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Autotransporters are the core component of a molecular nano-machine that delivers
cargo proteins across the outer membrane of Gram-negative bacteria. Part of the type V
secretion system, this large family of proteins play a central role in controlling bacterial
interactions with their environment by promoting adhesion to surfaces, biofilm formation,
host colonization and invasion as well as cytotoxicity and immunomodulation. As such,
autotransporters are key facilitators of fitness and pathogenesis and enable co-operation
or competition with other bacteria. Recent years have witnessed a dramatic increase in
the number of autotransporter sequences reported and a steady rise in functional studies,
which further link these proteins to multiple virulence phenotypes. In this review we provide
an overview of our current knowledge on classical autotransporter proteins, the archetype
of this protein superfamily. We also carry out a phylogenetic analysis of their functional
domains and present a new classification system for this exquisitely diverse group of
bacterial proteins. The sixteen phylogenetic divisions identified establish sensible
relationships between well characterized autotransporters and inform structural and
functional predictions of uncharacterized proteins, which may guide future research
aimed at addressing multiple unanswered aspects in this group of therapeutically
important bacterial factors.
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1 INTRODUCTION

Many processes essential for bacterial survival require proteins located extracellularly or at the
bacterial surface (1, 2). To facilitate their transport across the cell envelope, bacteria have evolved a
diverse range of secretion systems. This includes the secretion of virulence factors that promote
bacterial pathogenesis via functions such as invasion, adherence, dissemination, and immune evasion
(3, 4). Accordingly, these secretion systems are fundamental for bacterial pathogenesis. The most
ubiquitous are the Sec and Tat systems, which transport a large variety of proteins across the
phospholipid biolayer of the inner membrane (IM) (5). In Gram-negative bacteria, the outer
membrane (OM), with phospholipid and lipopolysaccharide leaflets, presents a second barrier to
secretion. To overcome the multilayered cell envelope, Gram-negative bacteria possess additional
org July 2022 | Volume 13 | Article 9212721
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secretion machineries including the chaperone usher system and
those classified as type 1 to type 9 secretion systems (T1SS to
T9SS) (1, 6). In addition to these established secretion systems,
other secretory systems are likely present in Gram-negative
bacteria and this list is expected to grow to include further
members (7, 8). These systems may directly secrete proteins
outside the cell (T1SS and T7SS), traverse multiple membranes
and deliver them into the cytoplasm of recipient cells (T3SS, T4SS,
T6SS), or transport them across the OM in two steps assisted by
the Sec or Tat IM transportation systems (T2SS, T5SS, T8SS,
T9SS) (9). Because the periplasm lacks ATP, most of these
machineries are large complexes including IM components to
access cytoplasmic ATP (10). By comparison, the T5SS does not
require ATP and is remarkably simple, typically involving a single
dedicated protein (2, 11, 12). This review focuses on the T5SS,
alternatively called the autotransporter system reflecting its
uniquely simple and energy-efficient transport mechanism.

1.1 The T5SS: Autotransporters (ATs)
The type 5 secretion system (T5SS) is the largest group of secreted
proteins in Gram-negative bacteria (13–15). While it encompasses
functionally diverse proteins, their journey from cytoplasm to OM
is similar (Figure 1A) (16, 17). T5SS proteins are termed
autotransporters (ATs) because each contains both, secretion
machinery (translocator) and functional cargo (passenger) (17).
In the cytoplasm, ATs carry an N-terminal signal peptide (SP) for
Sec-mediated transport across the IM where the SP is cleaved (23,
24). Periplasmic chaperones keep ATs unfolded until reaching the
OM (25–28). The translocator forms a pore in the OM to facilitate
the transport of the passenger to the cell surface (29). The
passengers are frequently comprised of repetitive secondary
structure elements, the sequential folding of which on the
bacterial surface may provide a driving force for AT
translocation (30–33). The first model of an autotransport
mechanism was proposed in 1987 (29) and this has remained
an active area of research with several recent reviews on the topic
(19, 34, 35).While these basic transport steps are largely consistent
with the initial model, later studies revealed the process is not
entirely autonomous. Most notably, the barrel assembly
machinery (BAM) complex, which catalyzes folding of many
OM proteins, is required for insertion of the translocator into
the OM and may also facilitate passenger translocation directly
(25, 36–39). Significant advances have also been made in our
understanding of passenger functions, and these are reviewed in
the current work.

While all T5SS members contain both a passenger and
translocator, there are variations in their domain arrangement
dividing them into subtypes Va to Vf (Figure 1B). The Va ATs
include, from the N- to C-terminus, a signal peptide, passenger
and translocator. The Vc ATs, that include YadA from Yersinia
ssp. are similar except that their passenger and translocator form
trimers, with three ATs forming a single passenger-translocator
in the bacterial outer membrane (40, 41). By comparison the Ve
ATs represented by intimin from enteropathogenic and
enterohaemorrhagic Escherichia coli are similar to that of the
Va subtype except that their passenger and translocator are
switched in position (42). In contrast, the passenger and
Frontiers in Immunology | www.frontiersin.org 2
translocator of Vb ATs such as Bordetella pertussis FHA, are
expressed as separate proteins. Their translocators include two
periplasmic polypeptide-transport-associated (POTRA)
domains (20, 43). Similarly, the Vd ATs such as PlpD from
Pseudomonas aeruginosa and FplA from Fusobacterium
nucleatum also include a POTRA domain, but only a single
POTRA domain exists between the passenger and translocator
which are expressed as a single protein (44, 45). Lastly, the type
Vf ATs represented by BapA from Helicobacter pylori are the
most distant subtype, whereby its inclusion into the T5SS is still
unclear (18). The likely passenger of the Vf ATs derives from a
loop that is part of its putative b-barrel translocator. The Va ATs
are the focus of this study, where for clarity, the term ‘AT’ will
hereafter refer to this group.

1.2 Type Va ATs
ATs are highly diverse outer membrane proteins that are
distributed widely throughout Gram-negative bacteria,
including the phylum Fusobacteria, the order Chlamydiales
and all classes of Proteobacteria (14). However, each AT
exhibits a similar domain organization consisting of an N-
terminal SP followed by a passenger, linker, and C-terminal
translocator (Figure 1A) (29, 46, 47).

1.2.1 Translocator: Conserved Sequence, Structure,
and Function
Translocators exhibit sequence conservation corresponding to
the Pfam entry PF03797 (48) and form b-barrel structures that
span the OM and facilitate passenger translocation (14, 47, 49–
53). The first translocator crystal structure, NalP from Neisseria
meningitidis, revealed a monomeric, 12-stranded b-barrel
forming a 10 Å by 12.5 Å pore (47). Homologous structures
have since been determined for distantly related ATs AIDA-I,
Hbp/Tsh, EspP, EstA, NalP, and BrkA (50–54). Along with the
observation that chaperones are required for proper secretion,
the narrow pore size suggests passengers are unfolded during
translocation (19, 27, 36, 47). However, folded passengers may be
secreted through a larger pore formed by the translocator
together with the BamA insertase (19, 25, 55). Despite this,
there are limitations on the complexity of folded regions
tolerated (31, 56, 57).

1.2.2 The Linker Domain, Cleavage, and Release
The linker connects the passenger and translocator, where after
transport of the passenger to the bacterial surface, the linker
forms an a-helix spanning the translocator pore (54). In many
cases, the passenger is cleaved from the translocator either within
the linker or at a nearby site. Cleavage is catalyzed by separate
proteases or by the AT itself via its own protease subdomain
contained within the passenger, or through an autoproteolytic
mechanism within the b-barrel (58–64). Many ATs remain at the
bacterial surface, either covalently attached to the translocator or
through non-covalent interactions after cleavage (65–68). These
ATs influence the surface properties of bacteria such as AIDA-I
promoting bacterial aggregation through self-adhesion (65).
Other ATs are released into the external milieu to act on
targets away from the bacterial surface, for example the
July 2022 | Volume 13 | Article 921272
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passenger of IgA1 protease is proteolytically released and moves
away to cleave host immunoglobulins (29). ATs can also be
released via outer membrane vesicles (OMVs) that pinch off
from the OM, for example Vag8 released in OMVs activates and
depletes host immune factors away from the bacterial surface
(68, 69).

1.2.3 Passenger: Common Structural Themes
Passengers execute the specific function of each AT, and thus
show more sequence variation compared to the translocators
(49). Despite their sequence and functional diversity, passenger
structures are strikingly similar. Most are predicted to include b-
solenoid content, with over 90% of published passenger
structures comprising a right-handed three-stranded b-helix
(70–81). Although the b-helix structure predominates,
variations include b-helices with curved or extended sections
and the addition of subdomains and loops that protrude out
from the b-helix (70–78, 80, 81). The passenger b-helix facilitates
multifunctionality as it may directly function as a binding
domain specialized to interact with specific host or bacterial
factors (70, 71) and can act as a scaffold for catalytic subdomains
Frontiers in Immunology | www.frontiersin.org 3
(72–75, 77, 81). Notably, some ATs lack b-helical structure
entirely, for instance, EstA from P. aeruginosa is the only
published passenger structure comprised of a globular catalytic
domain attached directly to the linker (54). Taken together,
published AT passenger structures can be divided into three
broad types: Type 1, b-helix only; Type 2, globular enzymatic
domain supported by a b-helix stalk; Type 3, enzymatic
domain without a b-helix (Figure 1B). However, given
the small proportion of AT structures available the full extent
of structural variation within this family remains to be
fully uncovered.

1.3 Functional Properties of AT Proteins
ATs are multifunctional proteins that contribute to supporting
bacterial survival and growth in different environments. Of
significance is that many of these functions are virulence traits
that enhance bacterial pathogenic potential (14, 82–87). AT
passengers exhibit highly varied sequences, consistent with the
variety of functions they perform (88). Some examples of the
roles executed by ATs include host adhesion, auto-aggregation,
biofilm formation, hemagglutination, invasion, intracellular
BA

FIGURE 1 | Biogenesis and domain architecture of the type 5 secretion system (T5SS). (A) AT secretion mechanism modelled on classical ATs with the following
domain organization: The N-terminal signal peptide (SP) is followed by the passenger, linker, and translocator. The SP targets the ATs for inner membrane (IM) secretion
via the SecYEG translocon which is subsequently cleaved by a periplasmic peptidase. The translocator inserts into the outer membrane (OM), forming a b-barrel with the
a-helical linker spanning its pore. The passenger is translocated to the OM surface where it folds into its tertiary structure. In some ATs, the passenger is cleaved and
secreted into the external milieu. Release can also occur through outer membrane vesicles (OMVs). (B) T5SS subtypes Va-Vf. Three basic domains (the passenger, linker,
and translocator) are present in all T5SS subtypes with variations in topology, domain order, and oligomeric states producing six different subtypes (16–18). These AT
classes include: the classical ATs (Va), where the translocator that forms a 12-stranded b-barrel in the outer membrane, and a mostly b-helical passenger, are part of one
polypeptide; the two-partner secretion systems (Vb), which are unique because the b-helical passenger is encoded by a separate gene from the translocator, which forms
a 16-stranded b-barrel that harbors two polypeptide-transport-associated (POTRA) domains that facilitate the interaction of the passenger and translocators; trimeric ATs
(Vc), which require three polypeptides to constitute a full 12-stranded b-barrel translocator to secrete the passengers which includes a coiled-coil stalk and b-helical head
regions; patatin-like ATs (Vd), with similar domain architecture to Va but where the translocator is a 16-stranded b-barrel that contains a POTRA domain; inverse ATs (Ve),
which comprise an inverted domain organization with an N-terminal signal sequence followed by the translocator, then the linker and a C-terminal passenger; and Hop-
family ATs (Vf) possessing an interrupted b-barrel translocator where the passenger is inserted in the loop joining the 1st and second b-strands, and therefore resembling
a prolonged loop protruding from the 8-stranded b-barrel. Outer membrane (OM) is indicated. Within classical Va ATs, passengers can adopt various structural
configurations: Type 1 passenger structures consist of a b-helix, which may be decorated with functional loops and are connected to the translocator via the a-helical
linker; in Type 2 structures a catalytic domain is present at the b-helix N-terminus; Type 3 structures lack a b-helix, instead a catalytic domain is directly connected to the
translocator via the linker. This visual representation of T5SS subtype domain organization is consistent with other reviews (16, 17, 19–22).
July 2022 | Volume 13 | Article 921272
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motility, toxicity, and immune evasion, along with enzymatic
functions such as protease, lipase, and sialidase activities (16). In
many cases, these ATs are expressed by bacterial pathogens
where these activities promote disease.

Based on functional properties, some classical AT proteins are
classified into four broad groups. These are the serine protease
ATs of Enterobacteriaceae (SPATEs) (87), subtilisin-like ATs
(17), self-associating ATs (SAATs) (89), and GDSL-lipases (90).

SPATEs are a family of secreted AT toxins that cleave a
variety of host substrates including fodrin, hemoglobin, mucin
and Factor V, among others (91). SPATEs are probably the best-
studied group of ATs where several reviews have covered current
knowledge about SPATE functions (87, 91–94). The passenger of
these ATs incorporates a b-helical scaffold with an N-terminal
chymotrypsin-like subdomain corresponding to the S6 serine
protease family in the MEROPS database (49, 95). Detailed
phylogenetic analysis performed on SPATEs have divided these
proteins into Class-1 cytotoxins that degrade intracellular
substrates and Class-2 immunomodulators that degrade
extracellular substrates (87).

AnothergroupofATproteases are the subtilisin-likeATs,which
may be anchored to the bacterial surface or released into the
extracellular environment (96–98). These ATs are predicted to
contain a b-helical stalk with an N-terminal subtilisin-like
subdomain corresponding to the S8A serine protease family in
theMEROPSdatabase (17, 95).Overall, subtilisin-likeAT functions
are poorly understood, but have been associated with surface
maturation of other virulence factors to promote virulence
functions like cytotoxicity, aggregation, and hemagglutination (17).

Self-associating ATs (SAATs) are a prominent functional
subgroup in the AT superfamily (89). These diverse OM-
anchored adhesins are predicted to share b-helix architecture
in their passenger, as shown for two canonical SAATs, Ag43 and
TibA (71, 80). Although ATs in this group can have different
functions, all promote bacterial aggregation and biofilm
formation through self-association between passengers on
neighboring bacteria (71, 89).

Another class of ATs with catalytic activity are the GDSL-
lipase ATs. These ATs lack the archetypal b-helix scaffold found
in the majority of ATs (54, 90) and are primarily membrane
anchored where they hydrolyze ester bonds in host or bacterial
lipids (90). Although their natural substrates are unknown, it is
assumed they hydrolyze membrane lipids, where they have been
shown to affect host cell lysis, lipid and phosphate metabolism,
adhesion, and motility (90).

While the identification and definition of these functional
groups has provided an important framework for understanding
AT proteins, many ATs have been characterized that do not
belong to these established functional group.
2 PHYLOGENETIC CLASSIFICATION OF
AT PROTEINS

Over the past decades, different groups have devoted
considerable effort to the phylogenetic characterization of AT
Frontiers in Immunology | www.frontiersin.org 4
proteins. Henderson, et al. (17) published a landmark
phylogenetic analysis of ATs with described phenotypes. This
analysis used the sequences of the more conserved AT
translocator resulting in the division into 11 subgroups. This
enabled comparison and description of the functions within each
phylogenetic group and has provided a guiding principle for AT
research for the last 18 years. Since this time Celik, et al. (14)
using a bioinformatics strategy, presented a large-scale
phylogenetic analysis with hundreds of predicted AT passenger
sequences, which highlighted the anticipated diversity and
widespread distribution of these proteins. Additionally, other
phylogenetic analyses have been reported focused on specific AT
subgroups (21, 87, 88, 99). With the advent of genome
sequencing techniques, the past years have seen a substantial
increase in the number of AT sequences reported in public
databases along with a steady rise in AT functional
characterization, to the point where there is now sufficient data
for functional phylogenetic classification studies.

2.1 Sequence Alignment of Characterized
ATs
In this work we sought to carry out a comprehensive analysis of
functionally characterized ATs. Given the passenger of ATs is the
region primarily responsible for facilitating the associated
bacterial phenotype through its interactions with the host and/
or environment, our analysis concentrated on AT passengers
alone to gain insights into the functional relationships
between ATs.

Functionally characterized ATs were identified from the
literature, particularly focusing on previous reviews (16, 17, 19,
94) and by searching published databases (PubMed and Web of
Science) using the keywords “autotransporter” and “T5SS”. After
eliminating those lacking experimental characterization, 112 ATs
were identified from 32 species across 24 genera of Gram-
negative bacteria. Proteobacteria accounted for 97 ATs
including classes a-proteobacteria (8 ATs), b-proteobacteria
(16 ATs), ϵ-proteobacteria (7 ATs), and g-proteobacteria (66
ATs, including 31 from E. coli). Twelve ATs from Chlamydiae
and 3 ATs from Fusobacteria are also represented. Full-length
amino acid sequences were retrieved from the National Centre of
Biotechnology (NCBI) for prediction of the SP, a-helical linker,
and translocators using SignalP 4.1 (100), PSIPRED (101), and
InterPro (102), respectively. Table S1 details the accession
numbers for all 112 ATs analyzed. Passenger sequences were
identified and recorded as the region flanked by the SP and a-
helical linker. PSIPRED secondary structure predictions were
also used to predict the secondary structure of the passengers.
Clustal Omega (103) was used to generate a multiple sequence
alignment of the passengers, which demonstrated high diversity
within the AT family. Consistent with previous reports (14), we
found that passenger lengths were highly varied, ranging from
193 to 3,374 aa with an average of 945 aa (Supplementary Figure
S1). This diversity of sequence lengths between ATs may have
skewed some of the phylogenetic relationships, particularly for
very short and very long sequences. A heatmap of pairwise
identities (Supplementary Figure S2) from the alignment
July 2022 | Volume 13 | Article 921272
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identified 15 high-identity groups, with low identities between
the groups, indicating that each group is highly unique.

2.2 Functional Phylogenetic Classification
of ATs
To obtain a phylogenetic classification that reflects AT function,
following sequence alignment of the 112 curated passengers, an
unrooted consensus tree was generated using PhyML (104) with
100 bootstrap iterations and visualized using the interactive tree
of life (iTOL) (105). The consensus PhyML tree found the 112
AT passengers formed 16 homologous groupings (Figure 2) with
Frontiers in Immunology | www.frontiersin.org 5
15 of these corresponding to the high-identity groups seen in the
multiple sequence alignment pairwise identity heatmap
(Supplementary Figure S2). The rationale for grouping
ATs together took into consideration strong phylogenetic
relationships on the tree (cladding together, short branch
lengths, and strong bootstrapping support values) as well as
similar reported functions and structural features. More distant
similarities between nearby groups that share functional themes
are considered together as larger clusters. The 16 phylogenetic
groups are organized into broad AT functional themes, and
importantly show that previously established functional groups
FIGURE 2 | Phylogenetic tree of AT passengers. Unrooted maximum-likelihood phylogenetic tree using Clustal Omega MSA and PhyML with 100 bootstrap iterations
and visualized using the interactive tree of life (iTOL). Branch color (red to green) indicates branch support values of 0–90%. Phylogenetic groups are numbered 1─16
with major functional categories indicated by colored shading. 14 published passenger structures are mapped onto the consensus tree, highlighting gaps in structural
knowledge. AT structures (54, 70–77, 79–81, 106, 107) were visualized with PyMOL Molecular Graphics System (Schrödinger, LLC) (108). Red cross (+) indicates
incomplete passenger structure. Red double brackets indicate ungrouped ATs.
July 2022 | Volume 13 | Article 921272
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form distinct clades: SPATEs (Group 1-2), SAATs (Group 4),
GDSL-lipases (Group 6), and subtilisin-like ATs (Group 15).
Furthermore, several of these individual clades form part of
larger functionally related clusters (Clusters A-C).

Successful identification of these established groups validates
the ability of this phylogenetics strategy to distinguish AT groups
that share functional and structural similarities. This in turn
supports the interpretation of novel groups identified here as
functionally related AT classes. The groupings are discussed
below, with overall functional themes assigned to each group.
Table S1 provides a comprehensive list of the ATs and their
experimentally defined functions.

2.2.1 Cluster A (Groups 1–3): Chymotrypsin-Like
Serine Proteases
Cluster A contains Groups 1–3 totaling 26 ATs belonging to the
chymotrypsin-like serine protease family (95). This includes
Frontiers in Immunology | www.frontiersin.org 6
Class-1 SPATEs (Group 1) and Class-2 SPATEs (Group 2) as
defined by Ruiz–Perez and Nataro (87). These are now brought
together with SPATE-like ATs (SLATs) from outside of the
Enterobacteriaceae (Group 3). This is the first time to our
knowledge that the close relationship between the SPATEs and
SLATs has been shown. This relationship can be interpreted with
confidence considering the high branch support values
connecting Groups 1–3 (88–95%) and the conservation of
well-defined structures among all Cluster A proteases. These
are probably the best characterized ATs including six passenger
structures (Pet, EspP, IgA1, Hap, SepA, and Hbp) exhibiting
similar Type 2 architecture (Figure 1B) with a b-helix
supporting an N-terminal serine protease subdomain (d1) (72–
75, 77, 81). Extended loops arising from the b-helical stalk give
rise to further smaller subdomains d2–d4 where d2 resembles a
chitin-binding domain, d3 forms an a-helix, and d4 forms a b-
hairpin (Figure 3B) (87). Recent work revealed that subdomain
B C

A

FIGURE 3 | Virulence functions of ATs from Groups 1-4. (A) Cluster A chymotrypsin-like protease AT mechanisms. Cluster A protease ATs (Groups 1–3) are
released into the extracellular space and move away from the bacterial surface to degrade host proteins. Group 1 proteases then enter host cells and degrade
intracellular cytoskeletal components, triggering cytotoxicity. Group 2 proteases remain in the extracellular space where they degrade large host glycoproteins. Group
3 proteases degrade extracellular immunoglobulins or enter host nuclei to degrade nuclear proteins, triggering cell death. Some Cluster A proteases can execute
additional functions if they remain at the bacterial surface where they contribute to adhesion to host and bacterial molecules. This includes some members of Group
2 and Group 3, which can promote bacteria-bacteria or bacteria-host adhesion interactions. (B) Subdomain organization of a representative Cluster A protease AT.
Structure of the Hbp (Group 2) passenger showing the structural elements that are conserved across Cluster A proteases including the b-helical stalk (grey) which
acts as a scaffold supporting the globular d1 protease subdomain (orange), the d2 subdomain which resembles a chitin-binding domain (pink), the a-helical loop of
the d3 subdomain (green), and the b-hairpin loop of the d4 subdomain (blue). These subdomains are highly conserved, except d2, which is absent from Group 1
proteases. (C) Group 4 Self-associating ATs (SAATs) adhesion mechanism. The SAAT Ag43 on adjacent bacterial surfaces self-associate in a molecular Velcro-like
manner. This bacteria-bacteria contact contributes to aggregation and biofilm formation. The structures of Hbp (PDB: 1WXR) (75) and Ag43 (PDB: 4KH3) (71) were
visualized with PyMOL Molecular Graphics System (Schrödinger, LLC) (108).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Clarke et al. Function and classification of Autotransporters
d3 mediates host cell internalization of Pet from Group 1 by
binding cytokeratin-8 to initiate receptor-mediated endocytosis,
an essential step in Pet-mediated virulence (109). Currently, no
functions have been associated with d2 and d4 subdomains. The
finding that the b-helix extended loop that forms d3 is involved
in cell binding interactions is consistent with research on the AT
adhesins, where their b-helices directly participate in binding
interactions (70, 71, 106).

While their clustering together reflects structural conservation,
the division of Cluster A proteases into Groups 1–3 reflects
their differences.

Group 1 contains sixATs (SigA, EspP, EspC, Pet, Sat, TagC) and
encompasses the Class-1 SPATEs described by Ruiz–Perez and
Nataro (87). These ATs enter host cells and degrade a vast range of
large intracellular host proteins, includingcytoskeletal components,
which causes cytotoxicity and tissue damage at the site of infection
(Figure 3A) (110–115). Most originate from diarrheagenic
pathogens of the Enterobacteriaceae family where cytotoxicity
contributes to cell exfoliation that is characteristic of diarrheal
disease. This includes SigA from Shigella flexneri (112) alongside
EspP, EspC, and Pet from enterohemorrhagic E. coli (EHEC),
enteropathogenic E. coli (EPEC), and enteroaggregative E. coli
(EAEC) strains, respectively (115–117). Meanwhile, Sat and TagC
are expressed by E. coli strains associated with urinary tract
infections (Sat is also expressed in other pathogens such as
enteroaggregative E. coli (EAEC) and Shigella flexneri) (114, 118).

Group 2 contains 14 ATs (TagB, AdcA, RpeA, Sha, Vat, Hbp/
Tsh, TleA, PicC, Pic, PicU, EspI, EpeA, SepA, EatA) and
encompasses the Class-2 SPATEs described by Ruiz–Perez and
Nataro (87). These ATs primarily cleave extracellular targets
including mucin and immune glycoproteins (Figure 3A) (91,
119–123). Most originate from enteric pathogens responsible for
intestinal infections where mucin degradation increases
penetration into the protective mucous layer covering
intestinal tissue. This includes PicC and AdcA from
Citrobacter rodentium (119, 124), SepA from Shigella flexneri
(125), alongside ATs from E. coli strains including EpeA from
EHEC (122), TleA and EatA from enterotoxigenic E. coli (ETEC)
(120, 126), EspI from Shiga toxin-producing E. coli (STEC)
(127), Pic from Shigella flexneri and EAEC (128), and RpeA
from rabbit-specific EPEC (REPEC) (129). Meanwhile, ATs such
as Sha, TagB, PicC, Hbp, and Vat derive from extraintestinal
pathogenic E. coli strains (114, 124, 130, 131), that cause urinary
tract infections and wound formation (132). Hbp (haemoglobin
protease), first found in a human E. coli pathogen (EB1) isolated
from a peritoneal would infection, shares 99.8% identity with
Tsh (temperature-sensitive hemagglutinin), which originates
from the avian pathogenic E. coli which causes severe
respiratory disease in avian populations (75, 130).

Group 3 contains five ATs and encompasses the SPATE-like
ATs (SLATs) (MspA, Hap, App, IgA1 proteases). SLATs have
properties found in both Class-1 and Class-2 SPATEs
(Figure 3A). These ATs are expressed by pathogens that infect
mucosal epithelia and may become invasive to cause severe
disease. For example, App and MspA derive from Neisseria
meningitidis, while IgA protease and Hap derive from
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Haemophilus influenzae (133–135). These are respiratory
pathogens that can disseminate to cause meningitis (136–138).
IgA protease is also expressed by Neisseria gonorrhoeae, a
urogenital pathogen that can spread to cause septic arthritis
and endocarditis (139, 140). SLAT functions are well-suited to
such pathogens including immune evasion and adhesion to host
and bacterial surfaces, which promotes mucosal colonization, as
well as tissue damage, which is often required for dissemination.

Specifically, Hap has been shown to adhere to host surfaces
and increase aggregation, while App andMspA bind to and enter
host cells, degrade histone proteins in the nucleus, and trigger
cell death which likely causes tissue damage (81, 141–145).
Meanwhile, the IgA1 proteases degrade IgA, which is the most
abundant immunoglobulin and an important line of defense at
mucosal surfaces (141, 146, 147).

2.2.2 Group 4: Biofilm Forming AT Adhesins
Perhaps the most striking feature of AT adhesins is their
sequence diversity despite overall conservation of Type 1 b-
helical passenger architecture (Figure 1B) in all published
structures (Figure 2) (70, 71, 76, 79, 80, 106). This diversity
underlies their dispersal into 11 phylogenetic groups. Of these,
the best studied adhesins are the SAATs encompassed by
Group 4. SAATs Ag43, Cah, TibA, and AIDA-I are expressed
by E. coli where they self-associate with other SAATs on adjacent
bacterial surfaces to promote aggregation and biofilm formation
(Figure 3C) (65, 89, 148–150). These prototypical SAATs are
close together within Group 4, which reflects their functional and
structural similarities (71, 80, 150–153). Group 4 includes four
additional ATs YapC, YpjA, YcgV, YapA, and RadD, all of which
are associated with biofilm formation except YapA for which no
biofilm studies have been published (154–158). These proteins
may be novel members of the SAAT class given their proximity
to prototypical SAATs and functional role in biofilm formation.
However, the mechanism used to promote biofilm formation
remains unknown and structural studies have not been published
for YpjA, YcgV, YapA, or RadD. Using PSIPRED (101) we
predict a b-helix structure along the full length of the
passenger for each of these proteins, which is consistent with
the Type 1 AT structure observed in SAATs.

Most Group 4 ATs derive from pathogenic E. coli including
diarrheagenic strains. This includes YpjA from EHEC (155),
TibA from ETEC (159), and AIDA-I from EPEC (160).
Meanwhile, Ag43 is one of the most prevalent AT adhesins
across many E. coli subtypes (21) and YcgV was first identified in
the E. coli K-12 laboratory strain (156). Conversely, YapC and
YapA are expressed by Yersinia pestis, the causative agent of
pneumonic, septicemic, and bubonic plague (154, 157). Finally,
RadD is the only member of Group 4 originating outside the
Proteobacteria phylum, being expressed by Fusobacterium
nucleatum, which contributes to periodontal disease (158).
Notably, the SAAT mechanism has only been characterized for
ATs from E. coli (71, 161, 162). Future studies should determine
if YapC, YapA, and RadD use an Ag43-like dimerization
mechanism to expand our understanding of ATs adhesins in
important pathogens other than E. coli (70, 76, 106).
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Ag43 is possibly one of the best studied AT in Group 4 and
the AT family more broadly. A high-resolution structure of the
Ag43a passenger from uropathogenic E. coli revealed an L-
shaped b-helix forming head-to-tail homodimers through
‘Velcro-like’ non-covalent interactions along the b-helix (71).
Ag43 homologues from other E. coli pathogens are now known
to follow a similar mechanism of interaction to that of Ag43a
(161, 162). It is expected that similar modes of action exist for the
other ATs in this group such as TibA and AIDA-1 (89). Apart
from self-interactions, some of the ATs in this group can also
promote binding to host surfaces (152, 153, 159). How the self-
interaction binding is coordinated with binding to host surfaces
is unknown. Nevertheless, the Ag43a self-interaction mechanism
was one of the first clear indications that the b-helix can directly
participate in AT function, and since this time AT b-helices from
other groups have been shown to participate in diverse binding
interactions (70, 106).

2.2.3 Group 5 VacA and Homologs
The best characterized protein in Group 5 is VacA, owing to its
important role as a pore-forming toxin during Helicobacter
pylori gastric infection (163–165). The VacA mechanism of
action has been reviewed extensively elsewhere (166). Briefly,
after being released from the OM, VacA enters host cells to form
oligomeric pores in intracellular host membranes, thereby
causing vacuolating cytotoxicity (166). A crystal structure of a
VacA fragment (residues 388–844), revealed a b-helical
Frontiers in Immunology | www.frontiersin.org 8
passenger structure (78). This was validated by a cryo-EM
structure of full-length VacA, which showed that the
remainder of the passenger continued into a right-handed b-
helix. Importantly, cryo-EM showed that the VacA membrane
pore is formed by homo-hexameric rings through interactions
between the N-terminal region of each b-helix, with this region
also responsible for making contact with the host membrane
(107, 167) (Figure 4). Other Group 5 ATs include, ScaA from
Orientia tsutsugamushi, which causes scrub typhus, and rOmpA
from Rickettsia rickettsii, which causes rocky mountain spotted
fever (169, 170). Although less is known about these proteins,
both mediate adhesion to host epithelial cells (169–171) and
PSIPRED (101) predictions indicate b-helix structure along both
passengers, suggesting structural similarity to the b-helical VacA.

2.2.4 Group 6 GDSL-Lipases
Group 6 encompasses the GDSL-lipases EstA, ApeE, PLB, and
McaP, all of which exhibit esterase activity catalyzing the
hydrolysis of generic lipid substrates (172–175). Although their
biological substrates remain unknown, Group 6 ATs may have a
broad role in damaging the phospholipids of host cell
membranes (90). Given their small size (<300 aa) and that
they largely remain tethered to the outer membrane, the
activities of these lipases are likely restricted to the immediate
bacterial surface (172–176). The lipolytic activity of EstA has
been associated with lipid biosynthesis, bacterial motility, and
biofilm regulation (172). Meanwhile, McaP in addition to
FIGURE 4 | Virulence functions of ATs from Groups 5–12. VacA forms oligomeric pores in intracellular host membranes. VacA (Group 5) forms oligomeric pores in
host intracellular membranes including endosomes through horizontal interactions in the lipid bilayer. PmpD is an oligomeric host adhesin. PmpD (Group 7) forms
oligomeric rings within the bacterial OM and facilitates host cell invasion. Oligomeric ring structures based on electron microscopy images published by Swanson,
et al. (168). Vag8 displays dual immunomodulation and adhesion activities. Vag8 (Group 9) binds to and inhibits the host immune regulator C1-inhibitor (C1-INH),
which perturbs the host immune response. Vag8 also promotes adhesion to host cells through an unknown binding interaction. UpaB allows uropathogenic E. coli to
bind directly to the urogenital epithelia. UpaB (Group 12) binds to ECM proteins on the surface of epithelial cells, which allows bacteria to bind directly to host
surfaces within the urogenital tract, thus promoting disease (70). The structures of VacA (PDB: 6NYF) (107), Vag8 (PDB: 7AKV) (106), and UpaB (PDB: 7AKV) (70)
were visualized with PyMOL Molecular Graphics System (Schrödinger, LLC) (108).
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lipolytic activity also promotes bacterial adhesion to host cells
(175, 176). The EstA crystal structure revealed the first non-b-
helical AT passenger, whereby the protein is predominantly a-
helical due to the GDSL-lipase domain which is directly
connected to the a-helical AT linker domain (54). Among
published structures, EstA is the only example of Type 3
passenger architecture comprising a catalytic domain without a
b-helical stalk (Figure 1B). InterPro (102) predicted the lipase
domain occupies the entire length of the passenger for ApeE,
PLB, and McaP while PSIPRED (101) did not predict b-solenoid
structure in this region, suggesting a non-b-helix structure
similar to that of EstA. Although this is the only structural
evidence of classical ATs lacking a b-helix, this is not uncommon
in the wider T5SS. However, outside of the Va group, a-helical
ATs tend to form much larger overall structures (17). All Group
6 ATs derive from g-proteobacteria including EstA from
Pseudomonas aeruginosa, an opportunistic pathogen associated
with nosocomial infections (172), ApeE from Salmonella enterica
Typhimurium, which causes the diarrheal disease salmonellosis
(173), PLB fromMoraxella bovis, which causes infectious bovine
conjunctivitis (174), and McaP from Moraxella catarrhalis,
which causes otitis media and upper respiratory tract
infections (175, 176).

Notably, the clades for Groups 5 and 6 are close together,
linked with strong branch supports in the phylogenetic tree
(Figure 2) and can share up to 20% local amino acid identity.
However, they are not known to share structural or functional
similarities. The proximity of these distinct groups is therefore
striking, and their sequence similarities are not confined to local
regions or motifs, but rather spread throughout the sequences,
possibly inferring a distant evolutionary relationship (data
not shown).

Not shown within the tree but included within this group is
the GDSL-lipase BatA from Burkholderia (177). BatA with only
up to 28% sequence identity to members of this group, positions
at its margins. Notably, BatA also shares significant sequence
identity to the Group 13 adhesins.

2.2.5 Cluster B (Groups 7–8): Adhesins
Cluster B encompasses Groups 7 and 8 containing ATs that
function as adhesins. Host binding is common to all Cluster B
ATs while many Group 8 ATs also contribute to bacterial
aggregation and/or biofilm formation (155, 156, 178–195).
Furthermore, PSIPRED (101) predicted b-helix structure for all
Cluster B passengers, which is consistent with the b-helical
structure observed in the partial structure of IcsA (79).

Group 7 contains nine ATs designated ‘polymorphic
membrane proteins’ (Pmps) including Pmp6 and Pmp21 from
Chlamydia pneumoniae along with PmpA, PmpD, PmpE, PmpF,
PmpG, PmpH, and PmpI from Chlamydia trachomatis. These
are typically OM-anchored ATs that promote host cell adhesion
and invasion, consistent with the intracellular lifestyle of the
Chlamydia spp. from which they are derived (178, 179, 181, 196).
Beyond this broad function, most Pmps are poorly characterized
with no published structures. However, PmpD and Pmp21 have
been observed to form higher-order oligomers (168, 197, 198).
For PmpD, these oligomers appear as flower-like rings in the
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bacterial OM (168) (Figure 4). Notably, VacA, which is placed
nearby in Group 5, is also known to form flower-like oligomers
within lipid bilayers (199). This oligomerization may be
important in the Pmp binding mechanism, however, the
functional significance of PmpD and Pmp21 oligomerization
has not been well established. Pmp21 is the only Group 7 AT
where the binding partner required for host cell entry is known
as it has been shown to promote invasion of host cells by binding
to epidermal growth factor receptor (EGFR) (180).

Group 8 consists of ten proteins, YapE, MisL, YapG, Yfal,
ShdA, EhaJ, UpaE, EhaA, IcsA and AatA, most of which derive
from Enterobacteriaceae that cause diarrheal disease. This
includes EhaA and EhaJ from diarrheagenic E. coli (155, 194),
ShdA and MisL from Salmonella enterica Typhimurium (184,
193), and IcsA from Shigella flexneri (200). Others including
AatA, YfaL, and UpaE derive from extraintestinal E. coli (156,
183, 195). Group 8 ATs that are found outside the
Enterobacteriaceae family, include YapE from Yersinia pestis
and YapG from Yersinia pseudotuberculosis, the latter causing
Far East scarlet-like fever (157, 188).

Group 8 proteins are outer membrane anchored and
primarily act as adhesins, with many having dual binding
abilities to both host and bacterial targets. Specifically, most,
including YapE, MisL, ShdA, EhaJ, UpaE, EhaA, IcsA and AatA
mediate host adhesion (155, 183, 184, 186–189, 191–195, 201).
For ShdA, MisL, EhaJ, and UpaE, this involves binding to
extracellular matrix (ECM) proteins (184, 186, 187, 193–195).
Whether ECM binding is a common host binding mechanism
across Group 8 remains unknown as binding partners on host
epithelial surfaces have not been published for YapE, EhaA, IcsA,
and AatA. However, a host intracellular target of IcsA is known,
Neural Wiskott–Aldrich syndrome protein (N-WASP), which
contributes to the regulation of actin polymerisation as part of
the cell cytoskeleton (202). IcsA activates N-WASP to promote
intracellular actin-based spread of S. flexneri through the colonic
epithelial layer. Regarding bacterial aggregation and/or biofilm
formation, all but ShdA are associated with this phenotype (155,
156, 182, 188, 190, 192, 194, 195). However, the mechanism by
which these ATs promote bacterial aggregation/biofilm
formation has not been determined. IcsA promotes both
biofilm formation and forms homodimers, which has raised
the possibility of self-association similar to that of Ag43a (190,
203). However, a link between IcsA dimerisation and biofilm
formation has not been established and dimerisation has not
been demonstrated for other group members. Furthermore, the
only passenger structure for Group 8 is a small IcsA fragment
(residues 419–758) in the monomeric form, providing no insight
into self-association (79).

2.2.6 Cluster C (Groups 9–13): Adhesins
Cluster C (Groups 9–13) contain a separate cluster of adhesin ATs
that are primarily anchored to the outer membrane where their
predominant function is adhesion to host cells and/or surfaces.
Currently, Groups 10, 11, and 13 lack published structures.

Group 9 contains four ATs (Vag8, BrkA, Prn, and BapC), all
of which derive from Bordetella spp. and exhibit high
conservation in sequence, structure, and function. The
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reported crystal structure of Prn (76) and the cryo-EM structure
of Vag8 (106) both reveal Type 1 AT b-helices. Meanwhile,
PSIPRED (101) predicts b-helical passengers for BrkA and BapC,
which is also consistent with Type 1 AT b-helices.

Group 9 ATs exhibit dual host adhesion and immune evasion
activities (69, 204–206). For Prn, host binding involves its RGD
integrin-binding motif (205). BrkA, BapC, and Vag8 also contain
RGD motifs, suggesting a possible common host binding
mechanism (206–208). To date, the host factors recognized by
Group 9 ATs to promote cell adhesion are unknown.
Furthermore, while evasion of the innate immune response is
also common among Group 9 ATs, each is unique in its
approach. Prn affords protection from the inflammatory
response and neutrophil-mediated clearance (209, 210).
Meanwhile, BapC, Vag8, and BrkA promote serum resistance
by reducing complement-mediated killing (68, 208, 211, 212).
The Vag8 immune evasion mechanism is the best understood.
Vag8 enhances serum resistance by inhibiting the serpin C1-
inhibitor (C1-INH) (106, 212), which regulates the complement
system (68, 212). Structural studies have shown that Vag8 binds
C1-INH using extended loops lining one face of its b-helix (106),
thus providing further evidence that b-helix structures can
directly participate in AT functions.

Although Group 9 ATs are present at the outer membrane,
growing evidence suggests Bordetella may deploy ATs (i.e., Prn,
BrkA, and Vag8) in OMVs, disseminating AT function away
from the bacterial surface (68, 213, 214). This finding has been
crucial for understanding Vag8 function. Hovingh, et al. (68)
proposed that OMVs coated with Vag8 block C1-INH and
enable unregulated complement activation away from the
bacterial surface, thus protecting bacteria by depleting
complement factors before they can be deposited on the
bacterial surface (Figure 4).

Group 10 contains two ATs derived from pathogenic E. coli,
UpaC and EhaB, both of which promote biofilm formation (215,
216). In addition, EhaB also mediates host adhesion by binding to
ECM proteins (155). Group 11 contains three ATs (FaaA, VlpC,
ImaA) that increase murine gastric colonization byH. pylori (217).
Their placement in Cluster C suggests their contribution to
colonization may involve host adhesion, aggregation, or biofilm
formation. Unfortunately, to date, little is known about the
mechanism of action of Group 10 and 11 ATs.

Group 12 comprises five ATs that promote host adhesion, UpaB,
UpaH, PmpB, PmpC and Pmp20 (178, 179, 215, 218, 219). For UpaB
and UpaH, both of which derive from uropathogenic E. coli, this
involves binding to host ECM proteins (215, 218, 219). Meanwhile, the
less-defined members PmpB, PmpC, and Pmp20 promote adhesion
and entry of Chlamydia into host cells (178, 179). However, ECM
binding or biofilm formation studies have not been conducted for the
Pmps. The best-studiedmember of Group 12 is UpaB, which promotes
bladder colonization through direct adhesion to urogenital epithelia
(215). The crystal structure of the UpaB passenger is consistent with a
Type 1 AT b-helix (70). However, its structure reveals unique features,
in particular long loops and b-strand extensions projecting out from
the b-helix, which form a long hydrophilic groove (70). UpaB was
found to bind polysaccharides at this site, and in silico modelling and
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the resemblance of this groove to the active site of glycosaminoglycan
(GAG) lyases, suggests that UpaB binds GAGs lining the human
uroepithelium using this binding groove (70). In addition, on the
opposite side of UpaB’s b-helix is a second binding site which was
shown to bind human fibronectin. Altogether, this demonstrates that
residues within the UpaB b-helix contribute to two host binding sites
that promote urinary tract colonization. UpaB is therefore an excellent
example of an AT b-helix exhibiting multiple direct contributions to
the virulence phenotype.

Group 13 contains 11 ATs (CapA, YapJ, YapK, YapV, rOmpB,
BatB, BmaC, XatA, BapF, AoaA, AlpA), most of which are
anchored to the bacterial surface and function as adhesins.
Notably, this is the largest adhesin group in the present study
and the most diverse in sequence identity (ranging from 0–81%),
passenger length (ranging from 280–3333 aa), and taxonomically
with ATs deriving from ten Genera: Yersinia, Campylobacter,
Pseudomonas, Brucella, Bordetella, Rickettsia, Helicobacter,
Azorhizobium, Burkholderia, and Xylella (83, 177, 220–227).
This covers a wide range of bacteria, from H. pylori, among the
most widespread and oldest human pathogens and a major cause
of stomach cancer worldwide (227), toXylella fastidiosa, a genus of
plant pathogens that is rapidly spreading across the globe and
destroying important agricultural crops with huge economic
impacts (225). This diversity is reflected by the bootstrapping
values with Group 13 showing the lowest within-group
bootstrapping among the Cluster C adhesins (Figure 2).

Consistentwith the rest ofCluster C, PSIPRED (101) predictions
indicate b-helical passenger structure for the majority of Group 13
ATs. However, notable exceptions include AlpA which has been
predicted to be a-helical. Another unusual feature only shared by
AlpA and CapA in this group includes the lipidation at the N-
terminusof theirmaturepassengers (220, 227). Lipidation is thought
to allow the passengers to remain associated with the bacterial
surface (98), a characteristic which would be favorable for
an adhesin.

Overall, the reported functions for Group 13 ATs broadly
resemble those of other Cluster C adhesins. Specifically, BapF
and XatA promote bacterial aggregation and/or biofilm
formation (225, 226). Meanwhile, YapJ, YapK, YapV, CapA,
BmaC, rOmpA, and AlpA promote host adhesion, including
ECM binding for the Yaps and BmaC (220–222, 224, 226–228).
Additionally, BatB binds immunoglobulins to perturb the
human immune response (223), while AoaA promotes the
symbiotic relationship between legume root nodules and
rhizobia by dampening plant defenses (83). While these
immunomodulatory activities are somewhat reminiscent of the
dual action adhesins and immunomodulators of Group 10, the
adhesive properties of BatB and AoaA have not been reported.

Collectively, although Group 13 ATs display related
functional properties, these proteins are very diverse and their
phylogenetic relationships with well characterized ATs are
uncertain, which warrants further studies on this AT grouping.

2.2.7 Group 14: a-Helical Adhesins
Our phylogenetic analysis identified a separate clade containing
four surface-bound ATs that contribute to host adhesion
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including Aae from Acintobacillus actinomycetemcomitans (96)
alongside Sca1, Sca2, and ScaC from Rickettsiaceae (229–231).
Other functions associated with Group 14 include biofilm
formation for Aae and intracellular invasion and motility for
Sca2 (232, 233). Mechanistically, ATs in this group are poorly
characterized and no structures are currently available in the
PDB. Interestingly, PSIPRED (101) analysis predicts a-helical
passenger structures for all Group 14 ATs, distinguishing this
group as a type Va AT subfamily composed only of a-
helical adhesins.

2.2.8 Group 15: Subtilisin-Like Serine Proteases
Group 15 contains 13 subtilisin-like protease ATs with remarkably
diverse taxonomic backgrounds primarily deriving from b- and g-
proteobacteria. This includes PspB_F, Pfa, BcaA, EprS, and PspA
from Pseudomonas spp. (234–238), SSP and PrtT from Serratia
marcescens (239, 240), NalP fromN.meningitidis (59), SphB1 from
B. pertussis (241), AasP from Actinobacillus pleuropneumoniae
(242), PspB_X from X. fastidiosa (243), along with Pta from P.
mirabilis (97). These subtilisin-like ATs are also present in bacteria
outside the Proteobacteria phylum as evidenced by the presence of
Fusolisin from Fusobacterium nucleatum (61). In stark contrast to
theClusterAproteases, the subtilisin-like proteases ofGroup 15 are
among the least understoodATs. Based on secondary structure and
conserved domains predicted with PSIPRED (101) and InterPro
(102), these ATs are thought to comprise of an ~400 aa N-terminal
protease domain followed by an ~200 aa b-helix structure, thus
following a Type 2 AT organization similar to the Cluster A
proteases. Subtilisin-like ATs are known to have dual roles in
bacteria, both at the bacterial surface and when released into the
host environment. At the bacterial surface, protease activities of
Pfa1, EprS, SphB1, AasP, and NalP are used to process other extra-
cytoplasmic proteins including virulence factors (59, 235, 241, 242,
244–246). For example, NalP is responsible for proteolytic
maturation of Cluster A protease ATs App, MspA, and IgA1
protease (59, 246). Meanwhile, SphB1 indirectly modifies host
adhesion by modifying filamentous hemagglutinin adhesion
molecules (241, 245). The capacity of NalP and SphB1 to process
these virulence factors, is thought to rely on their abilities to remain
temporarily associated with the bacterial surface via their lipidation
at theirN-terminus similar tomembers ofGroup 13 (98, 245).After
their release from the bacterial surface, subtilisin-like protease
activity appears responsible altering host processes. For example,
Pta and Pfa promote host cell cytotoxicity (97, 235) and Fusolisin,
EprS, PspB_F, Pfa, and NalP contribute to immunomodulation
(234, 235, 237, 247, 248).This likely results fromdegradationofhost
proteins as Fusolisin degrades IgA whereas NalP cleaves C3 of the
complement system (247, 248). Meanwhile, NalP can also enter a
range of host cell types where it alters cellular metabolism
(249). Notably, cytotoxicity, host cell internalization, and
immunomodulation are also features of the Cluster A
chymotrypsin-like proteases.

2.2.9 Group 16: Adhesins and a Sialidase
Group 16 contains three bacterial surface associated ATs
including CapC from Campylobacter jejuni and Fap2 from
Fusobacterium nucleatum, which promote host adhesion and
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mediate bacterial aggregation (250, 251). This group also
includes NanB from Pasteurella multocida, the only AT with
defined sialidase activity, thought to benefit in nutrient
acquisition (252). PSIPRED (101) analysis predicted b-helix
passenger structure for all members, however, this group is
poorly characterized in terms of both structure and function.
Accordingly, future research may further define the functional
classification of the Group 16 ATs. Importantly, unlike all other
phylogenetic groups reviewed here, Group 16 did not form a
high-identity cluster on the multiple sequence alignment
heatmap (Supplementary Figure S2). This suggests that
Group 16 may be an outgroup of proteins lacking strong
homologs in the current pool of functionally investigated ATs.

2.2.10 Ungrouped ATs
Our phylogenetic analysis also uncovered several ATs without
strong relationships to any clade, as evidenced by low sequence
identity across the AT pool in the sequence alignment heatmap
(Supplementary Figure S2) and low bootstrap values within the
phylogenetic tree (Figure 2). For example, the passenger of TcfA,
an adhesin from B. pertussis, does not share significant identity
with any other passenger included in this study. PSIPRED (101)
analysis predicted a predominantly unstructured passenger for
TcfA, which is consistent with its unusually high proline content
(17%). TcfA has been shown to promote B. pertussis adhesion to
the respiratory tract (69).

The adhesins AutA and AutB share homology with one
another but showed no similarity to other AT adhesin groups
in either the sequence alignment heatmap (Supplementary
Figure S2) or the phylogenetic tree (Figure 2). These proteins
are positioned within the subtilisin-like protease clade (Group
15) but with extremely low branch support values (13%). As
such, AutA and AutB remain ungrouped. Functionally, AutA
and AutB promote aggregation and biofilm formation in N.
meningitidis (84, 253, 254). PSIPRED (101) analysis of both
AutA and AutB predicts substantial b-helical passenger
structure. This is typical of AT adhesins, however their
distinction from other adhesins at the sequence level suggests
unique structural and functional features.

In addition to the ungrouped adhesins, we found three enzyme
classes on the tree with a single AT representative that did not
therefore form a large functional group. This includes two
enzymes that remain ungrouped: AaaA, a surface-bound
arginine-specific aminopeptidase (255), and MapA, an acid
phosphatase (256). These enzymes encompass two of the five
enzyme classes observed in the phylogenetic analysis with the
others being proteases, esterases, and the lone sialidase, NanB
(252). NanB is part of Group 16, a probable outgroup of
mostly unrelated proteins. Catalytic domain and secondary
structure predictions using InterPro (102) and PSIPRED (101),
respectively, indicate MapA may adopt a Type 2 AT architecture
encompassing an N-terminal catalytic domain with a b-helix C-
terminus, while AaaA appears to take on Type 3 AT architecture
wherein the catalytic domain spans the full length of the passenger
(Supplementary Figure S3).

Future structure-function studies on additional proteins in
the Type Va AT family may shed some light as to whether these
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to date unrelated ATs proteins form part of other functional
phylogenetic groups yet to be identified.
3 DISCUSSION

The T5SS, which involves self-mediated transport of
autotransporter (AT) proteins outside the cell, is the simplest
system for extracellular secretion in Gram-negative bacteria (13–
15). Transport relies on a modular architecture wherein each AT
contains a signal peptide, translocator module and a functional
passenger. Passenger functions vary widely, conferring
functional diversity to this large family of bacterial secreted
proteins. Comparatively, translocators are highly conserved
where each promotes translocation of a passenger that may
possess various structural elements and catalytic domains. This
combination of variation and uniformity underlies the
robustness of this secretion system: by leveraging both the
passenger’s functional flexibility and the translocator’s simple
and energetically economical secretion capacity, ATs have
evolved into highly specialized molecular tools that promote
many aspects of bacterial fitness and pathogenesis.

Steadily increasing numbers of publicly available ATs sequences
andpublicationsdescribing their functional propertiespromptedus
to re-evaluate the classification of this protein family, focusing on
their diverse passengers. In this studywe show that 112 functionally
characterized ATs can be divided into 16 phylogenetic groups. By
using the passenger sequences alone, the divisions best reflect
common passenger functions, many of which contribute to
bacterial virulence. Overall, we found AT enzymes form three
main divisions: chymotrypsin-like proteases (Cluster A),
subtilisin-like proteases (Group 15), and GDSL-lipase esterases
(Group 6). In addition to different enymatic actions, these AT
enzymes also exhibited diverse structural compositions. Protease
ATs adopt Type 2 passenger structures (Figure 1B) wherein an N-
terminal protease subdomain responsible for cleaving target
proteins sits atop a b-helix for which the functional role is less
clear (94). Meanwhile, GDSL-lipases represent Type 3 structure
(Figure 1B) which includes an esterase domain responsible for
hydrolyzing target lipidswithout anyb-helical content (54). Beyond
these three main divisions, we observed a further three enzyme
classes with a single representative in the pool of characterizedATs,
including the aminopeptidase AaaA (ungrouped), the acid
phosphatase MapA (ungrouped), and the sialidase NanB (Group
16). Future phylogenetic studies may reveal additional groups that
capture these enzyme functions. Most of the remaining ATs are
adhesins distributed into 11 groups reflecting a wide range of
specialized functions. Based on limited published structural
studies, AT adhesins typically exhibit Type 1 structure
(Figure 1B) with long b-helical passengers (70, 71, 76, 79, 80,
106). Where adhesion mechanisms have been studied at the
molecular level, the long b-helix forms an extended binding
interface with specific host or bacterial targets, achieving high
affinity through the additive effect of many non-covalent
interactions (70, 71, 106). In some cases, the b-helix forms a
groove along the binding interface to further facilitate specific
Frontiers in Immunology | www.frontiersin.org 12
binding (70, 106). Furthermore, ATs may bind multiple targets
using different faces of the b-helix (70). Through these interactions
adhesins promote adherence to host surfaces, biofilm formation, or
bacterial aggregation. Biofilm formation ismost strongly associated
with the Group 4 SAATs but is also observed in some Group 8 and
Group 10 ATs. Meanwhile, most Cluster B adhesins (Groups 7–8)
promote adhesion to host surfaces yet some, including the Group 7
Pmps and IcsA from Group 8, also self-associate to form homo-
oligomers. Furthermore, Cluster C adhesins (Groups 9–13) that are
not known to oligomerize, include an array of ATs that promote
adhesion to host surfaces and less frequently bacterial surfaces. A
handful of poorly characterized adhesins are also present inGroups
5 and 16.Meanwhile, Group 14 is predicted to encompass adhesins
witha-helical passengers, which has not been described previously
for Type Va ATs and requires experimental verification.
Importantly, Group 1 and 2 (SPATEs), Group 4 (SAATs), Group
15 (subtilisin-like proteases) andGroup 6 (GDSL-lipases) represent
previously established classes, which authenticated the phylogeny
along with the 11 new groups.
4 CONCLUSION AND FUTURE
PERSPECTIVES

Our work through providing a better understanding into the
relationships of AT structure and function has revealed insights
into the mechanisms and diversity of ATs, that, importantly,
sheds light on the lesser-known ATs. We anticipate that this will
aid in the characterization of further ATs and has also identified
groups of ATs that require further research attention. This is
particularly true of the six functional groups that entirely lack
published structures and detailed mechanisms of action (Groups
7, 11, 13, 14, 15, and 16). Following the trend observed for other
groups, we would expect these six groups to reveal new types of
AT structures and modes of action. Although our pool of 112
sequences only represents a fraction of the >1500 ATs that have
already been identified (14), our use of only ATs with some
functional characterization performed should increase the
reliability of our findings. This in itself also highlights the
overall lack of knowledge regarding ATs, with most still
uncharacterized especially outside of E. coli. Unfortunately, this
may have also created some bias in our study and also
contributed to the findings such as the lack of characterized
homologs for functional outliers such as NanB (sialidase), MapA
(acid phosphatase) and AaaA (aminopeptidase), which are likely
representatives of separate functional groups. Apart from an
increased awareness surrounding ATs, our work has also shed
further light on bacterial pathogenesis and could be used to develop
new technologies including antimicrobials and vaccines. Currently,
the classical AT Prn is used in pertussis vaccines including
Boostrix®, Infantrix®, and Adacel® (257–259), and the trimeric
ATNadA is included in themeningococcal vaccineBexsero® (260).
ATs have also been identified as useful targets for anti-virulence
antimicrobials (261). However, efforts to target ATs have been
perhaps hampered by the scarcity of molecular-level knowledge.
This can be observed in the biotechnological applications of ATs,
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which primarily exploit the relatively well-defined translocation
mechanism for secretion or surface display of recombinantproteins
such as b-lactamase (262) and DNA polymerase (263) amongst
others (264–266). Further, the ATs have been used to engineer live
bacteria that secrete a peptide therapeutic (267). The detailed
protein structure for Hbp also allowed engineering of the
passenger for multivalent antigen display on OMV-based
vaccines (268–270). Overall, this work has provided an updated
perspective of AT classification, that informs on AT functional
relationships, which could benefit antimicrobial and vaccine
research, but above all hopefully inspire further research into this
area of widespread and abundant bacterial proteins.
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