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Abstract

It is an effective strategy to use both genetic perturbation data and gene expression data to infer regulatory networks that
aims to improve the detection accuracy of the regulatory relationships among genes. Based on both types of data, the
genetic regulatory networks can be accurately modeled by Structural Equation Modeling (SEM). In this paper, a linear
regression (LR) model is formulated based on the SEM, and a novel iterative scheme using Bayesian inference is proposed to
estimate the parameters of the LR model (LRBI). Comparative evaluations of LRBI with other two algorithms, the Adaptive
Lasso (AL-Based) and the Sparsity-aware Maximum Likelihood (SML), are also presented. Simulations show that LRBI has
significantly better performance than AL-Based, and overperforms SML in terms of power of detection. Applying the LRBI
algorithm to experimental data, we inferred the interactions in a network of 35 yeast genes. An open-source program of the
LRBI algorithm is freely available upon request.
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Introduction

Exploring the structure of Gene Regulatory Networks (GRN) is

a key element in understanding gene functions, especially in some

complex diseases [1–3]. Direct experimental methods to explore

the relationships among genes are time-consuming and labor-

intensive. Statistical inference on GRN is a process of identifying

gene interactions from limited experimental data using computa-

tional analysis, and is much more efficient.

Several models have been applied to describe the GRN. An

intuitive and frequently applied method is to model the GRN as

graphs [4–6], where the genes are considered as nodes and the

interactions among them represented as edges. Several graphical

methods, including directed acyclic graphs and directed cyclic

graphs, have been proposed in [7–9]. GRN can also be modeled

by the graphical Gaussian model [10], or the Bayesian network

model [11]. Information theory, for instance, mutual information

and synergy, can be also used to infer the GRN [12,13]. Due to

high measurement cost of gene chip technology, only limited

number of samples can be obtained. This limitation may result in

low inference accuracy when applying synergy or mutual

information to analyze the GRN.

In the last decade, Structural Equation Modeling (SEM) [14]

has been used to infer GRN [9,15,16]. Exploiting genetic

perturbation data and gene expression data, the work in [16]

used SEM model via an adaptive Lasso based algorithm (AL-

Based) to infer the networks. With simulations, the authors showed

that the AL-based method had better performance than all other

existing methods. With the two same types of data, Cai et. al.

introduced a sparse SEM model, and stated that their Sparsity-

aware Maximum Likelihood (SML) algorithm significantly

outperformed all other algorithms, including the AL-based one

[17,18].

In this paper, we also study the gene regulatory networks with

SEM model using both genetic perturbation data and gene

expression data, and transfer the SEM to a Linear Regression (LR)

model through matrix transformation. In this transformation

process, regulatory information in GRN will not be lost. Instead of

ML approaches or classic Lasso methods, we propose an approach

to infer the networks via the LR model by using a Bayesian

method (LRBI). Simulations show that our LRBI algorithm is

effective and reliable, and offers significantly better performance

than the AL-based algorithm. Compared with SML, LRBI has

significantly better performance in terms of power of detection, but

has slightly worse performance in false discovery rate. LRBI also

has the advantages that the estimation of the initial parameters

and the consideration of the data sensitivity are not needed.

Model and Methods

The LR model for gene network inference
We consider m genes, n individuals’ measurement using

microarray. Without loss of generality, we assume that there are

m makers. As in [9,16,17], the GRN obeys the form of SEM,

where genes are the nodes, and interactions among genes are the

edges, i.e.

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e83263



P~BPzAXze, ð1Þ

where P is an m|n matrix, pkj is the jth expression level of the

kth gene; B is an m|m matrix, defining the structure of the gene

regulatory networks, bkj is the regulatory effect of the jth gene on

the kth gene; X is an m|n matrix, xkj is the genotype of the kth

marker in the jth perturbation; A is an m|m matrix representing

the effect of each eQTL; e is an m|n matrix, and ekj is the jth

measurement noise of the kth gene. All elements in e are

independent and identically distributed (i.i.d).

We assume that there is no self-loop of each gene, so that all

diagonal entries of B are zeros. We also assume that each gene has

its own corresponding QTL, and the loci of the m eQTLs have

been determined by an existed method, but the effects of these

eQTLs are unknown yet. Therefore A has m unknown entries,

and all other entries are zeros. Without loss of generality, we

assume that all the unknowns in A are the diagonal entries.

With the predetermined eQTLs matrix X and the gene

expression data P, the inference for GRN is to determine the

unknown entries of B and A with appropriate optimization

methods.

Since all the unknown parameters are in (B,A), (1) can be

written as follows

P~PVze ð2Þ

where P is still the m|n matrix defined above, P~ BAð Þ,

V~
P

X

� �
. We further rewrite (2) to
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where Yk is the kthrow of P, Lk is the kthrow of P, ek is the

kthrow of e.

By the definition and the structure of (3), we can infer the

parameters row by row. Therefore, the problem can be

decomposed into

Yk~LkVzek,k~1,2,:::,m ð4Þ

In (4), the parameters that need to be inferred are

Li,j ,i,j~1,2,:::,m,i=j, and Lizm,i,i~1,2,:::,m.

Bayesian inference for the LR models
In gene regulatory networks, most entries of Lk are zeros, so Lk

is sparse. Therefore, we assume that all entries of Lk follow

Gaussian distribution with mean zeros. We also assume that

entries of ek are i.i.d, and normally distributed with mean zeros

and variance Yk~QekI, where I is an n|n identity matrix.

With known V, the parameters to be estimated in (4) are

hk~ Lk,Ykð Þ. The joint prior distribution can be factorized as:

p hkð Þ~p Lk,Ykð Þ~p Ykð Þp LkjYkð Þ ð5Þ

Rewriting (5) leads to

p hkð Þ~p Qekð Þp LkjQekð Þ ð6Þ

We assume that Lk,Q{1
ek

� �
has a joint prior distribution of

Gaussian-Gamma [19], with

Q{1
ek ~Gamma a0ek,b0ekð Þ ð7Þ

LkjQek~Normal L0k,QekH0yk

� � ð8Þ

where a0ek,b0ek,L0k are hyper parameters, should be preset to

fixed values. H0yk is a symmetric positive definite matrix. We will

set it to an identity matrix in the implementation of algorithm for

simplification.

The likelihood is

p YkjLk,Qek,Vð Þ! Qekj j{
n
2exp {

Q{1
ek

2

Xn

i~1

yki{LkVið Þ2
 !

ð9Þ

where Vi is the ith column of V. The joint posterior distribution

of Lk,Qekð Þ is proportional to the product of the prior and the

likelihood

p Lk,QekDP,Vð Þ!p Lk,Qekð Þp Yk DLk,Qek,Vð Þ ð10Þ

According to the prior distribution in (7,8) and the likelihood

in (9), the joint posterior distribution (10) can be written as

p Lk,QekjP,Vð Þ!Q
{(n=2za0ek{1)

ek exp ({b0ekQ{1
ek )

� Q
{n=2
ek � exp {
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where

p Q{1
ek DP,V

� �
~Gamma 2{1nza0ek,bek

� � ð12Þ

p Lk DP,Vð Þ
~Normal ak,QekAk½ � ð13Þ
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and

Ak~ H{1
0ykzVVT

� 	{1

ð14Þ

ak~ Ak H{1
0ykLT

0kzVYT
k

� 	h iT

ð15Þ

bek~b0ekz2{1 YkYT
k zL0kH{1

0ykLT
0k{akA{1

k aT
k

� 	
ð16Þ

More details of the derivation can refer to Text S1. A similar

result was shown in [14,20], where (12,16) were parts of an

iterative process to solve the Confirmatory Factor Analysis (CFA)

model.

We can sample the posterior distributions in (12) and (13) to

constitute an iterative process. Since the values in (14),(16) are all

determined, the parameters of the Gamma distribution in (12),

2{1nza0ek and bek, are all fixed. As a result, the posterior

distribution of Q{1
ek will not be affected by the samples of Lk. It is

noted that only Q{1
ek ,Lk can be sampled, therefore, the iterative

process may be not effective and accurate. Thus, we modify the

calculations of ak,bek in (15) and (16), and substitute L0k by Lk.

ak~ Ak H{1
0ykLT

k zVYT
k

� 	h iT

ð17Þ

bek~b0ekz2{1 YkYT
k zLkH{1

0ykLT
k {akA{1

k aT
k

� 	
ð18Þ

The combination of (12, 13) and (17, 18) forms an iterative

process. We execute this iterative process with a sufficient number

of times, and until a steady state is reached. A sequence of sets of

L
(i)
k are obtained by sampling from the posterior distribution in

(13), which are then averaged to get the estimated parameters of

Lk. To get accurate results, we must guarantee that the iteration

reaches its steady state. A simple stopping condition is to test the

value of the square difference of the inferred parameters between

two successive iterations, i.e.
P

L(iz1)
k {L(i)

k

� 	2

. If the difference

is small enough (say tv0:001), the iteration has reached a stable

state. The choice of t can influence the accuracy. The smaller t is,

the higher the accuracy of the parameter approximation is,

naturally at the cost of more iterations and increased computa-

tional time.

The sketch of an algorithm is as follows:

Input the eQTLs matrix X, and the gene expression data P; Set the initial

hyperparameters a0ek~n=5, b0ek~1, H0yk~I. L0k is set to a

1 � 2mvector, where only the kth entry is 1, all other entries are zeros.

k~1,2,:::,m; Assign a small value to t.

For k~1,2,:::,m
Calculate Ak,ak,bekby (14,16);

Repeat:

1. Get the sample of Q{1
ek from the Gamma distribution by (12);

2. Get the sample of Lk from the Normal distribution by (13);

3. Calculate ak,bek by (17)(18);

4. Calculate S~
P

L
(iz1)
k {L

(i)
k

� 	2

;

5. If Svt,then end the iteration, else go to step 1;

End for

More details of the algorithm implementation can refer to the

software package F1.

It should be noted that it would be better to choose the second

half of the samples and average them to get accurate result. The

reason is that at the beginning of the iteration, the gap between the

estimated L
(i)
k and the true values is large.

Results

Simulations
Let NE be the number of edges in B (the original network), NIE

be the number of edges in B
0

(the inferred network), N
0

false be the

number of edges which exist in B
0

but not in B, N
0

true be the

number of edges which exist in both B
0

and B, therefore

N
0

falsezN
0

true~NIE . Define Power of Detection PD~N
0

true=NE ,

and False Discovery Rate FDR~N
=
falseNIE .

Logsdon and Mezey [16] had shown that the AL-based

algorithm outperformed the PC-algorithm [21,22], the QTLnet

algorithm [23], and had comparable performance with the QDG

algorithm [24]. Cai et al. stated that their SML algorithm offered

significantly better performance than the AL-based algorithm and

the QTL algorithm in PD and FDR [17,18]. Therefore, we shall

compare our LRBI algorithm with SML and AL-based.

Firstly, we carried out simulations following the setups in [16].

We simulated two types of directed acyclic gene networks: one

with 10 genes and the other one with 30 genes. Averaged Ne~3
edges were created per gene, which meant that there were on

average 3 edges created between one gene and all other genes. If

an edge existed from node j to node i, then bij was sampled from a

uniform distribution on the interval {1{0:5ð Þ| 0:51ð Þ; other-

wise bij was set to 0. Entries of X took values from the set

1,2,3f gwith the corresponding probabilities 0.25, 0.5, and 0.25

respectively. Each gene has its own corresponding QTL, and A is

assumed to be an identity matrix. Each entry of e in (1) was

sampled from a Gaussian distribution N 0,0:01ð Þ. P was calculated

by (1).

We generated cyclic or acyclic networks for simulations, and

used LRBI to infer the parameters of the simulated networks. For

cyclic networks,LRBI can obtain the steady-state solutions

naturally. By inference, the steady regulatory relations can be

got, if some cyclic regulatory relations among genes existed.

Due to the inference characteristic of Bayesian methods, the

estimated parameters are not regressed to zeros as in Lasso

methods. Therefore, an edge from gene j to gene i is considered to

be present if b
0
ij




 


w0:05, otherwise, there is no edge from gene j to

gene i.

Simulation results for the setups described above are shown in

Figure 1, where (a) and (b) are for the gene network of m~10, (c)

and (d) are for the gene network of m~30. LRBI has a better

performance than SML in terms of PD, but SML outperforms

LRBI algorithm in terms of FDR. Both LRBI and SML

significantly outperform the AL-Based algorithm in terms of PD

and FDR. The PD of LRBI reaches 1 when the number of

samples is 20 or more for both the two scenarios m~10 and

m~30.

Secondly, we simulated two types of directed cyclic gene

networks: one with 10 genes and the other one with 30 genes.

Averaged Ne~3 edges were created per gene. We employed the

same procedure used in the acyclic scenario to generate

Inference of GRN with Linear Regression Model
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B,A,X,P,e. Simulation results are shown in Figure 2, where (a)

and (b) are for the gene network of m~10, (c) and (d) are for the

gene network of m~30. LRBI has significantly better performance

than SML in terms of PD, and SML outperforms LRBI algorithm

in terms of FDR. When the number of samples is large enough,

the FDRs of LRBI and SML are all close to zeros. Both LRBI and

SML significantly outperform the AL-Based algorithm in PD and

FDR.

Thirdly, we simulated the impact of different decision thresholds

on performances. We used a bigger network m~100. Averaged

Ne~3 edges were created per gen, and the variance of noise was

0.01. Three decision thresholds j~0:05,0:1,0:2 were simulated.

In simulations, if we found that b
0
ij




 


ƒj, then we set b
0
ij~0. A

directed acyclic network and a directed cyclic network were

simulated and the results were separately shown in Figure 3 (a) (b)

and Figure 3 (c) (d).

We continued the simulations with a even bigger network with

Ne~3, m~300 to study the impact of decision thresholds on

performance. The variance of noise was 0.01. Two decision

thresholds j~0:1 and j~0:2 were simulated respectively. Both

directed acyclic network and directed cyclic network were

simulated, and the results were separately shown in Figure 4 (a)

(b) and Figure 4 (c) (d). As confirmed by Figure 3 and Figure 4, a

large decision threshold can reduce the FDR, but it also lowers the

PD. Therefore, the decision thresholds used in simulations or

applications should be chosen carefully.

Finally, we evaluated the impact of noise levels on the

performance of LRBI. Here, we used networks with m~100,

Ne~3. Again, we applied LRBI to both directed acyclic and

directed cyclic networks. The variance of noise was set to 0.01,

0.05, and 0.1 respectively. The simulation results are shown in

Figure 5, where (a) and (b) are for directed acyclic network, (c) and

(d) are for directed cyclic network. We find that the PD

performance is always excellent, but the FDR of LRBI is worse

when the noise level increases, even when the number of samples is

relatively large.

We have stated that LRBI cannot infer parameters to zeros

automatically, but can infer them with high precision. In most of

the simulations we conducted, the decision thresholds are 0.05.

That is to say, if the value inferred is lower than 0.05, the entry is

considered to be zero. This implies that the numerical difference

between the inferred value and the original value is less than 0.05

for most of the entries in regulatory networks. We define that

numerical difference as INEr i,jð Þ~ bij{b
0

ij




 


. Through simula-

tions, we found that INEr was also very small for the entry whose

value is nonzero in the original network. This feature is very

meaningful, because the inferred parameters can accurately

indicate the regulatory relationships among genes. An acyclic

network was simulated, with m~30,Ne~3, sigma2 = 0.01, deci-

sion threshold j~0:1. Some results are shown in Table 1.

Case study
Here, we applied LRBI to infer the gene regulatory networks

using the gene expression data and the genetic makers, which were

assayed in 112 segregants of a cross between the yeast strains

BY4716 and RM11-1a [25]. The cross had 5727 genes with small

number of samples, so a pretreatment process was needed to select

strong cis-eQTLs and interactions among genes [16]. We dealt

with the filtered dataset provided by Logsdon [16], in which only

35 genes were used. The 35 yeast genes are SEO1, NUP60,

RCY1, IRC18, TPK3, PHD1, JLP1, SNF7, PCD1, RPL19A,

SEN1, OST6, BUB2, BUL1, PHA2, ORC5, FYV6, SLM2,

HAL9, RDL1, POC4, ASA1, ECM13, TYR1, RNQ1, SFA1,

Figure 1. Performance of LRBI for directed acyclic networks. The performance of SML and AL-Based algorithms is also shown for
comparisons. The average number of edges per node is Ne~3, the variance of noise is 0.01, and no edge exists if B

0

i,j




 


ƒ0:05 for decision. (a) and (b)
are for a gene network of m~10, (c) and (d) are for a gene network of m~30.
doi:10.1371/journal.pone.0083263.g001
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Figure 2. Performance of our LRBI algorithms for directed cyclic networks. The performance of SML and AL-Based algorithms is also shown
for comparisons. The average number of edges per node is Ne~3, the variance of noise is 0.01, and no edge exists if B

0

ij




 


ƒ0:05 for decision. (a) and
(b) are for a gene network of m~10, (c) and (d) are for a gene network of m~30.
doi:10.1371/journal.pone.0083263.g002

Figure 3. Performance of LRBI algorithms for various decision thresholds. Two network cases are simulated to find the impact of decision
thresholds on PD and FDR. (a) and (b) are for directed acyclic networks, (c) and(d) are for directed cyclic networks; m~100,Ne~3, the variance of
noise is 0.01. Thresholds are 0.05, 0.1, 0.2 (emso in figure).
doi:10.1371/journal.pone.0083263.g003

Inference of GRN with Linear Regression Model
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Figure 4. Performance of LRBI algorithms for various decision threshold with m~300. Two network cases are simulated to find the impact
of decision thresholds on PD and FDR. (a) and (b) are for directed acyclic networks, (c) and(d) are for directed cyclic networks; m~300, Ne~3, the
variance of noise is 0.01.Thresholds are 0.1 and 0.2.
doi:10.1371/journal.pone.0083263.g004

Figure 5. Performance of LRBI algorithm under various noise levels. Two network cases are simulated to find the impact of noise level on PD
and FDR. (a) and (b) are for directed acyclic networks, (c) and (d) are for directed cyclic networks; m~100, Decision thresholds is 0.05. Three noise
levels are simulated.
doi:10.1371/journal.pone.0083263.g005

Inference of GRN with Linear Regression Model
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PRM7, SAN1, HIM1, YEL073C, SAP1, SNZ3, MST27,

YHR054C, DAL7.

With 112 samples for these 35 genes, and the eQTLs data, we

inferred the regulatory network as shown in Figure 6. It is noted

that our algorithm doesn’t need to assume the network is cyclic or

acyclic. There are 145 edges in the inferred network. A total of 31

genes are regulators of at least one target, and 32 genes have at

least one regulator. A total of 28 genes occur both as regulators

and targets.

There were only 4 instances of reciprocal regulation (two

genes act on each other) presented: ORC5 /?
{0:5113

{0:6901

SNF7,

CM13 /?
{0:4259

{0:3897

YL14A, YHL4 /?
{0:3952

{0:4000

RDL1, DAL7 /?
0:3480

0:4959

HIM1.

Table 1. Some INErs of a network inferred by LRBI.

(i,j) (1,8) (1,17) (1,26) (1,28) (2,17) (2,19) (3,1) (3,5) (3,23) (3,28) (4,2) (4,12)

B(i,j) 0.9749 0.8016 20.5050 20.9123 20.9925 0.9274 20.7733 0.8633 0.5397 0.9918 0.8308 20.6049

B’(i,j) 0.9301 0.7725 20.4812 20.8379 20.9913 0.8959 20.7452 0.8412 0.5183 0.9577 0.8081 20.5974

INEr(i,j) 0.0448 0.0291 0.0238 0.0744 0.0012 0.0315 0.0281 0.0221 0.0214 0.0341 0.0227 0.0075

The network is an acyclic network with m = 30, Ne = 3, sigma2 = 0.01, decision threshold is 0.1.
doi:10.1371/journal.pone.0083263.t001

Figure 6. Regulatory network reconstruction for the 35 genes. These genes are filtered out by the methods as in [16]. In the figure, a solid line
denotes that the interaction between two genes is positive regulatory, while a dotted line denotes a negative regulatory. Some color lines are used to
make the figure clear. There are 145 regulator–target pairs, among which, 78 pairs are positive regulations, and 67 pairs are negative regulations.
doi:10.1371/journal.pone.0083263.g006

Inference of GRN with Linear Regression Model
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Among the 145 regulator–target pairs, there are 78 positive

regulations, and 67 negative regulations. To verify the inference

result, we used the Generate Regulation Matrix tool in the website

of YEASTRACT [26] to create the gene regulatory network with

the 35 selected yeast genes described above. In the network

generated by the tool, there are only three regulatory relationship,

HIM1 regulated by HAL9 [27], YEL073C regulated by PHD1

[27], and FYV6 regulated by PHD1 [28]. From the experimental

yeast data, we deduced two out of the three regulatory

relationships, HIM1 regulated by HAL9, YEL073C regulated by

PHD1.

Conclusion and Discussion

We modeled the gene regulatory networks by using a LR model,

and proposed a Bayesian method to complete the inference. We

conducted a series of simulations to evaluate the performance of

the proposed algorithm LRBI, and compared LRBI with another

two algorithms, the AL-Based and the SML algorithms. LRBI had

a significantly better performance than AL-based regarding to

both PD and FDR. Compared to SML, LRBI showed a better

performance in PD and slightly worse in FDR. This feature of

LRBI makes more sense. Considering two cases, one is that we can

find less false edges but loss more true edges, the other one is that

we can find more, or even all true edges among genes, but with

slightly more false edges, the latter one is more meaningful.

The proposed algorithm was accurate, and the gap between the

inferred and the original parameters was less than 5% (even 2%) in

most case. The proposed algorithm was also very effective. We

inferred the GRN of the 35 yeast genes in a short time (1.2 seconds

in a laptop), while for the SML algorithm, a program error

occurred after about 52 minutes’ run with the same 35 yeast genes

data set. LRBI also had the benefit that the dependency of the

performance on the estimates of initial parameters is not strong.

For simplicity, we just assign some constants to these parameters in

simulations and case studies. Therefore, the LR model and the

LRBI algorithm can provide an effective way of exploiting both

gene expression and perturbation data to infer GRN.

The reason our method seemed to perform better was that,

LRBI fully exploited the structure of the SEM, and transformed it

into a linear regression model without information loss, while AL-

Based only partly exploited the structure of the SEM and used the

adaptive Lasso to infer the networks, so LRBI was more effective.

LRBI used the Bayesian method, while SML essentially used the

maximum likelihood method to infer the GRN, therefore SML

was not efficient and sensitive to data. However, there are many

other methods for linear regression problems, such as hierarchical

Bayesian, variational approximation, and so on. These methods

can potentially improve the inference accuracy of GRN with the

linear regression model proposed by this paper.

However, the FDR of LRBI is considerably high when the noise

level is large, and another issue is the ability of dealing with large-

scale gene networks. Thus, a future work is to decrease FDR in

high-noise context, and apply new strategies to handle large-size

gene networks.
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