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Although decades of efforts have been spent studying the pathogenesis of social anxiety disorder (SAD), there are still no objective
biological markers that could be reliably used to identify individuals with SAD. Studies using multivariate pattern analysis have
shown the potential value in clinically diagnosing psychiatric disorders with neuroimaging data. We therefore examined the
diagnostic potential of regional homogeneity (ReHo) underlying neural correlates of SAD using support vector machine (SVM),
which has never been studied. Forty SAD patients and pairwise matched healthy controls were recruited and scanned by resting-
state fMRI. The ReHo was calculated as synchronization of fMRI signals of nearest neighboring 27 voxels. A linear SVM was then
adopted and allowed the classification of the two groups with diagnostic accuracy of ReHo that was 76.25% (sensitivity= 70%, and
specificity= 82.5%, 𝑃 ≤ 0.001). Regions showing different discriminating values between diagnostic groups were mainly located in
default mode network, dorsal attention network, self-referential network, and sensory networks, while the left medial prefrontal
cortex was identified with the highest weight. These results implicate that ReHo has good diagnostic potential in SAD, and thus
may provide an initial step towards the possible use of whole brain local connectivity to inform the clinical evaluation.

1. Introduction

Previously termed social phobia, social anxiety disorder
(SAD) was characterized by persistent fear of social or per-
formance situations in which there is judgment or scrutiny by
others [1]. As themost common anxiety disorder, SAD shows
a high lifetime prevalence of 12% and a 12-month prevalence
of 7.1% [2]. Early onset, delay, or avoidance in seeking treat-
ment leads to significant social and occupational disability
for individuals with SAD. Currently, according to the diag-
nostic criteria in DSM-IV (Diagnostic and Statistical Manual
ofMental Disorders, Fourth Edition), the diagnosis of SAD is
based on observed behaviors and examinations of psychiatric
signs and symptoms. However, the use of such a symptom-
based approach would sometimes cause uncorrected diagno-
sis due to high rates of comorbidity with depressive condi-
tions and substance abuse [3]. Therefore, it is necessary to

establish other objective and reliable approaches or biological
markers, which could be used to assist the diagnosis of SAD
and improve the accuracy.

As a more objective approach, neuroimaging holds great
promise for detecting abnormalities crucial to the pathophys-
iologic models of SAD. Resting-state functional magnetic
resonance imaging (fMRI) studies have revealed that, relative
to the healthy controls, SAD is associated with abnormal acti-
vation within amygdala and default model network (DMN)
mainly involved [4–6].The amygdala is thought to be impor-
tant in the acquisition and expression of conditioned fear
and also performs a protective role, allowing the organism
to detect and avoid danger [4], whilst role of DMN may be
relevant to social perception and self-referential processing
which are underlying psychological symptoms and patho-
physiological mechanisms in SAD [6, 7]. These findings are
valuable in helping us understand the functional changes
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Table 1: Demographic and clinical characteristics of SAD patients and healthy comparison subjects.

Demographic and clinical characteristics SAD (𝑛 = 40) HC (𝑛 = 40)
𝑃

Mean SD Mean SD
Age (years) 25.95 6.48 24.80 3.35 0.323
Duration of illness (years) 7.76 4.61
Age of onset (years) 18.15 6.70
LSAS

Total 65.42 21.23 33.80 22.01 0.000
Fear factor 32.45 10.39 15.70 11.90 0.000
Avoidance factor 32.47 11.91 17.85 11.34 0.000

𝑁 % 𝑁 % 𝑃

Gender
Female 14 35 14 35 1.000
Male 26 65 26 65

SAD, social anxiety disorder; HC, healthy controls; SD, standard deviation; LSAS, Liebowitz Social Anxiety Scale; 𝑛/𝑁, number.
Significance levels were set at 𝑃 < 0.05.

which underlie clinical symptoms associated with SAD; how-
ever, the extrapolation of any potential biomarkers and the
clinical translation of the results have been hindered by the
group level inference of the data. For the imaging findings to
be clinically useful, onemust be able tomake inferences at the
individual rather than the group level.

Relative to traditional univariate methods, multivariate
pattern analysis (MVPA) allows predictions individually and
it takes the patterns of information that might be presented
across multiple variables into account, therefore providing
results that have higher translational applicability in clinical
practice [8]. For fMRI data, MVPA involves whole brain
pattern classification aimed at decoding information in the
pattern of activation across all voxels that may distinguish
between two classes at the individual level. The most com-
monly used MVPA for pattern recognition in neuroimaging
literature is support vector machine (SVM) [9]: an algorithm
uses a well-defined dataset to create decision function or
“hyperplane” which can best distinguish between categories
(in current study, patients and controls), and then the
produced decision function or “hyperplane” will be used to
predict which predefined group a newobservation belongs to.
These two phases are systematically known as training and
testing [9]. The overall accuracy of the SVM depends on its
sensitivity (i.e., the proportion of patients identified as having
the disease) and specificity (i.e., the proportion of controls
identified as not having the disease). In recent years, SVM
algorithm has been successfully applied to classify various
neuropsychiatric disorders and achieved good diagnostic
accuracy [10].

To date, there have been only two studies using MVPA
in SAD but concentrating on task-based fMRI and regional
grey matter volume [11], or functional connectivity [7]. As
reflected by resting-state fMRI, functional connectivity can
reveal the synchronization of remote brain regions, while, by
contrast, regional homogeneity (ReHo) has been developed
to measure the local synchronization of spontaneous fMRI
signals by calculating similarity of dynamic fluctuations of

voxels within a given cluster, revealing important information
about local connectivity, and reflects the temporal synchrony
of the regional fMRIBOLDsignals [12, 13]. Abnormal ReHo is
assumed to be associatedwith aberrant changes in the tempo-
ral aspects of the spontaneous neural activity in the regional
brain [14] and may be a sign of disrupted local functionality
[15]. More importantly, ReHo can indicate some unexpected
hemodynamic responses thatmodel-drivenmethodsmay fail
to discover in resting-state fMRI [13]. Although being suc-
cessfully applied to various neuropsychiatric disorders [14,
16–20], the ReHo approach has been little investigated in
SAD.

Thus, we particularly used SVM to examine ReHo maps
in differentiating SAD patients from healthy controls, which
has never been investigated. The purposes were to find out
whether SVM would allow accurate discrimination between
diagnostic groups and, if so, which brain regions or intrinsic
brain networks would principally contribute to the discrimi-
nation.

2. Materials and Methods

2.1. Participants. Forty Structured Interview for the DSM-
IV (SCID) Patient Edition confirmed SAD patients and an
equal number of healthy controls were recruited at theMental
Health Centre of West China Hospital (Table 1). The Ethics
Committee of West China Hospital, Sichuan University, has
offered approval to our study and all participants gave written
informed consent to their participation. Diagnosis of SAD
was determined by consensus of two experienced psychia-
trists. Psychological ratings and clinical symptoms associated
with SAD were evaluated with the Liebowitz Social Anxiety
Scale (LSAS). Of the 40 patients, 12 had the antianxiety med-
ication but they underwent at least two-week washing-out
prior to the MR examination.

Healthy controls were recruited from the local area via
poster advertisements and were screened using the SCID-
Non-Patient Version to ascertain the lifetime absence of



BioMed Research International 3

psychiatric and neurological illness. It was confirmed that
they had no history of psychiatric illness among their first-
degree relatives. All subjects’ demographic characteristics
and clinical variables were obtained by 2 experienced clinical
psychiatrists beforeMR examinations. Patients with SAD and
control subjects were pairwise matched in age, gender, and
handedness (Table 1).The following exclusion criteria applied
to both groups: (1) the existence of a neurological disorder
or other psychiatric disorders, (2) substance abuse, (3) preg-
nancy, or (4)major physical illness such as cardiovascular dis-
ease or hepatitis, as assessed by clinical evaluations and med-
ical records. T1-weighted and T2-weighted images of brain
were inspected by an experienced neuroradiologist, and no
scanning artifacts and gross abnormalities were observed in
any participants.

2.2. MRI Acquisition. The MRI examinations were per-
formed on a whole-body 3.0 T MR scanner (Siemens Trio,
Erlangen, Germany) with a 12-channel head coil. Earplugs
were employed to protect the hearing while foam pads upon
them were used to restrict head motion during the scanning.
The resting-state fMRI sensitized to changes in BOLD signal
levels was obtained with a gradient-echo planar imaging
sequence (TR/TE = 2000/30ms; flip angle = 90∘). A field of
view (FOV) of 240 × 240mm2 was used with an acquisition
matrix = 64 × 64, producing 30 continuous axial slices with
thickness = 5.0mmwith no gap and voxel size = 3.75 × 3.75 ×
5mm3 in-plane resolution in each brain volume. Each func-
tional run contained 205 volumes of which the first 5 were
discarded to ensure steady-state longitudinal magnetization
and subjects’ adaptation to the environment. All participants
were simply instructed to keep still with their eyes closed
and remain awake but not to think of anything in particular.
After the scanning, the volumes of all subjects were corrected
for the temporal difference and head motion by setting the
translational or rotational parameters at the threshold of
±1.5mm or ±1.5∘.

2.3. Imaging Preprocessing. The fMRI data was preprocessed
using Data Processing Assistant for Resting-State fMRI
(DPARSF, http://www.restfmri.net, version 2.1), implemented
within the MATLAB toolbox, to calculate the ReHo maps.
This software involves an integrated image process mainly
including slice timing, realignment, and normalization to the
Montreal Neurological Institute echo planar imaging tem-
plate (each voxel was resampled to 3 × 3 × 3mm3), removing
linear trend and the ReHo calculation. Given the fact that
ReHo shows the similarity or synchronization of fMRI signals
of nearest neighboring voxels and Kendall’s coefficient of
concordance (KCC) is used for the measurement based on
the regional homogeneity hypothesis [13], we defined 27
nearest neighboring voxels as a cluster and a KCC value was
given to the voxel at the center of this cluster. The individual
ReHo map was generated in a voxel-wise fashion, and all
ReHo maps were smoothed with a Gaussian filter of 4mm
full-width half maximum (FWHM) kernel to manage the
anatomical variability that was not compensated for by spatial
normalization.

2.4. Comparison of Demographic Characteristics and Vari-
ables. The Statistical Package for the Social Sciences (SPSS,
version 18.0) will be used for the comparison of demographic
variables. Differences in age and LSAS scores between groups
were analyzed using the two-sample 𝑡-tests, whereas gender
ratio was compared with Chi-square test, with significance
levels setting at 𝑃 < 0.05.

2.5. Multivariate Pattern Analysis and Support Vector
Machine. SVM as implemented in the PROBID software
package (http://www.brainmap.co.uk/probid.htm, version
1.04) was employed and a linear kernel SVM was adopted to
classify the diagnostic groups based on their ReHomaps.The
detailed description of the application of SVM in MRI data
has been given [8, 21]. In the context of supervised multi-
variate classification method as SVM [22], individual brain
scans were treated as points located at high-dimensional
space defined by the ReHo map in the preprocessed images.
In this high-dimensional space, a linear decision boundary
was defined by a “hyperplane” that separated the individual
brain scans according to a class label (i.e., patients versus
controls). The optimal hyperplane was computed based on
the whole multivariate pattern of ReHo map across each
image and could most accurately capture the relationship
between each example and its respective label. The algorithm
is initially trained on a subset of the data ⟨𝑥, 𝑐⟩ to find a
hyperplane that best separates the input space according to
the class labels 𝑐 (patients versus controls), where𝑥 represents
the input data (i.e., ReHo map). The linear kernel SVM
adopted could reduce the risk of overfitting the data and
allow direct extraction of the weight vector as an image (i.e.,
the SVMdiscriminationmap). Furthermore, the linear kernel
matrix implicated in PROBID could be precomputed and
supplied to the classifier, an approach which affords a
substantial increase in computational efficiency and permits
whole brain classification without requiring explicit dimen-
sionality reduction [23]. A parameter 𝐶, which controls the
tradeoff between having zero training errors and allowing
misclassifications in the linear model, was fixed at 𝐶 = 1
for all cases (default value). A grey matter mask of 3 × 3 ×
3mm was used to constrain the search of significant group
differences in voxels/features within grey matter in the
comparison of ReHo maps.

Consistent with previous studies using SVM on SAD
[7, 11], a “leave-one-out” cross validation was used, which
means a single subject of each group would be excluded from
the training and was later used to test the capability of the
classifier learned from the remaining subjects, to reliably dis-
tinguish between categories (in our study, SAD or controls).
Each subject pair would undergo this procedure to make the
accuracy of the SVM fully estimated [8]. Statistical signifi-
cance of the overall classification accuracy was determined by
permutation testing [24, 25], a nonparametric test that
involved repeating the classification procedure 1000 times
with a different random permutation of the training group
labels and counting the number of permutations achieving
higher sensitivity and specificity than the true labels. Finally,
to show the multivariate discriminating pattern of ReHo
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Figure 1: Classification plot (a) obtained from PROBID and receiver operating characteristic (ROC) curve and (b) obtained from SPSS for
the discrimination between SAD patients and healthy controls using ReHo maps, yielding an accuracy of 76.25% (sensitivity = 70.0% and
specificity = 82.5%, 𝑃 ≤ 0.001).

maps, a threshold would be set at 30% of the maximum
weight vector value of the discrimination and voxels with
greater value would be exhibited.

The test margin (the shortest distance from the optimal
hyperplane), which could show the capability of the SVM
with ReHo in classification of each subject, was calculated for
all participants. Based on the label and test margin of each
subject, the receiver operating characteristic (ROC) curve of
the classificationwith ReHomapswas obtainedwith SPSS. To
further explore whether the classification is driven by anxious
symptoms and the extent if so, correlation analysis has been
performed between the test margin and the level of symptom
severity as determined by LSAS scores for all participants.

3. Result

3.1. Demographic and Clinical Characteristics. Demographic
and clinical characteristics for all of participants are pre-
sented in Table 1. No significant differences were found in
gender ratio and age between patients and healthy controls
(𝑃 > 0.05). Compared to healthy control, SAD patients had
significantly higher scores on the anxiety symptoms mea-
sured with LSAS total score and subscales (𝑃 < 0.05). All
participants were right-handed. Twenty-eight patients were
drug-näıve while the remaining 12 had taken different medi-
cation (5 paroxetine, 3 paroxetine with intermittent risperi-
done, alprazolam, and buspirone, resp., 3 sertraline, and 1
amitriptyline and doxepin) for 1 week to 5 years. The medi-
cated patients had been drug-free for at least 2 weeks.

3.2. Multivariate Pattern Recognition. The classification of
the two groups with overall diagnostic accuracy of ReHo
maps was 76.25% (sensitivity = 70% and specificity = 82.5%,
𝑃 ≤ 0.001) achieved by SVM (Figure 1). The set of regions
showed different value between the diagnostic groups mainly
located in frontal, temporal, and occipital regions (Figure 2,
Table 2). In the discrimination map, a positive value means
a relative higher weight in SAD (red scale) and helps in the
identification of individuals with SAD, with regions mainly
located at right orbitofrontal gyrus (OFG), right middle
frontal gyrus, right pars triangularis, right superior tempo-
ral gyrus (STG), left middle temporal gyrus (MTG), right
postcentral gyrus (PCG), left inferior parietal lobe (IPL), and
right precuneus, while a negative value means a relative
higher weight in healthy controls and contributes to the
identification of healthy subjects, locating in left medial pre-
frontal cortex (mPFC), bilateral middle frontal gyrus (MFG),
right inferior occipital gyrus (IOG), and right cuneus
(Figure 2).

3.3. Relationship between Test Margin and Severity of Symp-
tom. Across all of the patients, the test margin was found not
correlated to total LSAS scores, scores for fear factor, or scores
for avoidance factor (𝑃 > 0.05).

4. Discussion

To the best of our knowledge, the current study is the first
to examine the capability of SVM with ReHo in distinguish-
ing patients with SAD from healthy subjects and involves
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Figure 2:The discrimination maps for ReHo. Regions displayed were identified by setting the threshold to ≥30% of the weight vector scores.
Warm color (positive value) indicated higher discriminated values in SAD than in healthy controls; cool color (negative weights) indicates
higher values in healthy controls than in SAD.

the largest sample of SAD patients in employing MVPA
approach. By identifying the intergroup differences in whole
brain ReHo pattern with an overall classification accuracy
of 76.25%, the present study suggests local connectivity
and synchronization extracted from fMRI BOLD signal
could be a potential biomarker to identify SAD patients
and demonstrates that multivariate analysis allows discrim-
ination between individuals with SAD and healthy controls
at relatively high level of accuracy. This pattern of results
provides preliminary support to the development of SVMas a
promising diagnostic tool in SAD to improve the diagnostic
accuracy and minimize errors in detecting malingering
where possible [26].

The discriminating pattern in the present study was
attributable to widespread ReHo alterations, mainly involv-
ing DMN, dorsal attention network (DAN), self-referential
network (SRN), and sensory networks. By contrast, the only
one study using ReHo in SAD before found significantly
decreased ReHo mainly in the DMN and central executive
network (CEN) while it found increased ReHo in occipital
regions and the right putamen in a relative small sample of
SADpatients viamass-univariate analysis [27]. Relatively, our
findings consistently revealed abnormalities withinDMNbut
identified more regions, and other distributed regions across
brain have also been showed with different local connectivity
between SAD and control subjects. One explicable fact is that
MVPA implicated in SVM takes the interregional correlation
into account [8]. This multivariate nature of SVM rendered
a high discriminative power for a given cluster deriving not
only from differences in ReHo in that region between groups,
but also from any intergroup differences in its functional
correlations with other regions. Thus, the findings of the
alteredReHo across brain should not be deemed as individual
regions but as a spatially distributed pattern. Taken collec-
tively, ReHo investigation gives insight into coherent local
connectivity of a functional cluster and is necessary for fur-
ther interpreting functional changes in SAD patients, whilst

the combination with SVM identifies more distributed and
subtle ReHo changes helpful in characterization at individual
level therefore yielding results with great potential in clinical
translation.

The consistent finding of altered local connectivity in
relation to DMN emphasizes its critical role underlying the
pathogenesis of SAD. The DMN is deemed as a higher-level
cognitive network and consists of brain regions that typically
activate during resting-state but deactivate during perfor-
mance of goal-directed tasks [28], within which a set of
regions connectively contributes to the social cognitive
aspects.The precuneus, along with posterior cingulate cortex
(PCC), is featured as the pivotal hub of DMN and related to
perception of social cognition and self-related mental rep-
resentations [28, 29]. Patients with SAD showed a lower
deactivation in regions comprising precuneus during task
conditions [30] and abnormal functional connectivity in
precuneus has also been suggested to be associated with the
pathophysiological mechanism underlying SAD [31]. The
mPFC is another hub in DMN and is identified with the
highest weight. Activity in mPFC may reflect an interaction
between cognitive processing and emotional state [32], espe-
cially for the anxiety-related emotion processing, in which
mPFC has been considered of ongoing importance [33].
These data, along with our findings, supported the notion
that DMN accounts for prominence in cognitive behavioral
models of SAD.

DAN [34, 35] and SRN [36] are another two important
networks withmany regions foundwith alterationwith ReHo
in SAD patients. DAN is considered to mediate goal-directed
(top-down) processing for stimuli selection and responses
and involved in many higher-order cognitive tasks [34].
Particularly emotion regulation, the regulating of anxious
feelings, has been emphasized in the cognitive models
underlying SAD [37], and failure in emotion regulation
has been considered another key feature of SAD [38]. In
this term of view, we speculate that there is an important
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role of brain regions within DAN in emotion regulation,
and abnormalities in these regions usually result in a high
level of self-awareness, typically in SAD patients. While
the SRN has exhibited peculiar physiological characteristics
with increased neural activity during resting [28], OFC is a
primary region observed with local coherence alteration. As
involved in the engagement of interpersonal relationships,
moral behavior, and social aggression [39–41], OFC with
inappropriate function might strengthen the response to
stressors or stimuli of fear conditions, resulting in severe
impairments in social behavior [5]. Reduced orbitofrontal
activation was observed in patients with SAD during public
speaking [42] and anxiety-provoking tasks [43], implying a
hypoactive OFC was associated with a failure of fear and
anxiety inhibition.

There are still main regions implicated in visual network
(VN), auditory network (AN), and somatomotor network
(SMN). However, sensory networks could be regarded as the
lower-order system of cognition. Within VN, abnormalities
in IOGmay be associated with the hypervigilance and hyper-
prosexia characteristic of social interaction in SAD [44].
Additionally, together with SMN, VN has been suggested to
show significantly greater BOLD responses in SAD for social
threat in previous emotional fMRI study [45]. As for AN,
regions within which have been found to related to dysfunc-
tion of cognitive reappraisal in SAD patients [46]. Consistent
with these findings, our results imply a role for sensory
networks in the perceptual and some other psychological
impairments in SAD to variable extents.

Although the discriminating pattern above successfully
allowed the identification of patients with SAD, the accuracy
was not that high to achieve the goal of MVPA of automated
MR image analysis in finding better sensitivity and specificity
of antemortem diagnosis than what is currently possible [47].
While the performance, generalizability, and significance
of the SVM findings would benefit from a large sample
size and better feature selection methods [48], future studies
incorporating large sample are needed to improve character-
ization of underlying features, as to establishment of a model
which could most accurately predict new subjects for better
classification. Furthermore, expanding feature selection to
include other imaging properties, behavioral data, and
genomic information may offer better discriminative infor-
mation for predicting SAD.

In the exploratory analysis, no significant association was
found between the test margin and clinical symptoms. In
other words, the distance away from the hyperplane may not
be driven or affected by the severity of symptoms as assessed
by LSAS scores for a given subject, suggesting the dis-
criminating pattern of ReHo obtained is relatively stable.
This may be because the discrimination pattern produced
derived mostly from the intergroup ReHo differences free
from clinical ratings, which is of great significance since the
identification of SAD will not be confounded by the psycho-
logical situations, reducing the rate of false negative findings
resulting from individuals with mild symptoms.

It is noteworthy that there are some limitations implicated
in the present study. First, although most of patients were
drug-näıve, a small proportion of the SAD sample had taken

medication before. However, we have prepared two weeks for
the washing-out before scanning to reduce the confounding
effect resulting from medication. Besides, given the effect of
antianxiety medication in attenuating abnormally activated
neural activity in social anxiety [49], we thus speculated
that the medication effect would probably not exaggerate
but instead tend to underestimate the capability of SVM
in identifying patients. That might also be the reason why
the present study did not find the abnormal alterations in
amygdala due to attenuated amygdala responsiveness [50].
Second, as we have added whole voxels in the grey matter in
the pattern analysis, the intrinsic structural differences may
act as confounding factors in the pattern recognition analysis.
However, ReHo and structural properties are different fea-
tures in the SVM analysis; since we used the functional
features implicated in ReHo, the confounding influence of
structural differences was assumed marginal, if there were
any. While we did not have sufficient structural images to
conduct the same analysis to rule out confounding factors,
future studies with different imaging modalities will be
needed as a synthesized biomarker to strengthen the classi-
fication and achieve more reliable clinical diagnosis of this
complex disorder. Finally, as a common psychiatric disorder,
social anxiety has a potential correlation but differs from a
personality trait known as shyness.While in current study, we
only compare the cohort of SAD patients with healthy sub-
jects, leaving an issue unresolved whether the application of
SVM to ReHo would also discriminate SAD patients from
mentally healthy people with shyness.The future studies may
help to address this question by including a third group of
subjects who have a level of shyness but without SAD.

5. Conclusion

This study used a MVPA method which is based on whole
brainReHopattern, to distinguish individualswith SAD from
healthy subjects. By presenting widespread differential map
of coherence abnormalities which could be used to identify
patients with SAD at the individual level, this study provides
evidence that the ReHo of brain has the diagnostic potential
and can possibly act as a supplementary approach to identify
SAD, especially regions with high weight. Future studies
with the integration of ReHo with other different imaging
modality measurements may give a better insight into the
imaging biomarkers of the condition.
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