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A vital sign-based prediction algorithm for differentiating
COVID-19 versus seasonal influenza in hospitalized patients
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Patients with influenza and SARS-CoV2/Coronavirus disease 2019 (COVID-19) infections have a different clinical course and
outcomes. We developed and validated a supervised machine learning pipeline to distinguish the two viral infections using the
available vital signs and demographic dataset from the first hospital/emergency room encounters of 3883 patients who had
confirmed diagnoses of influenza A/B, COVID-19 or negative laboratory test results. The models were able to achieve an area under
the receiver operating characteristic curve (ROC AUCQ) of at least 97% using our multiclass classifier. The predictive models were
externally validated on 15,697 encounters in 3125 patients available on TrinetX database that contains patient-level data from
different healthcare organizations. The influenza vs COVID-19-positive model had an AUC of 98.8%, and 92.8% on the internal and
external test sets, respectively. Our study illustrates the potentials of machine-learning models for accurately distinguishing the two
viral infections. The code is made available at https://github.com/ynaveena/COVID-19-vs-Influenza and may have utility as a
frontline diagnostic tool to aid healthcare workers in triaging patients once the two viral infections start cocirculating in the

communities.
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INTRODUCTION

Infection with severe acute respiratory syndrome coronavirus 2
(SARS-CoV 2) causing coronavirus disease 2019 (COVID-19) has led
to an unprecedented global crisis due to its vigorous transmission,
spectrum of respiratory manifestations, and vascular affects'™>.
The etiology of the disease is further complicated by a diverse set
of clinical presentations, ranging from asymptomatic to progres-
sive viral pneumonia and mortality®. Due to its similar sympto-
matology, COVID-19 has drawn comparisons to the seasonal
influenza epidemic®. Both infections commonly present with
overlapping symptoms, leading to a clinical dilemma for clinicians
as SARS-CoV 2 carries a case-fatality rate up to 30 times that of
influenza and infects healthcare workers at a significantly higher
rate>®”. Moreover, the concurrence of epidemics appears
imminent as the considerable COVID-19 incidence continues
and even a moderate influenza season would result in over 35
million cases and 30,000 deaths>®. To help curb this dilemma,
front-line providers need the ability to rapidly and accurately
triage these patients.

One approach to quickly classifying patients as COVID-19
positive or negative could be through machine learning
algorithms. While the use of machine learning has been applied
to contact tracing and forecasting during the COVID-19 epidemic?,
it has only limitedly been explored as a means for accurately
predicting COVID-19 infection on clinical presentation. With just a
few important parameters clinicians can diagnose the patients
well before a laboratory diagnosis. Preliminary work has shown
the utility of machine and deep learning algorithms in predicting
COVID-19 for patient features®'" and on CT examination'*'3, but
there remains a paucity in research showing the capacity of
machine learning algorithms in differentiating between COVID-19
and influenza patients.

Vital signs are critical piece of information used in the initial
triage of patients with COVID-19 and/or influenza by care
coordinators and health-care responders in community urgent
care centers or emergency rooms. It is becoming clearer that
patient vital signs may present uniquely in SARS-CoV 2
infection®, likely as a result of alterations in gas exchange and
microvascular changes'. In the present investigation, we there-
fore explored the use of machine learning models to differentiate
between SARS-CoV 2 and influenza infection using basic office-
based clinical variables. The use of simple ML-based classification
may have utility for the rapid identification, triage, and treatment
of COVID-19 and influenza-positive patients by front-line
healthcare workers, which is especially relevant as the influenza
season approaches.

RESULTS
WVU study cohort

The WVU study patient cohort included 3883 patients (mean age
52 + 24 years, 48% males, and 89% White/Caucasian) of whom 747
(19%) tested positive for SARSCoV-2 (COVID-19 positive cohort),
1913 (49%) tested negative for SARSCoV-2 (COVID-19 negative
cohort), and 1223 (31%) had influenza (Table 1, Supplementary Fig.
1). The majority of the COVID-19 positive and negative patients
were older, whereas the influenza cohort was younger (P < 0.001).
There was higher prevalence of Black/African Americans in the
influenza cohort in comparison with other cohorts. COVID-19
positive patients were more obese (p < 0.001). They also had higher
mean body temperature compared to COVID-negative patients and
exhibited an overall higher systolic and diastolic blood pressures
than the other two cohorts (p < 0.001 for all variables). However, the
influenza cohort had higher mean body temperature, heart rate,
and oxygen saturations than COVID-19-positive and -negative

"Division of Cardiology, West Virginia University Medicine Heart & Vascular Institute, Morgantown, WV, USA. “Institute for Software Research, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA. ®®email: naveena.yanamala.m@wvumedicine.org; Partho.Sengupta@wvumedicine.org

Published in partnership with Seoul National University Bundang Hospital

NP| nature partner
pJ journals


http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-021-00467-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-021-00467-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-021-00467-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-021-00467-8&domain=pdf
http://orcid.org/0000-0002-4454-4240
http://orcid.org/0000-0002-4454-4240
http://orcid.org/0000-0002-4454-4240
http://orcid.org/0000-0002-4454-4240
http://orcid.org/0000-0002-4454-4240
http://orcid.org/0000-0001-8036-2789
http://orcid.org/0000-0001-8036-2789
http://orcid.org/0000-0001-8036-2789
http://orcid.org/0000-0001-8036-2789
http://orcid.org/0000-0001-8036-2789
http://orcid.org/0000-0001-8226-2319
http://orcid.org/0000-0001-8226-2319
http://orcid.org/0000-0001-8226-2319
http://orcid.org/0000-0001-8226-2319
http://orcid.org/0000-0001-8226-2319
https://github.com/ynaveena/COVID-19-vs-Influenza
https://doi.org/10.1038/s41746-021-00467-8
mailto:naveena.yanamala.m@wvumedicine.org
mailto:Partho.Sengupta@wvumedicine.org
www.nature.com/npjdigitalmed

N. Yanamala et al.

Table 1. Demographics of WVU patients (included COVID-19-positive, COVID-19-negative, and influenza cohort).
Overall COVID-19-positive Influenza COVID-19-negative p value
N 3883 747 1223 1913
Overall age, in years 52+ 24 55+22" 41 24" 57+23 <0.001*
Age by groups <0.001°
Kids and teens (0-20) 520 63 (8.4) 319 (26.1) 138 (7.2)
Adults (21-44) 940 171 (22.9) 349 (28.5) 420 (22.0)
Older adults (45-64) 1005 216 (28.9) 282 (23.1) 507 (26.5)
Seniors (65 or older) 1418 297 (39.8) 273 (22.3) 848 (44.3)
Male, n(%) 1876 375 (50.2) 585 (47.8) 916 (47.9) 0.51
Race <0.001°
White/Caucasian, n(%) 3455 641 (85.8) 1037 (84.8) 1777 (92.9)
Black/African-American, n(%) 203 48 (6.43) 95 (7.8) 60 (3.1)
Other, n(%) 225 58 (7.8) 91 (7.4) 76 (4.0)
Ethnicity <0.001°
Hispanic/Latino, n(%) 94 34 (4.6) 43 (3.5) 17 (0.9)
Other, n(%) 3789 713 (95.5) 1180 (96.5) 1896 (99.1)
Body Mass Index, kg/m? 30.0+9.4 31.6+88" 29.7+9.5 29.6+9.5 <0.001%
Vitals, (mean %= SD)
Temperature in °F, 983+ 1.1 983+1.1"" 99.0+1.3" 98.0+0.8 <0.001%
Systolic blood pressure, mmHg 126 +20 127 £19" 124 +19" 126 +20 0.004*
Diastolic blood pressure, mmHg 73+13 75+13"" 72412 73+13 <0.001%
Heart rate, beats per minutes 87+18 83+16" 94+ 20" 83+17 <0.001*
Oxygen saturation (Sp0O,), % 96+4 96 +4'" 97+3" 96+4 <0.001*
Respiratory rate 19+4 19+4" 19+3" 18+5 <0.001%

Values reported are counts (%) or mean + standard deviation.

*p < 0.05 compared with the influenza group.

p <0.05 compared with the COVID-19-negative group.

*p < 0.05 using Kruskal Wallis test with Dunn-Bonferroni correction.
Sp <0.05 using Chi-square test.

Table 2.
negative for COVID-19.

Outcomes of WVU patients presented at ED or admitted to WVU hospitals and tested positive for COVID-19, positive for influenza A/B or

Overall COVID-19-positive Influenza COVID-19-negative p value
N 3883 747 1223 1913
No. of ICU admissions, n (%) 655 (16.8) 142 (19.0) 70 (5.7) 443 (23.2) <0.001°
Patient needing ventilator, n (%) 264 (6.8) 43 (5.8) 39 (3.2) 182 (9.5) <0.001°%
No. of deaths, n(%) 261 (6.7) 51 (6.8) 51(4.2) 159 (8.3) <0.001°
Age (in years) at death, mean + SD 72+14 75+14" 69+ 13 72+14 0.02*

Values reported are counts (%) or mean + standard deviation.

*p < 0.05 compared with the influenza group.

*p < 0.05 using Kruskal Wallis test with Dunn-Bonferroni correction.
Sp < 0.05 using Chi-square test.

patients (p < 0.001). Patients in the COVID-19-positive and influenza
groups had a higher respiratory rate than the COVID-19-negative
group (Table 1).

The overall mortality for the WVU study cohort was 6.7%. The
crude case fatality rate was 6.8% in the COVID-19-positive and
4.2% in influenza groups, with a 9.5% case fatality rate in the
COVID-19 negative group (p<0.001). The COVID-19-positive
patients had more than a 3-fold higher rate for ICU admissions
than patients with influenza (19.0% vs 5.7%; p <0.001), but the
rate was lower than that in the COVID-19 negative group (23.2%)
(p<0.001). The average age of patients who died during
hospitalizations was significantly higher in COVID-19 positive
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patients (75 + 14 years) compared to the influenza (69 + 13 years)
and COVID-19 negative groups (72+14 years) (p=0.02), as
presented in Table 2.

TriNetX cohort

The TriNetX external validation cohort included a total of 15,697
patient encounters from 3125 patients with body temperature
information available (Supplementary Table 2). This subgroup of
the external cohort included 6613 encounters from 1057 COVID-
positive patients and 9087 encounters from 2068 influenza
patients. The COVID-19-positive group was predominantly male
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Table 3. Performance metrics of different XGBoost models for
predicting the given record as COVID-19-positive or influenza or
COVID-19-negative when tested on internal validation or test set.

Performance COVID-19- Influenza Covid-19-

measure positive vs vs others positive vs
influenza COVID-19-

negative

AUC 0.988 0.986 0.973

Accuracy 0.949 0.945 0.930

F1 score 0.928 0.918 0.878

Sensitivity (recall) 0.925 0.913 0.872

Specificity 0.962 0.961 0.954

PPV (precision) 0.932 0.924 0.884

NPV 0.958 0.955 0.945

FPR 0.038 0.039 0.046

FDR 0.069 0.076 0.116

FNR 0.075 0.087 0.128

Table 4. Performance of influenza versus COVID-19-positive and
influenza versus others (COVID-19-positive/-negative) classification
models on the external validation cohort.

Performance measure COVID-19-positive vs Influenza vs others

influenza
AUC 0.928 0.914
Accuracy 0.858 0.863
F1 score 0.838 0.874
Sensitivity (recall) 0.806 0.931
Specificity 0.901 0.791
PPV (precision) 0.872 0.824
NPV 0.847 0.916
FPR 0.099 0.209
FDR 0.128 0.176
FNR 0.194 0.069

(54%), while the influenza group involved more female (53%)
patients. The COVID-19-positive group included more Black/
African-American (47%) patients, while the influenza cohort
consisted of more White/Caucasian (52%) patients. The vital signs
for mean body temperature, heart rate, respiratory rate, and
diastolic blood pressure showed a statistical difference between
patients with COVID-19 and those with influenza (p < 0.0001).

COVID-19 versus influenza infection prediction at the ED or
hospitalization

In this study we explored the value of demographics, vitals and
symptomatic features, which are readily available to providers, in
an effort to develop supervised machine learning classifiers that
can predict patients who are either COVID-19 positive or negative,
while further distinguishing influenza from COVID-19 infection.
The WVU patient cohort was randomly divided into a training
(80%) and testing set (20%) to develop four different context
specific XGBoost predictive models. We assessed receiver operator
characteristic (ROC) area under the curve (AUC) plots, precision,
recall, and other threshold evaluation metrics to select the best
performing model in each case (Tables 3 and 4, Supplementary
Table 3).

Figure 1a, b shows the ROC curves for the prediction of
influenza from COVID-19 positive encounters and from those who
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are either COVID-19 positive or negative obtained using the
holdout test set. We present four unique models that can be used
as a framework to aid in the delineation between influenza and
COVID-19 in the clinical setting. The first model provided
stratification of patients as either influenza or COVID-19 positive,
highlighted by a ROC AUC 98.8%, accuracy of 95%, sensitivity 93%,
and specificity 96% at identifying COVID-19-positive patients
(Table 3). The second model distinguished influenza patients from
all other patients, irrespective of a patient's COVID-19 test,
revealing an ROC AUC of 98.6%, accuracy of 95%, sensitivity of
91%, and specificity of 96% (Fig. 1b). The third model distinguishes
between COVID-19 positive and negative patients, with a ROC
AUC of 97.3%, accuracy of 93%, sensitivity of 87%, and specificity
of 95% (Fig. 2a and Table 3). The Precision-Recall AUC was 93% for
predicting COVID-19-positive versus -negative patients (Supple-
mentary Fig. 3).

The fourth model employed a multi-class XGBoost framework
trained to distinguish between all three different types of patients
had an ROC AUC of 98% and achieved 91% precision at identifying
patients that were positive for influenza with 91% recall, and 94%
precision at identifying those patients that tested negative for
COVID-19 with a 88% recall. While the highest specificity with
precision was achieved when identifying COVID-19-positive
patients, the recall of 78% was significantly lower compared to
other classes (91% for influenza and 88% for COVID-19-negative
patients). Average precision of the overall model was 91%,
accuracy was 90%, and macro-average of ROC AUC was 97.6%
(Fig. 2 and Supplementary Table 3).

Importance of various features

We use the SHapley Additive exPlanations (SHAP) method'>'¢,
specifically, using the Tree Explainer method, to describe our
XGBoost models.

SHAP is a model-agnostic interpretability method that aids in
analyzing feature importance based on their impact on the
model’s output. The additive importance of each feature for the
model is calculated over all possible orderings of features. Positive
SHAP values indicate a positive impact on the model’s output,
while negative values indicate negative impact on the model’s
output. The most important features that identify patients with
positive influenza infection from others that are presented to ED
included features such as month of encounter, age, body
temperature, body surface area (BSA), and heart rate (Fig. 3a, b).
Encounter-related features such as encounter type along with
reason for visit (Supplementary Table 4) also contributed to the
most-informative variables for predicting influenza compared to
COVID-19-positive  patients or influenza vs all other patients
(Fig. 3). On the contrary, in the case of the COVID-19-positive vs
COVID-19-negative model, two vital signs i.e.,, body temperature
and SPO, were amongst the highest-ranking features. BMI, blood
pressure, heart rate, respiration rate, and encounter-related
variables such as reason for visit and month of encounter were
additionally amongst the variables most informative to model
predictions. A similar trend of feature importance was also
reflected in the SHAP summary plot of the three-way multi-class
classifier (Supplementary Fig. 2). Vital signs played a more
significant role in distinguishing between influenza and COVID-
19-positive encounters through parameters such as body tem-
perature, heart rate, and blood pressure.

From the SHAP summary plots (Fig. 3 & Supplementary Fig. 2), it
is evident that the models captured some important features and
patterns that aid in correctly predicting influenza and COVID-19-
positive encounters. These plots highlighted that patient encoun-
ters predicted to be COVID-19-positive are, on average, more likely
to have lower heart rate, higher respiratory rate, and lower oxygen
saturation. Lower blood oxygen saturation is known to be
prevalent among COVID-19 patients and was identified by our
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Receiver operating characteristic (ROC) curves of influenza vs COVID-19-positive and influenza vs other predictive models. Area

under the ROC curve showing the predictive performance of the a influenza versus COVID-19-positive model and b influenza versus other
prediction models on the internal test and external validation datasets.
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Fig. 2 Receiver operating characteristic (ROC) curves for COVID-19-positive vs COVID-19-negative and multi-class predictive models.
Area under the ROC curve showing the predictive performance of the a COVID-19-positive versus COVID-19-negative, and b influenza versus

other prediction models on the internal validation test.

machine learning models as an important feature for validating
the clinical appropriateness of our model design.

The SHAP force plots shown in Figs. 4 and 5 aim to offer
explanations for individual predictions made by our models. The
two plots generated for the COVID-19-positive vs influenza
classifier are shown in Fig. 4. Figure 4a shows an encounter
correctly classified as influenza, with the month (during the time
course of the traditional influenza season), BSA, and age (young
adult patient) values affecting the model output most. The effect
of these features was enough to prevent misclassification due to
relatively lower heart rate and body temperature values. Figure 4b
explains an encounter correctly classified as COVID-19. While the
encounter occurred in month 3, which overlaps with the influenza
season, the combined effect of higher age, relatively low heart
rate, BSA, and higher respiration rate pushes the prediction
towards COVID-19, counteracting the effect of month, reason for
visit, and encounter type.

Similarly, a second set of plots were generated for the COVID-
19-positive vs -negative classifier (Fig. 5). In these plots, Fig. 5a
shows an encounter correctly classified as COVID-19 negative
while Fig. 5b shows an encounter classified correctly as COVID-19
positive. We see in the former that the temperature, reason for
visit, lower age, and higher value of SPO, push the prediction
towards COVID-19 negative. In the latter, we see that the effect of
temperature, heart rate, and low SPO, value together counter the
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effect of the normal respiratory rate, to correctly classify the
example as COVID-19 positive. With these interpretability methods
we are able to clearly determine the reasons for the model’s
output and ensure they can be scrutinized. The insights obtained
further corroborate with patterns often observed in COVID-19
patients (Fig. 3c).

Impact of vitals on model performance

As a first step each feature’s importance to the construction of the
machine learning model was assessed through individually
removing each vital sign parameter in the internal validation set.
Stepwise removal of vitals in the order of their importance of
contribution to the multi-class classifier (Supplementary Fig. 2) led
to decrease in the performance of the model (Supplementary Fig.
4a). Removal of body temperature significantly decreased models’
performance to an accuracy of 75% and F1 score of 70%
compared to the initial performance 90% and 89%, respectively.
However, subsequent removal of other vital signs, including heart
rate did not affect model performance drastically.

We also assessed how well the model performs given only one
vital is present at a time in the internal test set. More specifically,
when considering the importance of a given vital sign, all other
features related to vitals are removed from the internal test set.
However, the demographics and other information was not

Published in partnership with Seoul National University Bundang Hospital
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Fig.3 SHapley Additive exPlanations (SHAP) beeswarm summary plot of SHAP values distribution of each feature of the test dataset. The
plot depicts the relative importance, impact, and contribution of different features on the output of a influenza vs COVID-19-positive,
b influenza vs other, and ¢ COVID-19-positive vs COVID-19-negative predictive models. The summary plot combines feature importance with
feature effects. The features on the y-axis are ordered according to their importance. Each point on the summary plot is a SHapley value for a
feature and an instance (i.e., a single patient encounter in this case) in the dataset. The position of each point on the x-axis shows the impact
that feature has on the classification model’s prediction for a given instance. The color represents the high (red) to low (blue) values of the
feature (i.e., Age, BMI etc.).
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Fig. 4 SHapley Additive exPlanations (SHAP) force plots from an influenza and COVID-19-positive patient. SHAP plots for sample
observations from a influenza A/B and b COVID-19-positive predictions. The underlying model is XGBoost. Features that are contributing to a
higher and lower SHAP values are shown in red and blue, respectively, along with the size of each feature’s contribution to the classification
model’s output. The influenza patient in this example shows a log-odds output of —3.92 in the rating scale, which is equal to a probability of
0.0194. The baseline—the mean of the model output (log-odds) over the training dataset—is 0.092 (translating to a probability of 0.523). The
COVID-19-positive patient has a rating score of 0.61 (probability = 0.6479); Age of 75, HR of 84, BSA of 2.21, respiratory rate of 24, and a Temp
of 36.5 °C increases the prediction risk, while month of march decreases the predicted risk of being COVID-19 positive.

ablated. Supplementary Fig. 4b shows the models performance in External validation

terms of F1 score or statistic by only including one vital at a time.
The higher the performance, the more useful the vital sign is in
helping the model to discriminate between COVID-19 and
influenza encounters. With the comparison of both multi-class
classifier and COVID-19-positive vs -negative classifier perfor-
mances, it is evident that body temperature has the greatest
impact among all vital signs considered. In addition to body
temperature, heart rate was also seen to contribute to the
performance of COVID-19-positive vs -negative model.

Taken together, these results suggest that of all the vital signs,
body temperature, followed by heart rate and SPO,, could impact
the predictive models’ performance in discriminating between
influenza, COVID-19-positive and -negative patient encounters.

Published in partnership with Seoul National University Bundang Hospital

To further assess the generalizability of the predictive models and
confirm the stability of the model features at identifying patients
positive for COVID-19 or influenza, we validated our models using
the TriNetX research network dataset external to WVU Medicine.
Patients with any missing data related to body temperature were
excluded from the analysis. The dataset included 6613 encounters
of COVID-19 patients (n = 1057) and 9084 encounters related to
influenza patients (n=2068). The influenza versus COVID-19
model demonstrated ROC AUC of 92.8% with an accuracy of
86%, and 87% precision at identifying patients that were positive
for COVID-19 with 81% recall (Fig. 1a and Table 4). Also, the model
to detect patients with influenza, irrespective of their COVID-19
status, showed similar performance with an AUC ROC of 91.4%
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Fig. 5 SHapley Additive exPlanations (SHAP) force or explanation plots of COVID-19-positive and -negative patient encounters. Sample
observations from two patient encounters with a COVID-19-negative and b COVID-19-positive predictions. Features that are contributing to a
higher and lower SHAP values are shown in red and blue, respectively, along with the size of each feature’s contribution to the model’s output.
The baseline—the mean of the model output (log-odds) over the training dataset—is 0.057 (translating to a probability value of 0.5143). The
first patient—who is COVID-19 negative—has a low predicted risk score of —3.27 (output probability = 0.0366). The second patient—who is
COVID-19 positive—has a high predicted risk of 1.94 (output probability = 0.8744). These SHAP output values represent a “raw” log-odds
value which is transformed into a probability space, to provide the final output of 0 and 1 (<0.5 and >0.5). Risk increasing effects such as Temp,
SpO,, HR, and BP were offset by decreasing effects of RR in pushing the model’s predictions towards or away from the positive class,

respectively.

and an accuracy of 86%, and 82% precision at identifying patients
that were positive for influenza with 93% recall (Fig. 1b). This
suggests that the developed models are able to effectively identify
patients across multiple TriNetX HCOs with influenza or COVID-19
infections amongst other COVID-19-negative patients presenting
at ED and/or admitted to the hospital.

Further, enforcing no missing values in the case of both heart
rate and body temperature, the two top ranked vital signs
(Supplementary Fig. 4), did not result in boosting the perfor-
mance. On the contrary, restricting the data to have all vitals
present, boosted the performance of ROC AUC to 94.9% and F1-
score to 87% for the influenza vs COVID-19 model and ROC AUC to
95.4% and F1-score to 89% in the case of influenza vs other model
(Supplementary Table 5). These results suggest that while
enforcing no missing values in vitals could support a better
overall model performance (i.e, AUC ROC 94.9% vs 92.8%),
missingness in most of the vitals does not seem to limit its
applicability and generalizability.

DISCUSSION

This investigation provides multiple machine-learning models to
differentiate between COVID-19-positive, -negative, and influenza.
Further, this is the first machine learning model to leverage a
patient population that includes both the initial (February-April)
and secondary (May-September) surge of SARS-CoV 2 infections
in the United States'”. Our approach can guide future applications,
highlighting the importance of developing dynamic models that
control for confounding comorbidities, such as influenza, and the
ever-evolving infectivity of SARS-CoV 2. Importantly, as influenza
season approaches it will be of high priority to establish a reliable
process for identifying patients at risk of COVID-19, influenza, or
other viral infections to increase the prognostic value of a directed
therapy.

While the initial presentation of COVID-19 and influenza appear
similar, the number, and combination, of signs and symptoms can
help provide better stratification. From a symptom standpoint,
COVID-19 causes more fatigue, diarrhea, anosmia, acute kidney
injury, and pulmonary embolisms, while sputum production and
nasal congestion are more specific to influenza'®. Furthermore,
COVID-19 tends to cause worse decompensation. For instance, out
of 200 cases of either influenza or COVID-19 in a study from
France, only COVID-19 resulted in severe respiratory failure
requiring intubation'®. Our evaluation revealed that the month
the patient was seen, age, and heart rate were the most important
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features for predicting a diagnosis of COVID-19 over that of
influenza infection. Additionally, body temperature and SPO, were
two of the most important features that indicated if a patient
would be positive or negative for COVID-19, which is likely a result
of the underlying pathophysiology of the virus. SARS-CoV 2
infection appears to cause more significant endothelial dysfunc-
tion and systemic inflammation likely leading to the worse case-
fatality rate®'®. These differences can be seen histologically as
well. Autopsy samples of COVID-19 lung tissue showed severe
endothelial injury and widespread thrombosis with microangio-
pathy?®. These samples had nine times as much alveolar capillary
microthrombi compared to that of influenza lung tissue and even
showed evidence of new vessel growth through a mechanism of
intussusceptive angiogenesis'~2°.

Machine learning algorithms can provide distinct advantages in
the classification of positive COVID-19 cases as the virus, and the
demographic it infects, continues to evolve. The West Virginia
University (WVU) cohort consists of a fairly homogenous popula-
tion, with 89% of the population identifying as White/Caucasian
and only 5% as Black/African American. While our machine
learning models were built around the WVU cohort, they
demonstrate robust performance even on more racially/ethnically
diverse populations, such as in the TriNetX dataset, when
predicting patients who have influenza or COVID-19 (ROC AUC
=92.8%) and influenza only (ROC AUC =91.4%). The general-
izability of our model may suggest that features that define SARS-
CoV 2 infection (e.g., age, month of encounter, heart rate, body
temperature, SPO,) could represent similarities in clinical pre-
sentation, regardless of a patient’s race/ethnicity. Further under-
standing the socioeconomic?'*? and physiological?*?* differences
in minority populations will be important in determining why
COVID-19 disproportionately affects these populations and how
machine learning models can more accurately model hetero-
geneous populations.

Patient information provided in the WVU and TriNetX datasets
consists of both the initial rise in cases in the United States
(February-April) as well as a secondary surge (May-September).
The second surge of infections shifted demographically from a
predominately older population to one with the highest
prevalence between ages 20-29, with an increased rate of mild
to asymptomatic presentations®>. Additionally, SARS-CoV 2 is an
RNA virus with the capacity to mutate. Sequencing studies have
already identified a variety of genetic variants, with most
mutations currently having no clear association with a positive
or negative selective virulence?®. However, some mutations, such
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as D614G, are suggested to increase infectivity of SARS-CoV 2 and
outcompete other strains in the environment*’. Regardless, in our
current approach, applying machine learning over the continuum
of the COVID-19 epidemic provides distinct advantages in
producing a generalizable model for continued use, which may
not be captured in models generated on earlier datasets.

The current study provides robust ROC AUC prediction of
patients with COVID-19 (97.2%), without COVID-19 (97.1%), and
those with influenza (98.4%) in our multi-class model (Fig. 2b).
While only demographic information and vital signs along with
encounter-related features were applied to our models, overall
prediction could likely improve with the addition of other features
including biochemical, metabolic, and molecular markers, as well
as imaging modalities such as X-ray and CT. The addition of these
features could likely improve diagnostic accuracy and should be
tested in future studies delineating between COVID-19 and
influenza. Additionally, the current investigation involves influenza
and COVID-19 data from non-overlapping periods (i.e., influenza
from winter 2019 and COVID-19 from spring/summer/fall 2020).
Although some of the machine learning models rely on time of
presentation for prediction, we anticipate that the four-model
framework provided in the study will sufficiently stratify patients
even when influenza season and the COVID-19 epidemic overlap.
This is reinforced by the prediction of COVID-19-positive and
-negative cases (ROC AUC = 97.3%) in our model, which did not
rely on time of presentation as a variable. In addition, similar
performance in AUC-ROC curves was observed when the different
models were either evaluated on patient groups separated by
their encounters occurring in different seasonal months (Table 3
and Supplementary Fig. 5) or retrained on season instead of
month of encounter as a feature (Supplementary Table 6).

Our study was limited by the classification of patients in the
internal (WVU) and external (TriNetX) datasets. While the WVU
cohort includes patients, who have been confirmed to have a
negative SARS-CoV 2 test on presentation, the TriNetX dataset
does not have this information. Both datasets are also unable to
capture patients with other respiratory viruses and viral coinfec-
tions; information that could better explain variations in COVID-19
clinical presentation. Another limitation is the need to continually
adjust these models to fit new trends in SARS-CoV 2 spread and
infectivity. Our models benefit from the inclusion of data spanning
from February to October, which can better simulate the current
COVID-19 epidemic and influenza season but will still require
future iterations and validations to accurately predict SARS-CoV 2
infections. Removal or ablation of month of encounter during the
validation step resulted in a significant drop in AUC (decreased
from 98.8% to 84%), suggesting the interactions between months
and vital signs is important for differentiating influenza patients
from COVID-19. Seasonality can induce variations in vital signs
including body temperature, blood pressure?®, and in turn these
can affect and influence the different disease populations (e.g.,
diabetes, cardiovascular, obesity, and others)**'. A seasonal
variation of deaths from corona viruses was also observed
recently®>. Thus, the months/seasons may have important
interactions with the vital signs beyond the known seasonal
susceptibility to influenza. Nevertheless, we observed robust
performance of the model if the analysis was restricted for
differentiating COVID-19 vs influenza for the same month (e.g.,
January) or if seasons were included in place of specific month
related information (Supplementary Table 6). Future studies
focusing on such details and sub-group analysis is warranted to
confirm the relevance of different model predictions. All the
models will be made available at https://github.com/ynaveena/
COVID-19-vs-Influenza for further assessment by the community
since it remains unclear whether COVID-19 may also start showing
seasonal trends in the future. Further, an understanding of COVID-
19 and viral co-infections is needed to appropriately model the
risks of patients presenting with both illnesses®™*,
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Here we highlight how machine learning can effectively classify
influenza and COVID-19-positive cases through vital signs on
clinical presentation. This work is the first step in building a low-
cost, robust classification system for the appropriate triage of
patients displaying symptoms of a viral respiratory infection. With
these algorithms, the identification of proper treatment modalities
for both COVID-19 and influenza can be made more rapidly,
increasing the effectiveness of patient care. We certainly hope that
our current work can aid healthcare workers and clinicians to
rapidly identify, triage, and guide treatment decisions when the
two viral infections start cocirculating in the communities.

METHODS
WVU internal cohort dataset

This study protocol was reviewed by the West Virginia University
Institutional Review Board (WVU IRB) and ethical approval was given. A
waiver of consent was granted by the IRB as this is retrospective study. De-
identified clinical and demographics data for all patients presenting to the
emergency department and/or admitted at West Virginia University
hospitals between January 1%, 2019, and November 4™, 2020, were
extracted and provided to us by WVU Clinical and Translational Science
Institute (CTSI). The COVID-19-positive dataset includes all patients who
had a lab-based diagnostic test positive for SARS-CoV-2 at WVU Medicine
between March 1%, 2020, and November 4", 2020 and had an associated
hospital encounter with all vital signs information available. The influenza-
positive dataset includes a random sample of 1500 patients who had a lab-
based diagnostic test that was positive for either influenza type A or
influenza type B at WVU Medicine between January 1st, 2019, and
November 3rd, 2020, and had a hospital encounter associated with that
positive test (Supplementary Fig. 1). The COVID-19-negative dataset
includes a random sample of 2000 patients who had negative test results
for SARS-CoV-2 and who never had a positive diagnostic test for SARS-CoV-
2 at WWU Medicine between March 1%, 2020, and November 4, 2020
provided that an associated hospital encounter occurred with that
negative test. As our study aims to create a model that can accurately
discriminate COVID-19 from influenza patients solely based on the
patient’s demographic information and vital signs data, patients with
any of the vital signs missing during the associated encounters were
therefore excluded from the analysis. This resulted in a final WVU cohort
that included a total of 747 COVID-19-positive, 1223 influenza, and 1913
COVID-19-negative patients (Table 1, Supplementary Fig. 1).

TriNetX external cohort dataset

The external validation cohort was obtained from the TriNetX Research
network, a cloud-based database resource that provides researchers access
to de-identified patient data from networks of healthcare organizations
(HCO), mainly from large academic centers and other data providers. The
data is directly pulled from electronic medical records and accessible in a
de-identified manner. The TriNetX database includes patient-level demo-
graphic, vital signs, diagnoses, procedures, medications, laboratory, and
genomic data. For this study, we identified COVID-19 and influenza cases
using the International Classification of Diseases, 10" revision. We used
ICD-10 codes J9.0, J10.0, J09.%, and J10.* for influenza, and U07.1 for COVID-
19. Cases from February 1%, 2020, to August 13, 2020, were queried and
extracted. Due to heterogeneity in reporting of COVID-19 testing (i.e.,
positive vs negative; normal vs abnormal), we refrained from selecting the
patients based on their testing results and used diagnostic codes instead.
Thus, we were only able to extract COVID-19-positive and influenza-
positive patients for external validation. Further patients at least 18 years or
older at the time of diagnosis and their encounters defined as an
encounter occurring within 7days from the date of diagnosis were
enforced to be included in the final cohort (n=34,670). Enforcing no
missing values corresponding to body temperature resulted in a dataset (n
=15,697) that had a total of 6613 (n = 1057 patients) and 9084 (n = 2068
patients) encounters diagnosed with COVID-19 and influenza, respectively
(Supplementary Fig. 1). Baseline characteristics of the cohort is described in
Supplementary Table 2. Since the TriNetX data is de-identified, Institutional
Board Review (IRB) oversight is not necessary.
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Data preprocessing and split

Different clinical variables investigated in this study include (a) vital signs
i.e, body temperature, heart rate, breathing/respiratory rate, oxygen
saturation or SPO,, and blood pressure, (b) encounter date/type, (c) reason
for visit, and (d) basic demographics information such as age, gender, race,
and ethnicity. Of the features considered, the data elements corresponding
to sex and ethnicity were binarized for being “female” and “Hispanic or
Latino”, respectively. The race feature was further one-hot encoded to
three variables i.e., race_White/Caucasian, race_Black/African American,
and race_Other. Finally, the date of the encounter was converted to
represent a numerical value for month, rather than specific day/year to
remove the granularity and capture the seasonal effects of influenza.

Predictive model development using extreme gradient
boosting trees

XGBoost, a gradient-boosted tree algorithm, was used to develop
classifiers to distinguish between patient encounters with confirmed
COVID-19 from that of either influenza patient encounters or other
unknown viral infections. Separate models were developed to predict
confirmed COVID-19 patient encounters post Feb 1, 2020 from either
influenza and/or those that tested negative for COVID-19 (i.e.,, COVID-19-
positive vs influenza, COVID-19-positive vs COVID-19-negative, COVID-19-
positive vs influenza vs COVID-19-negative), and then an additional model
to test influenza infections from others i.e, patients that were either
positive or negative to a COVID-19 test (influenza vs others). For the
purpose of model training and testing, we only consider data from 01-Feb-
2020 until 04-Nov-2020 for COVID-19-positive and -negative cohorts and
from 01-Jan-2019 to 04-Nov-2020 for the influenza patient cohort. We
partitioned the dataset into training and testing sets, using an 80%-20%
split (Supplementary Table 1). The holdout test, or internal validation, set is
never seen by the model during training and was used only during
performance evaluation.

Gradient-boosted trees were selected due to their ability to model
complex nonlinear relationships, while robustly handling outliers and
missing values. Gradient-boosted trees fuse the concepts of gradient
descent (in the loss function space) and boosting. Simpler tree-based
models are built additively like a boosting ensembile, to fit the gradient of
the loss function for every data point. Only a fraction of the trees fit to the
gradient of the loss per data point in the training set. This is analogous to
small steps of gradient descent in the loss function space.

For developing the COVID-19-positive vs -negative, influenza vs others
and COVID-19 vs influenza XGBoost models, the value of learning rate was
set to 0.02 and the total number of trees was 600. The alpha value was set
to 0 and lambda was set to 1, i.e, we use L2 regularization. Further,
min_child_weight was set to 1, to allow highly specific patterns to be
learnt as well. To counter the possibility of overfitting, the max_depth
parameter of the XGBoost model was set to 4, as more complex features
are learnt with higher depths, leading to poor performance on the unseen
data. We used the gain importance metric to decide node splits for the tree
estimator, and the objective was set to binary logistic regression. The
model outputs the predicted probability, and records whose probability
was at least 0.5 were considered as belonging to the positive class, while
others were deemed to belong to the negative class. Further, the
subsample parameter of the XGBoost algorithm represents the ratio of the
records to be sampled before forming a tree and was set to a value of 0.8.
Similarly, the colsample_bytree parameter which determines the fraction
of columns to be sampled before every tree formation was set to 1,
meaning all features are used. Only records with all vitals were considered;
however, the model does have the ability to make predictions in the
absence of certain features. The compute_sample_weight from the
sklearn.utils.class_weight library was employed to ensure that each
training sample is weighted based on its class, to counter imbalance in
the dataset.

For the three-class classifier that discriminates between COVID-19-
positive, COVID-19-negative, and Influenza encounters, we developed an
XGBoost model of 100 trees, with learning_rate set to 0.3 and max_depth
fixed at 6. The objective was set to softprob (uses a softmax objective
function), to perform multi-class classification. Furthermore, the subsample
parameter was set to 1, meaning all samples were used to form trees. No
sample weighting was carried out for this model. All other parameters
remained the same as the models discussed previously.

We also consider an unseen external validation dataset (TriNetX cohort)
to evaluate the performance of the model on data that is completely
different from what it is accustomed to during training. Patient-wise

npj Digital Medicine (2021) 95

encounters with no missing vitals were enforced to test and evaluate the
performance of the developed models.

Model interpretability using SHAP

To identify the principal features driving the model prediction, SHAP values
were calculated. The SHAP method is suitable for the interpretation of
complex models such as artificial neural networks and gradient-boosting
machines (e.g., XGBoost)***’. Originating in game theory, SHAP provides
model output explanations to answer how does a given prediction change
when a particular feature is removed from the model. The resulting SHAP
values quantify the magnitude and direction (positive or negative) of a
feature’s effect on a given prediction. Thus, SHAP partitions the prediction
result of every sample into the contribution of each constituent feature
value by estimating differences between model outputs with subsets of
the feature space. By averaging across samples, this method helps
estimate the contribution of each feature to overall model predictions for
the entire dataset. The SHAP is also representative of how important a
feature is to the prediction—Ilarger the absolute SHAP value of the feature,
the greater its impact on predictions. The direction of SHAP values in force
plots represents whether the feature is influential or indicative for the
negative or positive class.

Performance evaluation metrics

The discriminative ability of each of the models developed in predicting
patients with influenza from COVID-19-positive and /or -negative patients
as well as those with a positive COVID-19 test from negative test was
evaluated in the hold-out test set and an external validation test by using
receiver operator characteristic (ROC) curve analysis. An area under the
curve (AUC) > 0.5 indicated better predictive values. The closer the AUC
was to 1, the better the model's performance was. Additionally,
“classification accuracy”, the total number of true positive scores i.e.,
when predicted values are equal to the actual values given by the attribute
positive predictive value (PPV) or “precision” score, “recall” which is the
total number of true positive instances among all the positive instances,
and “F1 score” the weighted harmonic mean of precision and recall along
with negative predictive value (NPV) were estimated to evaluate
performance and the overall generalizability of each of the models.
Further details on the calculations of different metrics employed are
provided in Supplementary methods.

Statistical analysis

We performed the Shapiro-Wilk test on the entire WVU internal cohort
dataset to check for normalcy of the data. We found that all the variables
were normally distributed; therefore, we used parametric methods for
further statistical analysis. Categorical data are presented as counts
(percentages) while continuous data were reported as mean + standard
deviation (SD). To determine the significance of continuous variables
between all three different groups (i.e.,, COVID-19 positive, influenza, and
COVID-19 negative) Kruskal-Wallis test with Dunn-Bonferroni correction
test was used. The comparison between two of these three groups (COVID-
19 positive vs negative, COVID-19 positive vs influenza, influenza vs COVID-
19 negative) to determine significance was performed using an
independent sample t-test. Chi-square was used for the categorical
variable because the expected value for each cell is greater than 5. All
statistical analysis was performed using Medcalc for Windows, version
19.5.3 (MedCalc Software, Ostend, Belgium), and python for windows,
version 3.8.3. A statistical significance level of p < 0.05 was used for all the
tests performed.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The data that support the findings of this study are available from WVU CTSI &
TriNetX but restrictions apply to the availability of these data, which were used under
license for the current study, and so are not publicly available. Data is however
available from the authors upon reasonable request and with permission of WVU
CTSI & TriNetX.
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