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Abstract
Major depressive disorder is often associated with deficits in social and cognitive function-

ing. Mice transgenic for acid sphingomyelinase (t-ASM) were previously shown to have a

depressive-like phenotype, which could be normalized by antidepressant treatment. Here,

we investigated whether t-ASMmice show deficits in social behavior and memory perfor-

mance, and whether these possible deficits might be normalized by amitriptyline treatment.

Our results revealed that ASM overexpression altered the behavior of mice in a sex-depen-

dent manner. As such, t-ASM female, but not male, mice showed an impaired social prefer-

ence and a depressive- and anxiogenic-like phenotype, which could be normalized by

amitriptyline treatment. Both male and female t-ASMmice showed unaltered preference for

social novelty, novel object recognition, and social and object discrimination abilities. Ami-

triptyline treatment impaired novel object recognition and object discrimination abilities in

female, but not in male, wild-type mice, while female t-ASMmice showed unaltered novel

object recognition and object discrimination abilities. This study suggests that female t-ASM

mice represent a model of depression with comorbid anxiety and social deficits, without

memory impairments. It further suggests that ASM overexpression has a protective role

against the detrimental effects of amitriptyline on female, but not on male, non-social

(object) memory.

Introduction
Major depressive disorder (MDD) is a severe and chronic mood disorder, with a lifetime preva-
lence of more than 10% [1]. Key symptoms of MDD are a depressed mood and loss of interest,
anhedonia, feelings of worthlessness, weight loss, and insomnia. MDD is often associated with
deficits in social functioning [2] and cognitive dysfunctions, such as memory impairment and
concentration deficits [3].

Tricyclic antidepressant drugs, such as desipramine and imipramine, have been shown to
induce the proteolytic degradation of the lysosomal glycoprotein acid sphingomyelinase
(ASM) [4,5], an enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and
phosphorylcholine [6], and thereby to functionally inhibit the activity of ASM [7]. These
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findings led to studies investigating the role of ASM in MDD and as a target mediating the
effects of antidepressant drugs. As such, a clinical study found an increased ASM activity in
peripheral blood mononuclear cells of patients experiencing a major depressive episode [8].
Transgenic mice overexpressing ASM (t-ASM) showed higher ASM activity and ceramide con-
centrations in the hippocampus, which were associated with a depressive- and anxiogenic-like
phenotype as demonstrated in the novelty suppressed-feeding paradigm and in the open field
test [9]. Amitriptyline, a tricyclic antidepressant, and fluoxetine, a selective serotonin reuptake
inhibitor, have been shown to inhibit the activity of ASM, to reduce ceramide concentrations
and ASM protein levels in cultured neurons and in the hippocampus of wild-type (WT) and t-
ASMmice and to normalize the depressive- and anxiogenic-like phenotype of t-ASMmice
when administered at doses that achieve therapeutic plasma concentrations recommended for
patients with MDD [9]. In contrast, a genetic deficiency in ASMmimicked the effects of anti-
depressants and abrogated any further effects of antidepressants on depressive- and anxiety-
like behavior in mice [9].

Considering the comorbidity between MDD, social deficits, and memory impairments, we
aimed to investigate whether t-ASMmice show deficits in social behavior and memory perfor-
mance and whether these possible deficits could be normalized by amitriptyline treatment.
Given that depression is more prevalent in women and treatment response is often gender-
dependent [10], we performed experiments in both male and female mice.

Materials and Methods

Animals
Mice conditionally overexpressing ASM were generated by a targeted integration of a murine
Smpd1 cDNA under the control of a cytomegalovirus (CMV) immediate early enhancer/
chicken beta-actin fusion promoter (CAG) into the Hprt locus (Hprttm1.1(CAG-Smpd1)Jhkh; www.
informatics.jax.org/allele/MGI:5523896) [9]. A loxP-flanked STOP cassette between the pro-
motor and the transgene prevented constitutive overexpression. Overexpression of ASM was
initiated by crossing transgenic female mice with homozygous E2A-Cre male mice (Tg(EIIa-
cre); http://www.informatics.jax.org/allele/MGI:2137691). Experiments were conducted with t-
ASM and littermate WT controls from the F1 generation.

Male and female WT and t-ASM mice were individually housed for one week before treat-
ment start and remained single-housed throughout the experiments. Age- and sex-matched
WTmice were used as social stimuli for the social approach test. Sex-matched 3-week-old juve-
nile CD1 mice were used as social stimuli for the social discrimination test. Mice were kept
under standard laboratory conditions (12:12 light/dark cycle, lights on at 06:00 h, 22°C, 60%
humidity, food and water ad libitum). Experiments were performed during the light phase,
between 09:00 and 14:00, in accordance with the recommendations in the Guide for the Care
and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved
by the Committee on the Ethics of Animal Experiments of the Government of Mittelfranken
(Permit Number: 54–2532.1-27/11). All efforts were made to minimize animal suffering and to
reduce the number of animals used.

Behavioral paradigms
Mice were tested in several behavioral tests and the order of the test sessions was selected to
minimize any effect of one test session on subsequent sessions. As such, mice were tested in the
social approach test on day 29, in the novel object recognition test on day 33, in the social dis-
crimination test on day 37, in the object discrimination test on day 40, and in the novelty-sup-
pressed feeding on day 45.
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Social approach test
The social preference and the preference for social novelty of mice were tested in the social
approach test [11], with some minor modifications. Mice were placed in a novel arena (42 x 24
x 35 cm) and allowed to habituate for 30 s. Two identical wire-mesh cages (7 x 7 x 6 cm) were
simultaneously placed at opposite side-walls of the arena for 5 min. One cage remained empty
and one cage contained an unfamiliar age- and sex-matched conspecific (samemouse). The
initial position of the samemouse varied between experimental mice to prevent for possible
place preference. After 5 min, the empty cage was exchanged by an identical cage containing a
novelmouse for additional 5 min. Experiments were recorded and the time spent investigating
(sniffing) the empty cage, the same and the novelmouse was analyzed by an observer blind to
the treatment condition using JWatcher (Version 1.0, Macquarie University and UCLA). The
percentage of time investigating the empty cage and the samemouse (time investigating empty
cage or samemouse/time investigating empty cage + samemouse x 100%) during the first 5
min, and the percentage of time investigating the same and the novelmouse (time investigating
same or novelmouse/time investigating same + novelmouse x 100%) during the second 5 min
was calculated. A higher investigation time directed toward the samemouse versus the empty
cage during the first 5 min was interpreted as social preference. A higher investigation time
directed toward the novel versus the samemouse during the second 5 min was interpreted as
social recognition and preference for social novelty.

Social discrimination test
The ability of mice to discriminate between a previously encountered (same) and a novel con-
specific was tested in the social discrimination test as previously described [12,13]. A sex-
matched juvenile mouse was introduced in the home cage of the experimental mouse for 4 min
(acquisition period). After an interval of 60 min, the same juvenile was reintroduced along with
a novel juvenile for additional 4 min (discrimination period). Experiments were recorded and
the time spent investigating the juvenile mice (sniffing the anogenital and head/neck regions)
was analyzed by an observer blind to the treatment condition using JWatcher. The percentage
of time investigating the same and the novel juvenile mouse (time investigating same or novel
mouse/time investigating same + novelmouse x 100%) during the discrimination period was
calculated. A higher investigation time directed toward the novel versus the same juvenile was
interpreted as social discrimination and intact social memory. The 3-week-old juvenile mice
did not elicit play or aggressive behaviors towards the experimental mice.

Novel object recognition test
The ability of mice to recognize novelty over familiarity was tested in the novel object recogni-
tion test [14], which was adapted to be comparable to the social approach test described above.
Mice were placed in the arena (42 x 24 x 35 cm) and allowed to habituate for 30 s. Two identical
objects (same) were simultaneously placed at opposite side-walls of the arena for 5 min. After 5
min, one object was exchanged by a novel object for additional 5 min. Several plastic objects
that differed in color (pink, green, orange), shape (flower, diamond, square), and size (3–4.5
cm x 3 cm x 1 cm) were used. Objects were cleaned between trials with water containing a
small amount of detergent (Manisoft; Ecolab Deutschland GmbH). Experiments were recorded
and the time spent investigating the objects (sniffing/touching) was analyzed by an observer
blind to the treatment condition using JWatcher. The percentage of time investigating the
same and the novel object (time investigating same or novel object/time investigating same +
novel object x 100%) during the second 5 min was calculated. A higher investigation time
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directed toward the novel versus the same object was interpreted as object recognition and pref-
erence for novelty.

Object discrimination test
The ability of mice to discriminate between a previously encountered (same) and a novel object
was tested in the object discrimination test [12,13], which was adapted to be comparable to the
social discrimination test described above. An unknown object (same) was placed in one corner
of the home cage of the experimental mouse for 4 min (acquisition period). The initial position
of the object varied between mice to prevent for possible place preference. After an interval of
60 min, the same object was reintroduced along with a novel object for additional 4 min (dis-
crimination period). The same objects were used as in the novel object recognition test
described above. Experiments were recorded and the time spent investigating the objects (sniff-
ing/touching) was analyzed by an observer blind to the treatment condition using JWatcher.
The percentage of time investigating the same and the novel object (time investigating same or
novel object/time investigating same + novel object x 100%) during the discrimination period
was calculated. A higher investigation time directed toward the novel versus the same object
was interpreted as object discrimination and intact object memory.

Novelty-suppressed feeding paradigm
The depressive- and anxiety-like behavior of mice was tested in the novelty-suppressed feeding
paradigm as previously described [9]. Mice were food-deprived for 24 h prior to testing with
unlimited fluid access. Mice were placed in a novel arena (50 x 50 x 50 cm) with the head facing
one of the corners. Immediately afterwards, a single food pellet (ssniff Spezialdiäten GmbH,
Soest, Germany) was placed in the centre of the arena. The latency to feed, defined as biting the
food pellet for longer than 3 s, was manually analyzed by an observer blind to the treatment
condition. An increased feeding latency was interpreted as increased depressive- and anxiety-
like behavior.

Drugs
Amitriptyline (Amitriptyline hydrochloride, A8404; Sigma-Aldrich, Germany) was adminis-
tered via drinking water at a dose of 180 mg/L, based on previous studies [9,15]. Treatment
was started 4 weeks before and was maintained throughout behavioral testing.

Statistical analysis
For statistical analysis, PASW/SPSS (Version 21) was used. Data were analyzed by two-way
ANOVA for repeated measures (factors stimulus x group) or three-way ANOVA (factors
genotype x treatment x gender), followed by a Bonferroni’s post-hoc analysis when appropri-
ate. Statistical significance was set at p< 0.05. Overall statistics are shown in Table 1.

Results

ASM overexpression impaired social preference without altering social
memory in female, but not in male, mice
Males showed a higher investigation of the samemouse versus the empty cage during the first
5 min of the social approach test, independent of genotype and treatment, reflecting social pref-
erence. Whereas water- and amitriptyline-treated WT females showed social preference,
water-treated t-ASM females showed lack of social preference, reflected by similar investigation
of the samemouse and the empty cage. This lack of social preference could be prevented by
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amitriptyline treatment, resulting in reinstatement of social preference (p< 0.05 samemouse
versus empty cage, Fig 1A). In addition, both males and females showed a higher investigation
of the novel versus the samemouse during the second 5 min of the social approach test, inde-
pendent of genotype and treatment, reflecting social recognition and preference for social nov-
elty (p< 0.05, Fig 1B).

Males and females showed a higher investigation of the novel versus the same juvenile dur-
ing the discrimination period of the social discrimination test, independent of genotype and
treatment, reflecting social discrimination and intact social memory (p< 0.05, Fig 1C).

ASM overexpression protected female mice against the detrimental
effects of amitriptyline on non-social memory
Males showed a higher investigation of the novel versus the same object during the second 5
min of the novel object recognition test, independent of genotype and treatment, reflecting
object recognition and preference for novelty. Whereas water-treated WT and t-ASM females
showed intact object recognition, amitriptyline-treated WT, but not t-ASM, females showed
impaired object recognition, reflected by similar investigation of the same and the novel object
(p< 0.05, Fig 2A).

Males showed a higher investigation of the novel versus the same object during the discrimi-
nation period of the object discrimination test, independent of genotype and treatment, reflect-
ing object discrimination and intact non-social memory. Whereas water-treated WT and t-
ASM females showed intact object discrimination, amitriptyline-treated WT, but not t-ASM,
females showed impaired object discrimination, reflected by similar investigation of the same
and the novel object (p< 0.05, Fig 2B).

ASM overexpression increases depressive- and anxiety-like behavior in
female, but not in male, mice
Water-treated female, but not male, t-ASMmice showed an increased feeding latency after a
fasting period of 24 h, reflecting increased depressive- and anxiety-like behavior (p< 0.05 ver-
sus WT, Fig 3). Amitriptyline reduced feeding latency in both male and female mice,

Table 1. Overall statistics for the behavioral data. Stimulus effect refers to both the empty cage and the
samemouse (Fig 1A), to the novel and the samemouse/juvenile (Fig 1B/1C), and to the novel and the same
object (Fig 2A and 2B).

Stimulus effect Stimulus x group effect

Social approach test (Fig 1A) F(1,89) = 150.2; p<0.001* F(7,89) = 2.49; p = 0.02*

Social approach test (Fig 1B) F(1,89) = 85.53; p<0.001* F(7,89) = 0.77; p = 0.61

Social discrimination test (Fig 1C) F(1,40) = 48.11; p<0.001* F(7,40) = 0.18; p = 0.99

Novel object recognition test (Fig 2A) F(1,89) = 54.41; p<0.001* F(7,89) = 0.95; p = 0.47

Object discrimination test (Fig 2B) F(1,40) = 52.62; p<0.001* F(7,40) = 0.92; p = 0.50

Treatment effect Genotype x gender effect

Novelty suppressed feeding (Fig 3) F(1,85) = 29.11; p<0.001* F(1,85) = 4.26; p = 0.04*

Group effect refers to each individual group, i.e. water-treated WT males = group 1; amitriptyline-treated WT

males = group 2; water-treated t-ASMmales = group 3; etc. Two-way ANOVA for repeated measures

(factors stimulus x group) or three-way ANOVA (factors genotype x treatment x gender) followed by

Bonferroni post-hoc test;

*p < 0.05.

doi:10.1371/journal.pone.0162498.t001

ASM in Social Behavior and Memory

PLOS ONE | DOI:10.1371/journal.pone.0162498 September 6, 2016 5 / 11



Fig 1. ASM overexpression impaired social preference (A) without altering preference for social
novelty (B) or social memory (C) in female, but not in male, mice. Percentage investigation of the empty
cage, the same and the novelmouse/juvenile during the first (A) and second (B) 5 min of the social approach
test (n = 10–13 per group) and during the discrimination period of the social discrimination test (C; n = 6 per
group). Mice were treated with amitriptyline (black bars) or water (grey bars) for 4 weeks before and during
behavioral testing. Social preference is reflected by higher investigation time directed towards the same
mouse versus the empty cage (A). Preference for social novelty (B) and social discrimination (C), as
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independent of genotype, reflecting decreased depressive- and anxiety-like behavior (p< 0.05
versus water-treated mice, Fig 3).

Discussion
This study demonstrates that ASM overexpression alters the behavior of mice in a sex-depen-
dent manner. In more detail, we could show that ASM overexpression impaired social prefer-
ence and induced a depressive- and anxiogenic-like behavior in female, but not in male, mice
without altering the preference for social novelty or social memory abilities in either sex.

indicators of intact social memory, are reflected by higher investigation time directed towards the novel
versus the samemouse/juvenile. Shown are means + SEM. * p<0.05 versus empty cage (A) or samemouse
(B)/juvenile (C).

doi:10.1371/journal.pone.0162498.g001

Fig 2. ASM overexpression protected females against the detrimental effects of amitriptyline on non-
social memory performance. Percentage investigation of the same and the novel object during the second
5 min of the novel object recognition test (A; n = 10–13 per group) and during the discrimination period of the
object discrimination test (B; n = 6 per group). Mice were treated with amitriptyline (black bars) or water (grey
bars) for 4 weeks before and during behavioral testing. Object recognition (A) and object memory (B), as
indicators of intact non-social memory, are reflected by higher investigation time directed towards the novel
versus the same object. Shown are means + SEM. * p<0.05 versus same object.

doi:10.1371/journal.pone.0162498.g002
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Furthermore, ASM overexpression had a protective role against the detrimental effects of ami-
triptyline on female, but not on male, non-social (object) memory.

We have previously shown a depressive- and anxiogenic-like phenotype in t-ASMmice in
the novelty-suppressed feeding paradigm and in the open field test, which was normalized by
amitriptyline treatment [9]. The present study confirmed this effect and extended these find-
ings by demonstrating that only female t-ASMmice showed this phenotype. Although Gulbins
et al. [9] have mainly used female t-ASMmice they made no distinction between sexes in their
study.

According to our hypothesis, t-ASMmice showed a lack of social preference, indicating def-
icits in social functioning. Similar to the depressive- and anxiogenic-like phenotype, these defi-
cits were only seen in female t-ASMmice, and could be normalized by amitriptyline treatment.
A possible explanation for these sex-dependent effects might be the modulatory effect of estro-
gens on ceramide synthesis. Ceramide can be generated either through the hydrolysis of sphin-
gomyelin, reaction catalyzed by the enzymes sphingomyelinases, including ASM and the
neutral sphingomyelinases 2–4, through de novo synthesis, reaction catalysed by several
enzymes, including ceramide synthases (CerS), and through a salvage pathway. Wegner et al.
[16] have shown that 17β-estradiol increased the activity of ceramide synthases CerS4 and
CerS5 in human breast cancer cells. It might be therefore possible that female t-ASMmice
have higher ceramide concentrations than male t-ASM mice due to increased de novo synthe-
sis, which in turn lead to a depressive- and anxiogenic-like phenotype reflected as increased
feeding latency in the novelty-suppressed feeding paradigm and lack of social preference in the
social approach test. In support of this hypothesis, Ishikawa et al. [17] have shown that serum
from healthy women contained higher levels of 42:1 ceramide metabolites than serum from
healthy men. However, it remains to be verified in future studies whether female t-ASMmice
show higher ceramide concentrations than male t-ASMmice.

Contrary to our hypothesis, t-ASMmice did not show any signs of memory impairment,
neither in social, nor in non-social (object) memory. In more detail, both male and female t-

Fig 3. ASM overexpression increased depressive- and anxiety-like behavior in female, but not in
male, mice. Feeding latency in a novel arena after a fasting period of 24 h. Mice were treated with
amitriptyline (black bars) or water (grey bars) for 4 weeks before and during behavioral testing (n = 10–13 per
group). Shown are means + SEM. p<0.05 * versus water-treated mice; # versusWTmice.

doi:10.1371/journal.pone.0162498.g003
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ASMmice showed unaltered preference for social novelty and social discrimination, indicating
intact short-term social memory abilities. Similarly, both male and female t-ASM mice showed
unaltered novel object recognition and object discrimination, indicating intact short-term non-
social memory abilities. Interestingly, amitriptyline treatment impaired both novel object rec-
ognition and object discrimination in female WT, but not t-ASM, mice, indicating that ASM
overexpression protected female mice against the detrimental effects of amitriptyline on non-
social memory. Amitriptyline has been previously shown to impair learning tasks in rodents
after acute [18–21] and chronic [21,22] administration. Although Everss et al. [21] have shown
that chronically-administered amitriptyline impaired learning in both male and female mice,
piracetam, a cyclic derivative of GABA which was shown to counteract the amnesic effects of a
variety of drugs in rodents [23–25], counteracted the effects of amitriptyline in male, but not in
female, mice suggesting that the effects of amitriptyline on memory performance might be
more severe in females. Orsetti et al. [22] have shown that chronic administration of amitripty-
line over 4 weeks via i.p. injections exerted a dose-dependent effect on object discrimination in
male Wistar rats, i.e. it impaired object discrimination at 5 mg/kg, but did not affect object dis-
crimination at 2 mg/kg. It might be therefore possible for higher doses of amitriptyline to
impair object memory in male WT mice as well.

Interestingly, female t-ASMmice were protected against the detrimental effects of amitrip-
tyline on non-social memory performance. We have previously shown that amitriptyline
inhibited the activity of ASM in the hippocampus in both WT and t-ASMmice, thereby
decreasing ceramide concentration [9]. Tabatadze et al. [26] have shown that the spatial and
episodic memory of mice was impaired after inhibition of neutral sphingomyelinase-2, an
enzyme that rapidly generates ceramide and seems to function upstream of ASM [27]. It might
be therefore possible that the impairments in non-social memory observed in female WT mice
after amitriptyline treatment are due to a decrease in ceramide concentration. In this case,
female t-ASMmice might be protected against these effects of amitriptyline due to their higher
basal ceramide concentration resulting from the increased ASM activity.

Taken together, we have shown that ASM overexpression results in sex-dependent effects
on social, depressive- and anxiety-like behavior. Despite these negative effects on behavior,
ASM overexpression protected female mice against the detrimental effects of amitriptyline on
non-social memory performance. This study suggests that female t-ASMmice represent a
model of depression with comorbid anxiety and social deficits, without impairments in social
and non-social memory.
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