, in order to stratify patients into risk groups. The
two predictors can include combinations of diverse data
types that can include gene or GS expression, somatic
mutation, miRNA expression, DNA methylation and pro-
tein expression.

(ii) Survival analysis at the GS level with comprehen-
sive and up-to-date GS libraries from the easy Visualiza-
tion and Inference Toolbox for Transcriptome Analysis
(eVITTA) project, a webserver dedicated to analyzing,
comparing and visualizing transcriptome patterns [42].

(iii) A pipeline to integrate clinical outcomes and exper-
imental cancer cell line data.

We have combined a curated cancer outcomes
database with a refined analytical pipeline and cus-
tomizable visualizations into the cSurvival webserver
so that nonprogrammers can use it. In the work
described here, we demonstrate cSurvival’s capabilities
with three case studies and more application cases in
our user guide (https://tau.cmmt.ubc.ca/cSurvival/help.
html#9_Application_cases). We not only recapitulated
reported cancer biomarkers and their interactions but
also identified genetic regulations consistent with pub-
lished studies, demonstrating that cSurvival’s advanced
pipeline facilitates cancer biomarker studies.

Materials and methods
Data extraction and processing
The Cancer Genome Atlas

We extracted curated clinical outcome endpoints data
from the TCGA Pan-Cancer Clinical Data Resource [6]
and multiomics molecular data from [43]. We removed
2614 low-quality samples (Do_not_use = True) and
flagged additional 507 problematic cases based on com-
ments in the merged_sample_quality_annotations.tsv
file (https://gdc.cancer.gov/node/977). While cSurvival
removes these 507 cases (https://tau.cmmt.ubc.ca/
cSurvival/project_data/977/flagged_cases.tsv) by default,
a user can choose to include them via the web interface.
Next, we used TCGA sample type codes (https://gdc.ca
ncer.gov/resources-tcga-users/tcga-code-tables/sample-
type-codes) to extract tumor samples: for solid tumors,
we extracted primary solid tumor (01) samples; for acute
myeloid leukemia, we extracted primary blood-derived
tumors (03 and 09); for skin cutaneous melanoma, we
extracted both primary solid (01) and metastatic tumors
(06). Then, from Ref. [43], we used batch-corrected,
upper quartile-normalized RNA-Seq by Expectation
Maximization (RSEM) data; merged somatic mutation
calls from the Multi-Center Mutation Calling in Multiple
Cancers project [44]; purity- and ploidy-corrected, gene-
level, thresholded somatic copy number (CN) data;
batch-corrected, reads per million data for expressed
miRNA mature strands; beta values from Illumina
HumanMethylation27 (HM27) and HumanMethyla-
tion450 (HM450) arrays; and batch-corrected reverse-
phase protein array (RPPA) data. For duplicated tumor
samples, for gene expression, miRNA expression, DNA
methylation and RPPA data, we calculated the geometric
means as the final readouts. Statistics in log scale are
commonly used to summarize the characteristics of
genomic data, since their original values are usually not
normally distributed (such as log-fold changes reported
by Model-based Analysis of Single-cell Transcriptomics
(MAST) [45] and edgeR [46] in differential expression
analysis). Hence, we use the geometric mean to represent
the average, which is equivalent to the exponential of the
average of log-transformed data. We further used the
annotations in [47] to map HM27 and HM450 probe IDs
with chromosomal coordinates and adjacent genes.

https://tau.cmmt.ubc.ca/cSurvival/help.html#9_Application_cases
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https://tau.cmmt.ubc.ca/cSurvival/project_data/977/flagged_cases.tsv
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Figure 1. Overview of the cSurvival analytical framework. DepMap, Dependency Map; eVITTA, easy Visualization and Inference Toolbox for Transcrip-
tome Analysis; Cat., categorical predictor; Cont., continuous predictor; Mut, mutated; HR, hazard ratio; P, P-value; P.adj, adjusted P-value; Cor, correlation
coefficient.

Therapeutically Applicable Research to Generate Effective
Treatment

We extracted clinical and multiomics data from the NCI
Genomic Data Commons (GDC) [48] (https://gdc.cancer.
gov/) with TCGAbiolinks v2.16.4 [49–51]. As above, we
extracted primary tumor samples (01 for solid tumors,
03 and 09 for blood-derived). We used Fragments Per
Kilobase of transcript per Million mapped reads upper
quartile (FPKM-UQ) data for gene expression analysis,
and open-access somatic mutation calls for mutation

analysis. We converted Ensembl gene IDs into Human
Genome Organisation (HUGO) symbols and Entrez IDs
using org.Hs.eg.db v3.11.4 [52].

Dependency Map

We extracted cell line annotation, mutation, gene exp-
ression (transcripts per million [TPM]), CN, clustered reg-
ularly interspaced short palindromic repeats (CRISPR)-
Cas9, RNA interference (RNAi) and drug sensitivity
data from Dependency Map (DepMap) 21Q3 [39–41, 53],

https://gdc.cancer.gov/
https://gdc.cancer.gov/
org.Hs.eg
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normalized protein expression levels from the CCLE
proteomics (TS2) database (accessed on 5/19/2021) [54]
and drug information from the Drug Repurposing Hub
v3/24/2020 [55].

Calculating GS expression
After a user selects a cancer type or combinations of
cancer types, we first transform the normalized gene
expression values (upper quartile-normalized RSEM in
TCGA, FPKM-UQ in TARGET, TPM in DepMap) of all sam-
ples in the selected cancer type(s) into z-scores. Specif-
ically, for a given gene, its z-score in a sample (patient
in TCGA and TARGET, cell line in DepMap) is calculated
as z = (x−μ)

σ
, where x is the expression value of the

gene in the sample, μ is the mean count of the gene
across samples and σ is the standard deviation of all
expression values of the gene across samples. Then, for
each sample, we computed the expression of a GS as the
average expression z-score of all genes within the GS [36].

Survival analysis
Censoring

A user chooses a censoring time in days, months
(30.4375 days) or years (365.25 days) (default: 10 years).
For a selected clinical endpoint [e.g. overall survival (OS),
progression-free survival], if the time-to-event is larger
than the defined time, we set censoring status to 0 and
time to the defined time; if the time-to-event is smaller
than or equal to the defined time, we set censoring status
to 1 and time stays unchanged.

Survival analysis

We apply Kaplan–Meier (KM) log-rank tests (default)
and Cox proportional-hazards (PH) regression models
to assess the association with prognosis, using survival
v3.2.11 [56]. In joint analysis with two predictors, we
use the KM log-rank test (default) or Cox PH likelihood
ratio test to assess the overall significance of any dif-
ference between the four subgroup combinations of two
predictors (Supplementary Figure 1, see Supplementary
Data available online at Briefings in Bioinformatics online).
In addition, we apply Cox PH regression models to
assess how two predictors jointly impact outcomes by
calculating the effect sizes (hazard ratios, HRs) and
the statistical significances of the two predictors and
their interaction, from the fitted regression model.
Alternatively, users select a risk subgroup of interest,
and we then apply a KM log-rank test (default) or Cox PH
likelihood ratio test to assess the difference between the
selected subgroup and the rest of the cases.

Determining optimal cutoffs for continuous predictors

By default, for analysis with a single continuous pre-
dictor (gene expression, miRNA expression, DNA methy-
lation, protein expression and cell line unthresholded
CN), and for joint analysis with combinations of contin-
uous and categorical predictors, we determine optimal
cutoffs using the minimum P-value (default: KM log-
rank) method [57–61] by testing from the lowest (default

0.2) to the highest (default 0.8) percentile with a defined
step (default 0.1). In joint analysis with combinations of
two continuous predictors, we determine optimal cutoffs
using a median-anchored greedy (default) or an exhaus-
tive search (described below, and in Figure 1). Because
multiple tests are conducted in searching for optimal
cutoffs, we apply a P-value correction method to control
for false positive probability (described below).

(i) Median-anchored greedy search: we construct a 2D
grid using percentiles of both predictors (Figure 1).
Next, we determine the starting point for a greedy
search by locating the minimum P-value computed
from testing each percentile in predictor B against
the median percentile in predictor A. Then, we test
the nearest three unexplored points; if a lower P-
value is found, we move the search to that newly
found minimum P-value point and test the nearest
unexplored points until no lower P-value can be
found. We test only percentile combinations that
have at least 10% (default) of total cases in each
subgroup or subgroup combination.

(ii) Exhaustive search: We construct a 2D grid using
percentiles of both predictors (Figure 1). Next, we
determine the optimal percentile combination by
locating the minimum P-value computed from test-
ing each percentile in predictor B against each per-
centile in predictor A. As for the greedy search above,
we only test percentile combinations giving at least
10% (default) of total cases in each subgroup or
subgroup combination.

We also offer customizable analysis with user-
selected percentile cutoffs. However, we recommend
using the default minimum P-value search because: (i)
studies have shown its advantages over an arbitrarily
prespecified cutoff [57–61], and (ii) if a percentile (e.g.
median) or percentile combination (e.g. median-median)
was optimal to stratify the patient samples, the search
would detect it and use it.

In joint analysis with two continuous genomic predic-
tors, we recommend ‘median-anchored greedy search’
over ‘exhaustive search’. Exhaustive search can find the
best cutoff values if there is enough statistical power
(i.e. a large enough sample size). However, this approach
involves many tests, which can lead to a heavy penalty
in adjusting for multiple testing, i.e. can result in insuf-
ficient statistical power. In practice, most comparisons
only have limited sample sizes; hence, we propose a
balanced choice, the ‘median-anchored greedy search’.
This smart search strategy involves many fewer tests to
address the issue of losing statistical power due to mul-
tiple testing, while minimally sacrificing the opportunity
to investigate good candidate cutoff values.

Permutation-based multiple testing adjustment for
optimally selected cutoffs

We use permutations to correct the multiple testing that
arises from assessing a sequence of candidate cutoffs
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with the minimum P-value method [62]. Briefly, we ran-
domly permute outcomes values (in TCGA and TAR-
GET, survival days and censoring status; in DepMap,
gene perturbation effects or drug sensitivity scores) over
the samples, and determine the new optimal cutoff. We
repeat this a defined number of times (default: n = 100)
to generate a null distribution of minimum P-values,
i.e. the empirical distribution for the minimum P-values
when there is no association between the biomarkers
and the survival outcomes. Then, we calculate an empir-
ically adjusted P-value (P.adj) by comparing the observed
minimum P-value to this empirical null distribution. To
speed up the calculation, we use mclapply v4.0.3 [63] for
parallel processing.

Differential dependency and cell viability
analysis
For two-group comparisons, we used a two-tailed two-
sample Wilcoxon test (wilcox.test [63]) to assess the
differences in dependency scores (CRISPR-Cas9, RNAi)
or cell viabilities (drug sensitivity assays). Comparisons
between more than two groups are assessed with a
Kruskal–Wallis rank sum test (kruskal.test [63]) to
test the overall significance of any difference between
subgroups. Because dependency scores and cell viability
data are skewed to the left (Supplementary Figure 2A–C,
see Supplementary Data available online at Briefings in
Bioinformatics online), we use nonparametric Wilcoxon
and Kruskal–Wallis rank sum tests, which require
no distribution assumption. For continuous genomic
predictors, we determine optimal cutoffs and apply a
multiple testing adjustment, as described above.

Customizable and interactive visualizations
We generate survival curves and forest plots with
survminer v0.4.9 [64]. We also create interactive visual-
izations for further analysis with ggplot2 v3.3.5 [65] and
plotly v4.9.4.1 (https://plotly.com/) (Figure 1): (i) density
and box plots showing the distribution of dependency
scores (DepMap); (ii) line plots showing P-values and HRs
tracked over percentiles; (iii) heatmaps showing P-values
and HRs searched over percentile combinations; (iv) bar
plots showing the distribution of somatic mutations;
(v) scatter plots analyzing correlations between two
continuous predictors and (vi) violin plots assessing
differences in values of a continuous predictor between
two categories (e.g. expression differences of a pathway
between mutated versus nonmutated groups). Each
visualization is customizable with its own plotting
parameters (e.g. colors, time intervals on the x-axis), and
data points of interest are searchable and highlightable
in box, scatter and violin plots.

Correlation analysis in scatter plots

We apply Pearson’s product–moment correlation (default),
Kendall’s rank correlation tau and Spearman’s rank
correlation rho (cor.test [63]) to measure correlations
between two continuous predictors.

Group mean analysis in violin plots

We apply a two-tailed two-sample Wilcoxon test (wilcox.
test [63]) to assess the differences in a continuous
predictor (e.g. gene expression) between two subcat-
egories of a categorical predictor (e.g. loss-of-function
mutations versus other). As above, we chose a nonpara-
metric Wilcoxon test because it requires no distribution
assumption (examples of nonnormalities are provided
in Supplementary Figure 2D and E, see Supplementary
Data available online at Briefings in Bioinformatics online).

Web interface implementation
We implement the web interface of cSurvival using
Apache (v2.4.29, https://httpd.apache.org), R (v4.0.3,
https://www.r-project.org/), R Shiny (v1.5.0, https://
CRAN.R-project.org/package=shiny) and R Shiny Server
(v1.5.14.948, https://rstudio.com/products/shiny/downlo
ad-server/). We use plumber (v1.1.0, https://CRAN.R-
project.org/package=plumber) and pm2 (v5.1.1, https://
pm2.keymetrics.io/) to host cSurvival’s API.

Results
In cSurvival v1.0.0, we have aggregated the following
data. From the TCGA and the TARGET projects, clinical
and multiomics data of 10 973 adult and 4995 pediatric
tumors across 40 cancer types (33 adult, 7 pediatric).
From the DepMap project [38]: (i) multiomics data of
1747 cell lines; (ii) cell viability data from 4686 drug
compounds screened in 578 cell lines; and (iii) genetic
perturbation data from 17 393 and 17 309 genes screened
via CRISPR-Cas9 and RNAi in 1032 and 712 cell lines,
respectively. From the eVITTA project v1.2.13 [42]: 120 953
GSs (Figure 2).

Here, we report three case studies to demonstrate
cSurvival’s unique abilities in:

(i) GS-level predictor analysis;
(ii) joint analysis with two genomic predictors;

(iii) integration of clinical and laboratory data to gener-
ate biological insights.

First, we tested cSurvival’s analytical pipeline at the
level of GSs. We recapitulated the finding that high
expression of an autophagy signature [Gene Ontology
(GO): 0010506] is associated with poor OS in colorectal
cancers [colon adenocarcinoma (TCGA-COAD) and rec-
tum adenocarcinoma (TCGA-READ)] (Figure 3A and B;
percentile tracking in Supplementary Figure 3A, see
Supplementary Data available online at Briefings in
Bioinformatics online) [36].

Second, we performed joint analysis with gene
expression data of solute carrier family 7 member 11
(SLC7A11) and solute carrier family 2 member 1 (SLC2A1,
also known as glucose transporter 1 (GLUT1)) in liver
hepatocellular carcinoma (TCGA-LIHC). We found that
SLC7A11 and SLC2A1 showed a moderate correlation
in their expressions (Figure 3C), and that patients with
higher expression of both SLC7A11 and SLC2A1 showed

https://plotly.com/
https://httpd.apache.org
https://www.r-project.org/
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://rstudio.com/products/shiny/download-server/
https://CRAN.R-project.org/package=plumber
https://CRAN.R-project.org/package=plumber
https://pm2.keymetrics.io/
https://pm2.keymetrics.io/
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Figure 2. Overview of the cSurvival database. (A) The circos plot (rendered with circularize [82]) shows the distribution of tumor and cell line datasets:
Inner to outer: example outputs; project names; histograms showing the total number of cases per study; box plots showing the distribution of survival
days (TCGA, TARGET) or dependency scores/cell viabilities (DepMap), numbers denoting 3-, 5- and 10-year survival rates from inner to outer; study
names. (B) The histogram shows the distribution of GS libraries from eVITTA; numbers denote the number of GSs per library. DepMap, Dependency
Map; eVITTA, easy Visualization and Inference Toolbox for Transcriptome Analysis.

significantly lower survival rates than patients with
low expression of SLC7A11 and/or SLC2A1 (Figure 3D–F;
percentile tracking in Supplementary Figure 3B and C,
see Supplementary Data available online at Briefings in
Bioinformatics online). The synergistic negative effects
between high expressions of SLC7A11 and SLC2A1 on
outcomes were also observed in several other cancer
types (Supplementary Figure 4, see Supplementary Data
available online at Briefings in Bioinformatics online).
These results are consistent with the finding that
cotargeting the l-cystine importer SLC7A11 and the
glucose transporter SLC2A1 induces synthetic lethal cell
death in glucose-deprived cell lines [66].

Third, to illustrate cSurvival’s integrated workflow,
and to show how cSurvival can bridge clinical and
cell line studies, we assessed the Nrf2 [nuclear factor
erythroid 2 related factor 2 (NFE2L2)]-Keap1 [Kelch-
like erythroid cell-derived protein with CNC homology-
associated protein 1 (KEAP1)] signaling pathway. Nrf2
is a master orchestrator of oxidative homeostasis and
is primarily regulated by Keap1 [67]. In cancers, KEAP1
is frequently mutated, resulting in constitutively active
Nrf2 that protects cancer cells from chemotherapeutic
agents and facilitates cancer progression [67]. For
example, Nrf2 is aberrantly activated in ∼30% of

human lung cancers [68]. Using cSurvival, we found
that expression or mutation of NFE2L2 and KEAP1
themselves showed no association with patient OS
(Supplementary Figure 5, see Supplementary Data avail-
able online at Briefings in Bioinformatics online). How-
ever, high expression of genes in the Nrf2-antioxidant
response element (ARE) pathway (WikiPathways: WP4357)
correlated strongly with poor prognosis in lung adeno-
carcinoma patients (Figure 4A and B). Consistent with
this clinical finding, in DepMap’s experimental genetic
perturbation screens, KEAP1-mutated lung cancer cell
lines were more sensitive to NFE2L2 knockout and knock-
down (Figure 4C–F), consistent with KEAP1 mutation
being the main driver for oncogenic Nrf2 activation
[69, 70]. Likewise, cell lines with higher expression of
Nrf2–ARE pathway genes showed greater resistance
to a potent oxidative stress inducer, menadione (BRD-
K78126613-001-28-5) (Figure 5A and B) [71]. Moreover,
cSurvival analysis showed that the male A549 and
the female H2172 cell lines both harbor deactivating
KEAP1 mutations, manifest high Nrf2–ARE pathway
expression, and show relatively high resistance to
menadione (Figure 5). These findings are consistent
with published reports that the A549 cell line is an
excellent tool for studies on Nrf2 regulation and activity
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Figure 3. Case studies on autophagy-dependent survival in colorectal cancer and synergistic effects between high expression of SLC7A11 and SLC2A1
in liver cancer. The survival curves (A) and forest plots (B), censored at 10 years, show correlation between GO autophagy signature (GO: 0010506) and
OS in colorectal cancers (TCGA-COAD and READ) (P = 0.012, P.adj = 0.03, KM log-rank; HR = 1.7, P = 0.017, P.adj = 0.05, Cox PH likelihood ratio). The scatter
plot (C) shows a moderate correlation between expression of SLC7A11 and SLC2A1 (Pearson’s correlation coefficient = 0.35, P = 3.2e−12). The survival
curves (D), censored at 10 years, show significant differences in OS rates among patients with liver hepatocellular carcinoma (TCGA-LIHC) stratified by
SLC7A11 and SLC2A1 expression levels (P = 1e−07, P.adj < 0.01, KM log-rank; P = 1.7e−06, P.adj < 0.01, Cox PH likelihood ratio). The survival curves (E) and
forest plots (F), censored at 10 years, show a lower OS rate in TCGA-LIHC patients with high expression of both SLC7A11 and SLC2A1 than in patients with
low expression of SLC7A11 and/or SLC2A1 (P = 4.2e−08, P.adj < 0.01, KM log-rank; HR = 3.38, P = 4.9e−06, P.adj < 0.01, Cox PH likelihood ratio). GO, gene
ontology; COAD, colon adenocarcinoma; READ, rectum adenocarcinoma; P, P-value; P.adj, adjusted P-value; KM, Kaplan–Meier; PH, proportional-hazard;
HR, hazard ratio; LIHC, liver hepatocellular carcinoma.

[72–74]; extending this, cSurvival analysis suggests that
the female H2172 cell line is another excellent model to
study Nrf2 function, and can be used in conjunction with
A549 to study sex-specific effects (Figure 5).

Together, these analyses demonstrate cSurvival’s
unique ability to support biomarker prognosis and
interaction analysis via gene- and GS-level approaches,
and to facilitate integrating clinical and experimental
biomedical studies. See the cSurvival user guide (https://
tau.cmmt.ubc.ca/cSurvival/help.html) for:

(i) detailed steps for the reported case studies;
(ii) application cases for single biomarker analysis with

each type of molecular data;

(iii) application cases for biomarker interaction analy-
sis with two different types of molecular data, including
DNA methylation and miRNA expression, mutation and
miRNA expression, mutation and CN variation, and GS
expression and gene expression.

Discussion
Cancer arises from accumulated genetic and epigenetic
alterations, creating interactions that endow cancer cells
with growth and survival advantages. Such functional
relationships happen not only between genes, but also
between GSs, or between genes and GSs. Correspondingly,

https://tau.cmmt.ubc.ca/cSurvival/help.html
https://tau.cmmt.ubc.ca/cSurvival/help.html
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Figure 4. High expression of the Nrf2–ARE pathway correlates with poor prognosis and KEAP1 mutation in lung cancers. The survival curves (A) and
forest plot (B), censored at 10 years, show correlation between high expression of the Nrf2–ARE pathway (WikiPathways: WP4357) and poor prognosis
in TCGA-LUAD cases (P = 0.00015, P.adj < 0.01, KM log-rank; HR = 1.84, P = 0.00027, P.adj < 0.01, Cox PH likelihood ratio). Shades reflect 95% confidence
intervals in survival curves in (A). The density and box plots show lung cancer cell lines with an inactivating KEAP1 mutation (red) being more sensitive
to NFE2L2 CRISPR-Cas9 knockout (P = 4.1e−07, two-tailed Wilcoxon test) (C, D) and RNAi knockdown (P = 8.4e−05, two-tailed Wilcoxon test) (E, F). ARE,
antioxidant response element; LUAD, lung adenocarcinoma; P, P-value; P.adj, adjusted P-value; KM, Kaplan–Meier; HR, hazard ratio; PH, proportional-
hazard; RNAi, RNA interference; Chronos, an algorithm for inferring gene knockout fitness effects; DEMETER2, gene dependency estimates for RNAi
datasets.

regimens that combine multiple drugs that target differ-
ent genes/GSs have emerged as more effective and less
toxic than monotherapy approaches [30, 31]. Pinpoint-
ing genetic interactions in cancers is thus an important
research goal.

Here, we developed cSurvival, an open-source frame-
work to identify potential genetic interactions and survey
preclinical cell line tools. cSurvival offers innovative algo-
rithms that can assess interactions between many types
of cancer biomarkers, including GSs, as well as a curated
database that combines clinical and experimental data
to generate synergistic biological insights. As shown by
the three case studies, cSurvival sheds light on genetic
interactions in cancers and facilitates the identification
of preclinical cell line tools for mechanistic studies.

For long-term sustainability, we have automated
data extraction from the NCI GDC (https://gdc.cancer.
gov) [48] and will continuously follow consortium
efforts/GDC evolution, so that cSurvival uses up-to-date
processing pipelines, human reference genomes and
gene annotations.

Despite the advances described herein, cSurvival has
certain limitations. For example, the current version is
designed for one query (a gene or a gene combination)
at a time. For continuous genomic predictors, we have
corrected the inflated false positive rate due to exploring
multiple cutoff values for each gene/gene combination.
However, when testing many genes/gene combinations,
users should apply another layer of multiple testing

adjustment. This is similar to a t-test, which is designed
to compare two groups; when using a t-test to test many
pairs of groups, a multiple testing adjustment needs to
be applied outside of these t-tests. For example, when
using cSurvival to test ten genes/gene combinations,
and each test returns a P-value (or adjusted P-value
for continuous genomic predictors), one can do the
outer multiple testing adjustment using the P. adjust
function in R [63]. Note that a Bonferroni correction
may be more appropriate for a smaller number of
genes/gene combinations, while a false discovery rate
(FDR) correction may be more appropriate for a larger
number. The P. adjust function offers a range of cor-
rection methods, including Bonferroni and FDR. Future
versions of cSurvival may extend to batch analysis with
corrections for multiple testing. In addition, cohorts from
TCGA and TARGET were largely from North America.
To address ethnicity [75] heterogeneities in human
populations, we plan to expand the cSurvival database,
incorporating resources such as the International Cancer
Genome Consortium [76] and cohorts from the Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/
geo/). Future versions of cSurvival may also address the
challenges of immunogenomics [77] and may integrate
cellular signatures from the Connectivity Map [78, 79].

Although we built cSurvival as a web resource to ana-
lyze molecular biomarkers in published cancer datasets,
its source code could be adapted to analyze unpublished
or protected data locally. Its algorithms for searching

https://gdc.cancer.gov
https://gdc.cancer.gov
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Figure 5. The male A549 and the female H2172 cell lines are top candidates for studies on Nrf2 regulation and activity. The density (A) and box (B) plots
show that lung cancer cell lines with higher expression levels of Nrf2–ARE pathway genes exhibit higher resistance to the oxidative stress inducer
menadione (BRD-K78126613-001-28-5, P = 0.00014, P.adj < 0.01, two-tailed Wilcoxon test). The density (C) and box (D) plots show that lung cancer
cell lines with different KEAP1 mutation status and expression levels of Nrf2–ARE pathway genes show sensitivity differences to NFE2L2 knockout
(P = 2.6e−06, P.adj < 0.01, Kruskal–Wallis rank sum test). The A549 and the H2172 cell lines are highlighted in a triangle shape with a darker color and
labeled in the box plots. ARE, antioxidant response element; P, P-value; P.adj, adjusted P-value; Chronos, an algorithm for inferring gene knockout fitness
effects.

for optimal cutoffs for interaction analysis could also
be applied to other types of (bio)markers and/or other
diseases, e.g. to data from biomedical imaging [80] or drug
cocktail effect assessment [81], which sometimes involve
combinations of continuous and/or categorical variables.

In summary, cSurvival offers a curated database
and innovative analytical pipelines to examine cancer
biomarkers at high resolution. It complements existing
resources such as cBioPortal [9] and enhances mechanis-
tic investigation of malignancy etiologies using clinical
correlations. Its intuitive yet flexible web interface
makes it a valuable tool for experimental and clinical
researchers alike.

Key Points

• We developed cSurvival, an advanced framework using
clinical correlations to study biomarker interactions in
cancers, with source code and curated datasets freely
available for download.

• cSurvival includes new algorithms to identify optimal
cutoffs for two continuous predictors to stratify patients

into risk groups, enabling, for the first time, joint analysis
with two genomic predictors.

• cSurvival allows survival analysis at the gene set (GS)
level with comprehensive and up-to-date GS libraries.

• The cSurvival pipeline integrates clinical outcomes data
and experimental cancer cell line data to generate syn-
ergistic biological insights and to mine for appropriate
preclinical cell line tools.

• cSurvival is built on a manually curated cancer out-
comes database.

Supplementary Data
Supplementary data are available online at Briefings in
Bioinformatics online.
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