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Abstract

Motivation: Since the dawn of the bioinformatics field, sequence alignment scores have been the main method for comparing
sequences. However, alignment algorithms are quadratic, requiring long execution time. As alternatives, scientists have devel-
oped tens of alignment-free statistics for measuring the similarity between two sequences. Results: We surveyed tens of
alignment-free k-mer statistics. Additionally, we evaluated 33 statistics and multiplicative combinations between the statistics
and/or their squares. These statistics are calculated on two k-mer histograms representing two sequences. Our evaluations
using global alignment scores revealed that the majority of the statistics are sensitive and capable of finding similar sequences
to a query sequence. Therefore, any of these statistics can filter out dissimilar sequences quickly. Further, we observed that
multiplicative combinations of the statistics are highly correlated with the identity score. Furthermore, combinations involv-
ing sequence length difference or Earth Mover’s distance, which takes the length difference into account, are always among
the highest correlated paired statistics with identity scores. Similarly, paired statistics including length difference or Earth
Mover’s distance are among the best performers in finding the K-closest sequences. Interestingly, similar performance can

be obtained using histograms of shorter words, resulting in reducing the memory requirement and increasing the speed
remarkably. Moreover, we found that simple single statistics are sufficient for processing next-generation sequencing reads
and for applications relying on local alignment. Finally, we measured the time requirement of each statistic. The survey and
the evaluations will help scientists with identifying efficient alternatives to the costly alignment algorithm, saving thousands
of computational hours. Availability: The source code of the benchmarking tool is available as Supplementary Materials.
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Introduction . - . o
extensive applications to determining the similarity between two

Throughout the past decade in the field of bioinformatics, the
shear amount of genomic data being produced has eclipsed the
rate that computers can process it. Sequence comparison
algorithms are among the most fundamental tools for analyzing
the vast amount of DNA sequences. Devised in 1970, the
Needleman-Wunsch alignment algorithm [1] was able to align the
sequences of two proteins. This algorithm was shown to have

nucleic acid or amino acid sequences. The alignment method of
keeping track of insertions, deletions and substitutions between
two sequences has spawned a wave of other ‘alignment-based’
approaches [2, 3] such as the popular BLAST series [4].

However, because the Needleman-Wunsch-based alignment
algorithms are quadratic in terms of the sequence length, they
are too costly to compute as the sequence length grows and the
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number of comparisons increases. For example, the deficiencies
of alignment-based methods are apparent in next-generation
sequencing (NGS) data with millions of reads and the costly task
of whole-genomic comparison [5]. Furthermore, rearrangements
of entire blocks of base pairs are highly detrimental to the way
alignment is calculated [6, 7]. The realization of these issues has
led to the development of many efficient ‘alignment-free’ meth-
ods [6], which will be reviewed and evaluated on DNA sequences
in this study. Although many methods, such as string compres-
sion, chaos theory and universal sequence maps exist [6, 8-10],
this article focuses on the widely used method of k-mer frequen-
cies (k-tuples) or feature frequency profiles [5, 11-13]. To use this
method of k-mer frequencies, a histogram of k-mer counts is
generated for the respective sequences that need to be compared
[14, 15]. Next, the two histograms are compared using one of the
many statistical similarity/distance measures.

A variety of review papers have discussed some of these meth-
ods [6, 16, 17] along with a statistical physics perspective [18].
However, no attempt has been made to review and evaluate the
performance of a large number of alignment-free k-mer statistics.
Further, the effects of combining multiple statistics together have
not been studied yet. To this end, we have evaluated 33 statistics
and the multiplicative combinations of every two statistics. One of
the most important strengths of these statistics is their speed and
relatively low cost [19, 20]; however, they can sometimes be less
sensitive [21]. For this reason, we used the identity score obtained
by the Needleman-Wunsch global alignment algorithm as the
basis for comparison in several experiments. In addition, one
experiment was evaluated according to local alignment identity
scores. We propose several application-based methods that specif-
ically measure each statistic’s effectiveness based on its ability to
be used instead of the identity score.

This manuscript is organized as the following. First, the sta-
tistics are surveyed. Next, we describe the data used in the eval-
uation experiments. Then, the evaluation results are presented.
Finally, we conclude.

Survey of alignment-free k-mer statistics

Owing to past literature on classifying a comprehensive collec-
tion of histogram distances [17], we will be organizing the sur-
vey based on statistical families. The list of families includes
Minkowski, match/mismatch, intersection, D2, inner product,
squared chord, Markov, divergence and a variety of other stati-
sitcs. Figure 1 diagrams these families and shows examples. In
this section, a summary of each statistic or family will be
included along with some initial thoughts.

Discussion on notation

To start, we define some notation concerning k-mer frequencies
and histograms, which will be a primary focus throughout the
article. Let s and t denote two sequences with corresponding
lengths len(s) and len(t). If we consider the set K as the set of all pos-
sible words w determined over the alphabet [A, C, G, T], then the
number of all possible words for DNA sequences is 4% with k repre-
senting the length of each word. For the rest of the article, each of
these k-length words will be referred to as a k-mer. We associate
each sequence s and t with their corresponding histograms or
word-count vectors as hg and h; as shown in Equation (1).

hy =< c(wq),c(wy),c(ws),...,

(W) > - )

Here, c(w;) represents the count of the ith k-mer in sequence x.
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Minkowski family

In many areas of math and science, Euclidean distance is one of
the most widely known statistics for comparing two sequences,
i.e. their corresponding histograms as shown in Equation (2).

Euclidean(hs, h) = |3~ (hs(w) — he(w))?. 2

wekK

In this equation, hs and h; are the two histograms of the sequen-
ces s and t. Although the concept of Euclidean distance has
been around since the Greek era, it was not until Herman
Minkowski in the late 19th century that variations of this dis-
tance were created [17]. These variations include city block dis-
tance, which is also known as Manhattan distance, and a
generalized form known as Minkowski distance as shown in
Equation (3).

Minkowski(hs, 1) = #/> " (hs(w) — he(w))?. (3)
wekK

Instead of using the exponents 2 and 1/2 as in Euclidean dis-
tance, Minkowski considered a generalized power p. From this
general idea, we have city block when P =1 and Chebyshev dis-
tance as shown in Equation (4) when P — oo [17].

Chebyshev(hs, h;) = max |hs(w)
we.

— hi(w)]. (4)

Additionally, the idea of z-score standardization is important to
consider for statistics that are not self-standardizing such as
the Minkowski family. For example, creating the standardized
histograms h? and h? by using the mean and SD leads to the def-
inition of EuclideanZ as shown in Equation (5).

EuclideanZ(hs, hy) = Euclidean (hZ, h7). (5)

Match/mismatch family

Although there are many ways to compare the two histograms,
some of the most efficient methods involve simply counting
whether the counts match. As it is defined in the Deza
Encyclopedia [22], Hamming distance counts how many times
the k-mer counts match and then divides by the number of pos-
sible k-mers as shown in Equation (6).

Hamming(hs, h;) =

0 hlw

wekK

== hi(w). ©)

Here, the symbol =represents logical equality, evaluating to 1 if
the two counts are the same and to O otherwise. Jaccard dis-
tance is simply the same as Hamming except that it only exam-
ines the nonzero k-mer counts. Equation (7) describes another
statistic from this family referred to as Mismatch distance.

Mismatch(hs, hy) = Z hs(w) # he(w). ()

wekK

Intersection family

Intersection distance, known as Czekanowski distance [17], is
based on the intersection of the frequencies of k-mers divided
by the union of the counts. Equation (8) defines this distance.



1224 | Luczak etal.

Minkowski . Markov
aManhattan Alignment-Free k-mer aMarkov
mEuclidean . g . TH mrre_k_r
aEucldeanz Statistics and Their Families aSimiM
Match/Mismatch D2DZ Squared Chord Divergence
=Mismatch " D2s mSquared Chord =KL Conditional
sHamming "o mHellinger nJefferey
mJaccard = D2 mMatusita uK Div

) Inner Product Other Statistics
:ﬁ:‘:‘i‘;gn mNorm Vectors uN2 Family
mKulczynski 1 mPearson Coeff mEMD
mKulczynski 2 mHarmonic Mean muChi-Squared

Figure 1. Alignment-free k-mer statistics grouped by statistical families. These families are based on a classification by Cha [17]. This figure provides a visual represen-
tation of several alignment-free k-mer statistics from their respective families. Each member of a statistical family shares a common functional element such as a his-
togram dot-product (Inner Product), minimum/maximum (Intersection), Markov model (Markov family) or overarching radical (Minkowski); although a variety of
statistical families exist such as the y? family, many recently developed methods do not fall into any specific category, e.g. N2, DMk and EMD.

The min function allows this statistic to effectively determine
the overlap between the two distributions by recording how
many of each k-mer are in both sequences. A few statistics in
this same family include Kulczynski Similarity 1 and 2 as shown
in Equations (9) and (10).

. 2 = min(hs(w), he(w))
Intersection(hs,hy) = Y —————— 22, 8
A N ERNT) ®
. min(hs(w), he(w))
Kulczynskil(hs, hy) = —_— 9
y ( S5 t) WXEI; Ihs(w) —ht w)‘ ( )
Kulczynski2(hs, hy) = A, Y min(hs(w), he(w)). (10)
wekK
& (us+m

Here, A, is the scalar value
mean k-mer counts for hg and ht

, where u5 and y, represent the

2 distance

As defined by Equation (11), 7 distance is the sum over all the
k-mers of Manhattan distance squared divided by the sum of
the two k-mer counts [17].

(hs (W) — he(w))?
2 hw) Thew) )

weK

Xz (h57 ht) =

Canberra distance

Canberra distance, as in Equation (12), at first glance, is some-
what of a hybrid between Manhattan distance and 5 distance
[22]. In the original source, absolute value bars are included in
the denominator. However, as k-mer counts are always positive,
they will not be necessary when comparing sequences.

[hs(w) — he(w)|

Canberra(hs, hy) = ZW

wekK

(12)

D, statistic and its variations

On its own, the D, statistic is one of the most intuitive ways
to find the similarity between two sequences as shown in
Equation (13) [23].

Dy(hs,he) = hs(w)he(w). (13)

wekK

Although taking the inner product between two histograms is time
efficient, the results are not standardized and identical sequences
can produce entirely different distances. For example, taking
the dot product of the vector (1, 2, 3) with itself yields 14, whereas
(1,1,1)- (1, 1, 1) yields 3. To fix some of the drawbacks, one method
is to use the mean and SD similar to EuclideanZ as shown in
Equation (5) [24]. D2z is the dot product between the two standar-
dized histogram vectors h? and h? as shown in Equation (14).

> hE(w)hi( (14)

wekK

DZZ h ht

However, there are some clear ways to improve on the idea [23,
25]. The easiest way is to make a ‘self-standardized version of
D,’, which will account for any differences in background noise.
To describe Reinert’s new statistic D and later D}, we must also
define a few other terms. Let E(w) denote the expected probabil-
ity of w, which is calculated by multiplying the probability of
each of the k nucleotides that make up w together. For an addi-
tional definition described in the article, let h be the updated
histogram, which is calculated according to Equation (15). The
final definition of D§ can be seen in Equation (16).

s (w) = hy(w) — (len(s) -

DS(hooh) = Y hs(w)he(w)

55\ g (w)? + he(w)?

Furthermore, a new word probability measure E(w) is the
expected probability of w in the two sequences concatenated

k+ 1)E(w). (15)

(16)



together. This results in the additional statistic Dj, which is
described by Equations (17) and (18).

1= /(ten(s) — k + 1)(len(T) — k +1). 17)
= hi(w)hp(w)
Dj(hu ) = 3T (18)

Reinert ultimately concluded that D§ and Dj are considerably
better at calculating sequence similarity because the D, statistic
is ‘measuring the sum of the departure of each sequence from
the background rather than the (dis)similarity between the two
sequences’ [23].

A few years later, even greater improvements were made in
refining the D5 and Dj statistics by using a pattern transfer
model [26]. In one of Wan’s papers, it was shown that the
‘power of D; and DS approaches a limit that is generally less
than 1 when the sequence tends to infinity’. The most effective
way to combat this down-side and the irregularities of the
expected values for D; and Dj is to partition the sequence into b
equal subintervals [26]. If we then consider D}. and ng as calcu-
lating D; and D3 over the jth subinterval, this will lead to two
new statistics, T* and T® as in Equations (19) and (20).

T*(hg, hy) = Zng(hs, hy) (19)

b
Jj=1

TS (hs,hy) = Y D5;(hs, hy) (20)

J

-

I
N

J

The N2 neighborhood statistic

Our next alignment-free k-mer statistic uses the novel approach
of comparing weighted neighborhood counts instead of fixed
k-mer frequencies [27]. Because transcription factor binding sites
often times do not adhere to a preset combination of k-mers,
the adaptable definition of a ‘neighborhood region’ allows for
increased efficiency depending on the types of sequences com-
pared. The set of all words in the neighborhood of w will be
defined as n(w). This definition of the neighborhood can vary
depending on the particular types of sequences, e.g. tissue-
specific enhancers, that are being compared. Equation (21) is the
overall weighted word count c(n(w)) for that neighborhood.

cn(w)) = Y awc(w), (21)

wen(w)

where a,, is the associated weight for each particular k-mer. If each
k-mer contributes equally to the neighborhood, this weight value
will be one. However, the weight can be tailored to the particular
application if a specific k-mer is more important than others.

Now that we have a vector of all the neighborhood counts asso-
ciated with every possible word w, the next step is to simply stand-
ardize the vectors based on the mean and SD and then divide each
vector by its norm to obtain the values Scyux) and Tepy. The final
statistic N2 is the inner product between each of the ‘normalized
standardized neighborhood count vectors’ [27] as in Equation (22).

N2(hs, ht) = < Scm)), Temk)) > - (22)
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When implementing N2 for a proposed problem, there are a
variety of potential neighborhood definitions:

* n,(w) is the neighborhood of the word and its reverse comple-
ment rc.

® Nym(w) is the neighborhood of the word and all words one mis-
match away (specified with Hamming distance).

® Nymm, (W) is the neighborhood consisting of both the reverse com-
plement, rc, and one mismatch away, mm.

In addition, we considered n,(w), which is the word and its
reverse because inversion is common in transposons of the
same family.

Dinucleotide absolute frequency distance

When using k-mer frequency methods, increasing k should lead
to higher accuracy and increased computational cost. In a large
variety of other statistics, trying to find a k value that balances
the accuracy and the efficiency has been an important problem.
Although each of the previous statistics has been dependent on
the k value, Zhang and Chen [28] created a novel statistic cen-
tered around 2-mers and the idea of di-nucleotide absolute fre-
quency (AFd). Similar to constructing histograms, the first step
is to record the frequencies of every 2-mer. Let hf and h! denote
two probability histograms for sequences s and t as in Equation
(23).

_ (c(AA) c(AC) c(TT)
H (c(A) A) ’”"c<T>)' @)

In the above representation, the first element in hf is the
count of the first dinucleotide AA divided by the count of its
first nucleotide A. If len(s) < len(t), then a sliding window b of
base pairs with the length of the smallest sequence s will be
considered first. If we let w be a 2-mer in this case, absolute
frequency distance with a given window b can be seen in
Equation (24).

AFdy (hs, he) = Y [(BE(w) — R (w))fn (R (w) — W2 ()], (24)

wekK

where fn(x) is the stabilizing function as defined in Equation
(25).

1

fm(x) = v (25)

By adjusting the window b with a sliding percentage, the final
distance measure is the minimum of AFd, under each possible
window. There are a variety of potential stabilizing functions;
the m value in this case can be optimized to promote perform-
ance [28]. For our article and the overall focus on k-mer histo-
grams over locations, we will consider s and t to have
approximately the same length and will use m =14 in the stabi-
lizing function [28].

Inner product family

Another example of a common family for histogram/vector
comparison is the inner product family. As its name implies,
this family of statistics focuses solely on the dot product of two
histograms hs - h.. The dot product can be applied to either vec-
tors of k-mer counts or probabilities [17]. As defined earlier,
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consider hg and h; as a vector of the counts for each k-mer. This
family includes cosine distance as in Equation (26).

hs ® hy

Cosine(hs, ht) = ~ el

=1-—cos(0). (26)

In this equation, 0 could be considered as the ‘angle’ between
the two histogram vectors in 4*-dimensional space. The inner
product of two normalized vectors as in Equation (27) repre-
sents the similarity version of this distance.

NormVectors(hs, h;) = % = cos (0). (27)
S

Because a large number of these statistics end up considering 0
through the geometric definition of the dot product, they are
also referred to as the ‘Angle Family’. For example, consider
Equation (28), which describes correlation distance.

Correlation(hs, hy) =1 — w =1-cos (0) (28)

[[hs — ps[[1he — pel]

Here, ps and py, are the means of hg and h;. Also, by removing the
‘1-’, this equation simply turns into Pearson’s correlation coeffi-
cient. In this case, correlation distance is closely related to
cosine distance as shown in Equation (26) if we consider the
new angle § as the angle between the adjusted histogram vec-
tors hs — s and h — p,.. Other inner product statistics such as
covariance similarity as in Equation (29) also use this idea of
mean-adjusted histograms [22].

Covariance = w}w (29)

Further, Spearman distance as referenced through MATLAB’s
library is just a variation on correlation distance (and a relative
of Pearson’s). Spearman distance computes 1— the cosine of the
angle between the tied rank vectors minus the tied rank means.
Note that this statistic takes a nonlinear time (O(n log n)).
Additionally, this family includes harmonic mean as in
Equation (30) and similarity ratio [22] as in Equation (31).

Harmonic(hs, hy) = 2 = Z%
t

wekK

(30)

hs ® hy

SimRatio(hs, hy) = (hsohe) + [hs — hell’

(31)

Gapped k-mer inner product

At this point, we have only focused on comparing k-mer histo-
grams. As the k-mer size increases, the comparisons for sequence
similarity get more accurate. At the same time, if one of the
sequences is a mutated version of the other, long k-mers common
to the two sequences should be infrequent. In one paper that dis-
cusses ‘gapped k-mers’, the problem of having long k-mers can be
easily resolved [29]. On its own, the process of computing the
gapped k-mer counts is not too complex [30]. If we consider w to be
a gapped k-mer with total length k including gaps and g to be the
number of gaps in the word, then for DNA sequences, the total

number of words |K| = (E _ g)4k’9. The next step is to consider

the upgraded histograms h, and h; of each of the recorded gapped

k-mer frequencies for sequences s and t. Then, the article defines a
similarity function as shown in Equation (32), which is the normal-
ized inner product between the two upgraded histograms.

HS L4 Ht

L RAL I (32)
I[hs [[Ihe|

Gapped(hs, hy) =

However, one potential issue is that the number of gapped k-mers
will grow extremely quickly as k increases [29]. To increase effi-
ciency, ‘the key idea is that only the full [k]-mers present in the
two sequences can contribute to the similarity score via all gapped
k-mers derived from them’ [29]. This idea leads to a revised defini-
tion of the inner product given in Equation (33).

ohy :Z (hs, hy)w (33)

Here, m is the number of mismatches between two full k-mers;
Zm(hs, ht) is the ‘mismatch profile’, which represents the fre-
quency of the pairs of full k-mers with m mismatches; and wy, is
a coefficient determined by Equation (34).

k—m
B k—-m>k—g
Wiy = k—g (34)

0 otherwise.

The article asserts that obtaining z (hs, h;) can be computation-
ally expensive. However, several methods are described in the
article that can effectively reduce the run-time.

Squared chord family

Families such as Minkowski use a radical over the entire sum-
mation, whereas a key characterstic of the squared chord family
as in Equation (35) is a square root over each histogram inde-
pendently [17].

SquaredChord(hs, ht) = <,/ —/ht(w) ) (35)
weK

One interesting observation about the squared chord statistic
comes from simplification shown in Equation (36).

= Z hs (W) + he(w) — 24/ hs(w)he(w). (36)

There is a well-known mathematical theorem called the
Arithmetic-Geometric Mean Inequality, which states that for
a,b>0; “2>+ab [31]. In other words, hs(w)+h(w)—2
hs(w)h¢(w) > 0 always when hs(w),h;(w)>0. Overall, the
squared chord statistic appears to be capturing the variation
between the arithmetic and geometric means of the two
reported frequency vectors. If the two sequences have the same
histogram, the geometric mean and the arithmetic mean will
both be the same, resulting in a distance of 0. Equation (37)
describes another statistic belonging to the same family [22].

Hellinger(hs, h;) = J 2% (1/ ,/ht )
wekK




Here, us and y, are the means of hs and h,. Next, we discuss other
families of alignment-free k-mer statistics that use Markov
models.

Markov chain models

The premise for using a Markov chain for sequence similarity
comes from the idea of a state machine and conditional proba-
bilities [32, 33]. As we scan along a sequence with a size k win-
dow and record frequencies, it is possible to calculate the
probability that the kth letter occurs based on the current state
of the k—1 letters. The log of each probability value for the cur-
rent state is then summed over the entire sequence until the
state reaches the end. There is, however, a mathematically
equivalent way to calculate this statistic without looking at the
particular sequences themselves and only using the k-mer
counts. The first step is to construct the conditional probability
table based on each group of words. For example, Equation (38)
describes the conditional probability when k=3.

C(AAT)

AAT =
™l ) Zne[A,C,G.T] c(AAn)

=Dpx(T|AA) = (39)

Here, c(AAA) is the frequency of AAA in the sequence x. The
next step is to calculate the probability of the second sequence
using the conditional probabilities calculated according to the
first sequence as shown in Equation (39).

0= h(w)n(ms(w)). (39)

wekK

After that, the probability of the first sequence is computed
according to the conditional probabilities of the second
sequence. The final statistic is the average of dp, (h;) and dy, (hs)
as shown in Equation (40).

Markou(hg, ht) = w

(40)

With the success of Markov models in bioinformatics, many
variations were created to expand on the idea. Pham and Zuegg
[34] invented a new statistic, called SimMM, based on Markov
models. Dai, Yang and Wang [35] described SimMM as a ‘proba-
bilistic measure based on the concept of comparing the similar-
ity/dissimilarity between two constructed Markov models’.
Pham and Zuegg started by defining a helper function as in

Equation (41).
_ 1 (dp(he)
o (@) “

As the helper function is not symmetric, its average is used in
computing the final form of SimMM as shown in Equation (42).

r(hs, ht)

r(hs ) +r(hhs)

SimMM(hg,hy) =1—e 7. (42)

In sum, SimMM involves comparing four conditional probabil-
ities. The final form of the statistic is scaled using an exponen-
tial and is subtracted from 1 as shown in Equation (42).

Another Markov-based statistic is the revised relative
entropy, which was proposed in 2008 and sought to efficiently
integrate Markov models and k-mer frequencies [35]. Let ps and
pt be the conditional probability models created from sequences
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s and t. Equations (43-45) define revised relative entropy for a
given k-value and Markov model order r.

2*ms( )
= e ) )
2*mt(w)
dy = ¢ —_—
2= %{m W) + m(w)’ (44)
rre_k_r(hs, hy) = dl;dz (45)

This statistic is largely based on Jensen-Shannon divergence,
which is covered in the next section.

Divergence

Similar to Markov chains, a wide variety of divergence statistics
use probabilities and effectively compare two sequences by
assessing how far apart they are in the log-probability space.
For example, consider Conditional Kullback-Liebler Divergence
as shown in Equation (46), also known as conditional relative
entropy [36].

CKL(hs, ht) =

Z ps(w) Z ms(wb)ln (xi Ezs;) : (46)

weN beB

Here, N is a set of all (k—1)-mers; B is a set of the four nucleotides
A, C, G and, T; and wb is the word consisting of the (k—1)-mer,
w, followed by the base b.

Although they do not involve conditional tables, a few other
divergence statistics that are commonly used are K as shown in
Equation (47), Jensen Shannon as show in Equation (48) and
Jeffrey divergence as shown in Equation (49). In the equations
describing these divergence statistics, ps(w) is the probability
(not the conditional probability) of w under the histogram of
sequence s, and v(w) is the average probability for w over both
histograms.

K(hs, he) = > ps(w) U(w) (47)

wekK

ps(w pe(w )z(w)

Zlnps

wekK

JenShan(hs, h;) = ps(w p(w)

Jeff (hs,he) = > (ps(w) — pe(w)ln

wekK pt(w)

Distance measure based on k-tuples

Although it was originally created for a specific clustering algo-
rithm, distance measure based on k-tuples (DMk) is a novel
alignment-free k-mer statistic because it makes use of k-mer
counts as well as the locations within the sequence [37]. The
first step is to define a term related to the density p of the ith
occurrence of a particular word w as shown in Equation (50).

,1 <1 < c(w). (50)

Here, I; is the ith location of word w, and c(w) is the count of w.
This p statistic captures information about the location where
each k-mer occurs as well as information on the previous occur-
rence. Next, Equation (51) defines p; as a partial sum of the
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pi starting from the first occurrence up to the ith occurrence of a
particular word.

pi(w) =3 pa(w).1 < i < c(w). (51)

One major benefit of this statistic is that given the vector
p(w) = (i;l(w),fzz(w), . ,f;c(u,)(w)), one can determine where
and how many times w appears in the sequence. Now that we
have a vector of densities for each k-mer, the next step is to sim-
ply construct a probability distribution vector p; by dividing
each p; by the sum of p. After that, these values can be further
manipulated by applying Shannon’s entropy as shown in
Equation (52).

c(w)

Shan(w) = - pilog,p;. (52)

i=1

When this operation is repeated for every k-mer, we have two
entropy vectors Es and E; for sequences s and t. The final statis-
tic as shown in Equation (53) is then computed using the
Euclidean distance between both density histograms:

DMk(hs, h;) = Euclidean(Es, Et). (53)

Overall, DMk has been shown to be more effective than count-
based statistics because of the integration of both k-mers loca-
tions and ordering [37].

Earth Mover’s Distance

Earth Mover’s distance (EMD) was originally demonstrated to
have applications to image databases and to the transportation
problem. It focuses on analyzing the ‘minimum amount of work
that must be performed to transform one distribution into
another’[38]. The same principle could also have applications to
distributions of k-mers. If we consider hs as the supply distribu-
tion and h; as the demand, then EMD is effectively measuring
the minimum number of k-mer counts that need to be trans-
ported from hg to h.. In some way, this statistic is similar to
Manhattan distance except for the fact that the k-mers or bins
of the histogram are no longer being compared one-to-one for
both sequences [39, 14]. Thus, each k-mer is not being treated as
independent, which should perform well in the context of DNA
sequences with strings of interconnected and repetitive regions.
Although the statistic normally has a more complicated deriva-
tion when considering multiple dimensions, it mathematically
simplifies to Equation (54) when dealing with k-mer histograms.

EMD(hs5, he) = )~ as(w) — ar(w)|- (54)

weK

In this equation, as(w) is the aggregate sum vector of hy calcu-
lated by as(w;) = hs(w1) + hs(wz) + - - - + hs(w;), where w; is the
first k-mer. Overall, this statistic largely depends on the location
of the k-mer bins in the histogram. For our evaluation, we
ordered each k-mer alphabetically. In applications involving
NGS data, where all reads have the same length, the order of
the histogram can be based on the order of k-mers in one of the
sequences.

Length difference

Length difference (LD) is the difference in length between two
sequences as in Equation (55).

LD(s,t) = |length of s —length of t| (55)

Although it is a simple statistic, it can be used for reducing the
number of sequence comparisons in the case of global align-
ment. For example, if the minimum desired identity score is
70% and the ratio between the shorter and the longer sequence
lengths is <70%, then there is no way that the alignment could
happen at that threshold. Therefore, the LD metric is an impor-
tant measure of sequence similarity.

Materials and methods
Statistics evaluated

The following is a list of the 33 statistics evaluated in this
article: Hellinger, Manhattan, Euclidean, 5, normalized vectors,
harmonic mean, Jeffrey divergence, K-Divergence, Pearson cor-
relation coefficient, squared chord, Kullback-Liebler conditional
divergence, Markov similarity, intersection, rre_k r, D2z,
SimMM, EuclideanZ, EMD, Spearman, Jaccard, LD, D5, AFd, mis-
match, Canberra, Kulczynski Similarity 1, Kulczynski Similarity
2, similarity ratio, Jensen-Shannon Divergence, Dj, N2r, N2rc
and N2rrc.

Primarily, we chose these statistics based on having a vari-
ety of families as well a good number of the latest alignment-
free k-mer statistics. Additionally, we have adopted the criteria
that each statistic must require only k-mer frequencies as input.
Any statistic that requires locations, specialized k-mers, or
information beyond the scope of word histograms will not be
considered. Gapped k-mers, T3, T; and DMk will not be eval-
uated and are included in this article for reference purposes.
Because the number of paired combinations can quickly
increase, other statistics are mentioned in their respective fami-
lies solely for review purposes.

Calculating a k-mer histogram

For any particular k value, a k-mer is a k-length sequence of
DNA. Because the ‘alphabet’ for nucleic acids is only four letters
(A, C, G and T), each sequence has 4% potential ‘words’. A histo-
gram or word-count vector can be created for each sequence by
scanning linearly through each k-window of letters and count-
ing occurrences of each word. Indexing a sequence of k-mers
can be implemented efficiently using Horner’s rule [40].

Selection of k

The selection of k determines the success of the alignment-free
k-mer statistics. The k must lie in a certain range to ensure that
the comparison of histograms is a linear process. We used
Equation (56) to find k.

k = Tlogs <%Zlen(i)>1 —1 (56)

ies

Here, n is the number of sequences in the set s. Using too short
of a k may not provide enough information, but using too long
of a k increases the comparison time and memory (4-fold per
increment of 1). Therefore, a too long k might not guarantee lin-
ear time for comparing two histograms. For example, consider



two sequences of length 100. Our formula gives k=3. But if k
gets larger, such as k=7, the number of comparisons is quad-
ratic (47 > 100%), negating the advantages of alignment-free
k-mer statistics.

A note on pseudo-counts

When computing each of the statistics, many require pseudo-
counts within the histograms to prevent a division by 0. This
can be accomplished by adding 1 to each of the entries. In addi-
tion, these pseudo-counts are needed to allow events that
‘seem’ impossible to be able to happen [41]. In general, most sta-
tistics that operate on probability distributions are imple-
mented with pseudo-counts. However, there are multiple
statistics that require either a combination of both or will func-
tion the same, regardless, i.e. the Minkowski family. Overall, if
the statistic requires dividing by k-mer frequencies, then
pseudo-counts should be used.

Scaling statistics

Although most statistics are efficient at measuring the degree
of separation between k-mers, they do not all scale naturally
between 0 and 1. To use these statistics in conjunction with
others, some method of scaling or standardization should be
used. Given a group of raw data points calculated using a partic-
ular statistic (such as raw Euclidean distance), the scaled ver-
sion is computed by subtracting the minimum from each item
then dividing by the difference between the maximum and the
minimum items. Further, all statistics are represented as simi-
larity measures. Each of the distance data points will be con-
verted to similarities by scaling the results between 0 and 1 and
subtracting the scaled version from 1. Similarity statistics are
still scaled between 0 and 1 but do not require the conversion.

Data sets for experimentation

For comparing the large variety of alignment-free k-mer statis-
tics, we have decided to obtain our data from three sources. The
first source is a study of microbiome in the human [42].
Bacterial samples found in healthy adults were collected from a
variety of habitats, such as the skin, gut and oral cavity.
Analysis of the various species and their ‘trends may ultimately
reveal how microbiome changes cause or prevent disease’ [42].
We will refer to this set as the microbiome data set. This data
set includes the sequences of the 16 S ribosomal RNA gene (200-
400 bp long). They are produced by pyrosequencing technology.
After obtaining a sample of the paper’s data from DNAnexus,
we globally aligned each of the sequences. The overall distribu-
tion includes 125 250 pairwise comparisons with around 50%
of the data having 90% alignment identity score or better.
Furthermore, the section of identity scores between 60 and 70%
accounted for about 37% of the data. Because many statistics
tend to degrade in accuracy once the identity score drops <50%,
we believe that this distribution is an effective data set for eval-
uation. To evaluate the correlation between a statistic and the
identity score, we randomly sampled collections of the data at
different identity score ranges.

The second source is based on the p275?* tumor suppressor
gene, which controls ‘Ras, one of the most common oncogenic
events in human cancer’ [43]. Using a database of 139 homo-
logs of this gene and their pairwise comparisons, we can effec-
tively analyze the statistics in an important gene similarity
application.
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The third source is a collection of third-generation sequenc-
ing reads taken from a recent genome assembly project using
the PacBio sequencing technology [44]. These reads are long
(mostly 10k-25k bp). We selected 100 sequences, resulting in
5050 pair-wise alignments. Most alignments identity scores
were in the 40-50% range.

Synthetic sequences of the same length comprise the fourth
data set. We generated this data set to (i) eliminate the effect of
LD and (ii) mimic an NGS application where the reads are the
same length. First, we generated a collection of random DNA
templates. Second, we fixed the mutation rate and generated
additional sequences by randomly modifying 3% of the base
pairs with single point mutations. With this method, all sequen-
ces have 200 bp, and the final data set has 50 086 pairwise
sequence comparisons.

To model local alignment, we generated the fifth data set. It
consists of 209 synthetic sequences generated from the p27 set,
combining various sequences using two methods. Using the
first method, one sequence or a part of it is inserted into
another sequence at a random point. In other words, the first
sequence or part of it becomes a substring of another sequence.
For example, suppose we have two sequences A and B. We ran-
domly select a subregion of A, possible the entire sequence A.
Le us call this part ‘A,’. After that, B is split at a random point
into B; and B,. The resulting sequence is B;A;B,. Using the sec-
ond methods, we generate two overlapping sequences by using
two original sequences. One original sequence is split into two
halves at a random point, and the other is the shared part of the
overlapping sequences to which the halves are prefixed or suf-
fixed. For example, suppose we have two sequences: A and B.
We split A into A; and A, at a random point. The two generated
sequences are A;B and BA,.

A note on statistic pairs

In our evaluation of alignment-free k-mer statistics, we decided
to extend our analysis of the single statistics to include multipli-
cative statistic combinations. If two statistics are multiplied
together from different families, their drawbacks and strengths
might balance each other out and produce a statistic that better
correlates with identity score. One important note is that this
combination is not between raw scores. Instead, the process for
creating the pairs involves (i) scaling the statistics between 0
and 1, (ii) converting all distances to similarities and (iii) multi-
plying the statistics together to create a paired combination.
Additionally, squared versions of each of the single statistics
are included in the pair creation.

Results and discussion

In this section, we will be evaluating each of the alignment-free
k-mer statistics based on four criteria: (i) sensitivity and specif-
icity, (ii) linear correlation with identity score at different cutoff
values, (iii) k-nearest neighbors and (iv) time efficiency. We will
present our current findings and give recommendations as to
which statistics perform best under certain applications.

A benchmark for evaluating alignment-free k-mer
statistics

Before discussing our results, note that the each of these experi-
ments can be duplicated using our evaluation benchmark.
This benchmark allows the user to evaluate the 33 statistics on
any group of sequences. Ultimately, this benchmark can be
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Figure 2. Identity score distribution for the 135 p27 sequences in the sensitivity and specificity experiment. The data set consists of 26 similar sequences (>70%) and
109 dissimilar sequences (<70%). There are no sequence pairs within 5% of the cutoff line (70%), meaning that classification will be slightly easier for each statistic

because the separation between similar and dissimilar sequences is clear.

effectively used for picking ideal statistics for a particular appli-
cation or compare the effectiveness of new statistics as they
are developed. The code of the benchmark is provided as
Supplementary File S1.

Sensitivity and specificity

Present in a wide variety of alignment-free papers [27, 34, 35,
45], the purpose of this experiment is to evaluate each statistic’s
ability to filter through a database of sequences according to the
similarity to a query sequence. The task is to correctly classify
the similar sequences from the dissimilar ones. A selected p27
query sequence is compared against 109 dissimilar sequences
with identity score <70% and 26 similar sequences with identity
>70%. Identical sequences to the query have been removed
because most statistics are able to easily identify identical
sequences. The distribution of identity scores for the p27 data
can be seen in Figure 2. We used the sensitivity as in Equation
(57) and the specificity as in Equation (58) for evaluating the
statistics.

number of similar sequences correctly identified

Sensitivity =
ensitivity %

(7)

number of dissimilar sequences correctly identified

Specificity = 109

(58)

Figure 3 shows the results of the sensitivity test conducted on
each of the 33 single statistics. The graph of the specificity test
is available in the Supplementary Files (see Supplementary File
S2). Overall from Figure 3, a few statistics are effective at finding
the 26 similar p27 genes from a variety of species. The left-most
third of the bar graph represents statistics that identified all 26
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Figure 3. Sensitivity values on the p27 data, each statistic in the left-most third
identified all positive sequences correctly (26 of 26). Few statistics such as
LD and Markov are not ideal for filtering out sequences that have identity scores
<70%.

similar sequences correctly, whereas the middle section got 25
of 26 or 24 of 26 correct. Apart from a few statistics such as
Markov, most of the statistics can sufficiently rule out sequen-
ces that have identity scores <70%. A likely explanation for this
result comes from the graph in Figure 2. Because there is a nota-
ble gap in identity scores between 60 and 80%, each of the sta-
tistics did not have the difficult task of classifying many points
within 5% of the boundary. These results show that a large
number of statistics can be effectively used on their own for fil-
tering a database.
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Linear correlation with identity scores

For the next experiment, we introduce a new evaluation crite-
rion that calculates a linear correlation with the Needleman-
Wunsch alignment algorithm [1] at different identity score
ranges. A total of 4735 sequence pairs, referred to as points,
were randomly selected from the microbiome data and binned
by every 10% identity score, so that each segment of the identity
scores is equally represented. Points having identity scores
below the threshold are excluded. This evaluation ultimately
highlights the most effective alignment-free k-mer statistics at
different segments of the identity score spectrum. We used cut-
off values at 0, 60, 70, 80 and 90%. To consider the multiplicative
combinations, squaring each statistic brings the total number to
66. After considering all unique pair combinations, 2211 total
statistics were tested. Supplementary Files S3-S7 include the
results of these experiments.

The first threshold considered is the entire data set of 4735
comparisons. Figure 4A-E shows the five best statistics
ranked by the r? ordinary correlation coefficient. These top
performers are (i) similarity ratio x EMD, (ii) norm vectors x LD,
(iii) K-divergence x LD, (iv) SIimMMxLD and (v) Jeffrey
divergence x LD. All of the top five performers achieved correla-
tion coefficient values of 0.98. EMD appears in combination with
an additional statistic at the top spot; however, the recurring
pattern of length difference is apparent. Because each of the
sequences varied in size between about 200-400 bp, it is clear
that trying to globally align two sequences of vastly different
lengths will not yield a good alignment. However, LD and EMD
on their own only achieve a correlation coefficient of 0.57 and
0.72, respectively. Therefore, the real strength of LD and EMD
lies in their ability to combine with other statistics.

For the 60% alignment threshold, our results can be found in
Figure 4F-J. In this case, the top five best statistics are (i) norm
vectors x EMD, (ii) Pearson coefficient x EMD?, (iii) D2z x EMD?,
(iv) Pearson coefficient x EMD and (v) D2z x EMD with correla-
tion values all at 0.98. Although EMD appears frequently in the
60% case and LD not all (appeared once among the top 10), these
results coincide well with the conclusion that combinations
with both EMD and LD can improve alignment-free k-mer statis-
tics. Because a collection of around 947 sequence pairs has been
removed from the 60% and below section, those points most
likely played a large role in helping the correlation coefficient
for LD pairs over EMD in the previous experiment.

The top five statistics from the 70% threshold once again see
a return of LD (Figure 4K-0). The best correlation coefficients
were achieved by (i) D2z% x LD (ii) Pearson coefficient? x LD, (iii)
N2r? x LD, (iv) norm vectors® x LD and (v) Kulczynski2 x LD with
values all at 0.98.

For the 80% threshold in Figure 4P-T, the top five best
statistics are (i) Manhattan x LD, (ii) Kulczynski2 x LD, (iii)
K-divergence? x LD, (iv) intersectionxLD and (v) Jefferey
divergence? x LD with r? values all at 0.99. In this test, we see
the first appearance of Manhattan distance along with LD
becoming a dominant statistic when paired together. Once
again, however, the correlation coefficient for LD as a single sta-
tistic is abysmal. In this case, the r* value for LD sits at 0.11, the
lowest of all 1711 statistics and combinations tested. Once the
identity score gets passed a certain threshold, LD on its own
continues to be less useful because most of the sequences in
this range are close in length. However, the dual nature of com-
bining this statistic with a more consistent one such as
Manhattan or K-divergence has been shown to be highly corre-
lated with identity scores.

Alignment-free sequence comparison | 1231

Finally, for the 90% threshold test (Figure 4U-Y), the best sta-
tistics with their r? correlation values are (i) N2rrc x LD, (ii) LD
N2rrc? x LD, (iii) D2z x LD, (iv) Pearson coefficient x LD and (v)
N2r x LD. The r* of the best performing paired statistics was
0.97-0.98, whereas the LD correlation value on its own is a
respectable but still low 0.63. Even when all of the points <90%
identity score were removed, LD still manages to influence
more robust statistics such as Pearson coefficient and increases
its correlation from 0.80 to 0.98 when both are combined.

In sum, using different cutoffs, the best correlations with identity
scores are because of paired statistics. No single statistic was placed
among the top best five performing statistics in any of these
experiments. A variety of different statistics have been shown
to be the most effective at different threshold values. The top
performers are application-specific. We observed that they vary
based on the input sequences. Nonetheless, paired statistics are
consistently the top performers when the input sequences are
of variable length. Of all the top statistical combinations from
each threshold trial, all 25 involved some combination of either
EMD or LD.

K-nearest neighbors application

The purpose of this experiment is to evaluate each statistic
based on its ability to identify the K-nearest neighbors. Finding
the nearest neighbors has many applications in computational
biology. Different applications require finding a different num-
ber of nearest neighbors. Using the p27 data set, we chose one
sequence as the query and then calculated each statistic with
the 138 other sequences. As a majority of the statistics included
in this article are highly effective at identifying when two
sequences are identical, we decided to remove each of the
sequences that had an identity score of 100% when compared
with the query. Then, we evaluated each statistic on finding the
K-nearest neighbors for K=1, 5 and 10.

Finding the nearest neighbor

After evaluating the 29 single statistics (Supplementary File S8),
we found that LD was the only statistic able to correctly identify
the closest neighbor. This result is expected because the data-
base of p27 sequences ranged in length from around 600-
7500 bp. However, if the database contains sequences of the
same length, e.g. NGS data, the LD will be ineffective on its own.
Earlier in this section, the results from the linear correlation
test demonstrated that multiple combinations with LD were
among the best performers. Therefore, we decided to extend
our evaluation to consider multiplicative combinations as well
as squares of the statistics. Of 2211 single, squared, or paired
statistics, only 35 were able to successfully identify the closest
neighbor (Supplementary File S9). Interestingly, all of them
involved a multiplication with either LD or EMD and their
squares. This idea of combining single statistics with a length
modifier has shown to be effective at enhancing the perform-
ance of other statistics. For example, multiplying Manhattan
and EMD or Manhattan and the square of LD resulted in identi-
fying the nearest neighbor, given that Manhattan cannot iden-
tify the closest neighbor on its own. These results can be
explained because of EMD’s inclusion of a cumulative sum,
which naturally captures the length difference; specifically, the
last sum difference in EMD is the sequence length difference.

Finding the nearest five neighbors
For the K =5 trial, our results for the singles once again showed
that LD was the only one that was able to identify the closest
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Figure 4. Top five statistics by linear correlation: 0, 60, 70, 80 and 90% threshold. All microbiome data points, i.e. sequence pairs, with identity score greater than the
threshold value were used in these experiments. We then computed the ordinary linear correlation coefficient for each statistic. The best statistic pairs were chosen
based on their r? values. Note that either EMD or LD appears in all top performing statistics.

five neighbors. Unlike the K=1 trial, 28 statistics performed
well, identifying 4 of the closest 5 neighbors. EMD performed
moderately (3 of 5); whereas Markov and AFd were not able to
identify any. Although EMD captures the length difference as
part of its calculation, it is surprising that EMD was not able to
perform more effectively on its own. See Supplementary File
S10 for the complete results. To continue our search for accu-
rate methods for identifying the closest five neighbors, we con-
sidered the pair combinations (Supplementary File S11). Similar
to the K=1 trial, all of the top 18 statistics that were able to
identify 5 of 5 neighbors included some combination with either
EMD or LD. The other statistics that appeared in these pairs

were Manhattan, Euclidean, 32, harmonic mean, squared chord,
Markov, Kulczynskil and similarity ratio. These results show
that a large number of single statistics can identify the majority
of the nearest neighbors. Furthermore, combining these statis-
tics with either LD or EMD led to perfect results.

Finding the nearest 10 neighbors

We repeated the previous experiment searching for the closet
10 sequences to the query sequence in the p27 data set. One
more time, our evaluation of the single statistics indicates that
LD was the best and scored a 10 of 10. It was followed closely
behind by both AFd and EMD, which found 8 of 10 correct
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neighbors. As EMD identified 3 of 5 and AFd none in the K=5
trial, these high results are interesting. The most reasonable
explanation is that both of them are able to identify the closest
10 neighbors but in the incorrect order. Possibly, it ranked the
closest five sequences somewhere between 6 and 10, and the
ones between 6 and 10 somewhere among the top five. For the
additional results, a majority of the statistics (26 of 33) scored 7,
whereas Markov once again performed poorly, scoring 2. See
Supplementary File S12 for the results of all single statistics.
After evaluating the paired combinations, we found that LD,
Markov x LD? and Markov x EMD? were able to identify all 10
correct neighbors. One specific observation is that neither EMD
nor Markov in the singles test was able to identify all 10
correctly; however, multiplying them together resulted in a per-
fect identification. Another noteworthy combination was
Euclidean x LD? which scored 9 of 10. Supplementary File S13
includes the results of all single/paired statistics.

In sum, if we examine the results over the entire k-nearest
neighbors experiments on the p27 data set, a large number of
the single statistics are effective at identifying a majority of
the closest neighbors. However, if the biological application
requires perfect identification, then modifying preexisting sta-
tistics by LD or EMD can increase the performance overall when
the data set includes sequences that differ in length.

K-nearest neighbors with similar length sequences

To further examine the effect of combining both EMD and LD
with other statistics, we decided to repeat the experiment on
sequences of the microbiome data set because sequences were
relatively close in length. This set had 411 sequences, a majority
of which had lengths between 220-260 bp. First, we selected a
query sequence that was close to the average length. Then, we
computed each statistic on the query sequence and each of the
411 sequences in the database. Next, any sequence pairs that
had an identity score of 100% were removed to make the test
more challenging because almost all of the statistics are effec-
tive at identifying identical sequences. After that, in the upper
identity range (> 87%), only one pair of a particular identity
score was kept to separate neighbors and prevent sequence
redundancies.

Finding the nearest neighbor

After evaluating each of the 33 single statistics on finding the
nearest neighbor, we found that the only ones able to correctly
identify the closest were Manhattan, Euclidean, Jaccard and
Mismatch. From these initial results, there is a notable contrast
between the last experiment, as LD is no longer able to perform
well on its own. The small length difference is a likely cause for
these results. Supplementary File S14 includes the evaluations
of the single statistics. Next, we continued to test the ability of
multiplicative combinations. A total number of 233 single/
squared/paired statistics were able to correctly identify the
closest neighbor (Supplementary File S15). This number is con-
siderably >35 statistics able to correctly find the closest
sequence in the p27 data set. A large number of the effective
combinations included pairs of the five best performing statis-
tics from the singles test as well as EMD and LD among others.
In many examples, multiplying two statistics that missed the
nearest neighbor resulted in the desired identification. For
instance, neither LD nor Jensen-Shannon could identify the
closest sequence; however, multiplying these two statistics led
to locating the nearest neighbor.
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Finding the nearest five neighbors

For the K =5 trial, the top statistics from the singles test include
harmonic mean, Jeffrey divergence, K-divergence, KL Cond,
SimMM, AFd, Kulczynskil, Jensen-Shannon and D2*, all of
which identified 3 of 5 correct neighbors. The vast majority,
such as Manhattan, Euclidean and mismatch all found 2 of 5.
Results at the bottom include Markov and LD, which scored a 0
(Supplementary File S16). Interestingly, after computing
each paired statistic, the best two results were achieved by
D2*? x EMD and D2*? x LD, which scored a 4 of 5 (Supplementary
File S17). Although members of the divergence family, such as
Jeffery divergence and K divergence, were among the best sta-
tistics in the singles test, combinations of these statistics with
LD or EMD were surprisingly not among the top performers (3 of
5). A likely explanation is that multiplying statistics by a factor
of LD may improve the results for some families while leaving
others unaffected, or even decreasing the accuracy. For exam-
ple, combining AFd with LD lowered the score from 3 of 5 to 0 of
S. However, similar to the p27 data set, combining certain low-
performing statistics, such as Markov with LD, both of which
scored a 0, can markedly improve accuracy (0/5-3/5). Although
we minimized the effect of the length difference, the most
striking result is that combinations of either LD or EMD still
appeared in the top performing paired statistics.

Finding the nearest 10 neighbors

For our last trial and conclusion of the nearest neighbor experi-
ment, we found that the best statistics for the singles test were
EMD and N2r with 7/10 neighbors correctly identified. This
result was followed closely by Manhattan, Euclidean, norm vec-
tors, intersection, Jaccard, D2s, mismatch, Kulczynski2, similar-
ity ratio, D2* and N2rrc, which scored a 6 of 10. The rest of the
statistics identified only five neighbors correctly, whereas LD
and Markov scored a 4 and 3 of 10 (see Supplementary file S18).
Once again, if we examine the p27 and this experiment, EMD
only shows its true potential as a single statistic in the K=10
trial, suggesting that it can find similar sequences; however, it
cannot properly rank them. LD, on the other hand, has failed to
achieve repeated perfect scores because of comparable
sequence lengths. For the paired test, we found that 126 paired
statistics were able to correctly identify 9 of 10 nearest neigh-
bors. Even though we intentionally limited the effect of length
difference in this experiment, all 126 best performing combina-
tions involved some multiplication with either LD, LD? EMD or
EMD? See Supplementary File S19 for the complete results.
Multiple trials of the nearest neighbor experiment have shown
that low-performing statistics, e.g. Canberra (5 of 10), when
multiplied by LD (4 of 10) can impressively increase accuracy
(9 of 10).

In sum, the experiment on the microbiome data set led to
the following two conclusions: (i) combinations including EMD
or LD are often among the best performing paired statistics; and
(ii) usually, combining poor or moderately performing statistics
with EMD or LD results in improving the performance.

K-nearest neighbors with sequences of the same length

Finding closest sequences is an important step in reducing the
redundancy and correcting errors while dealing with the NGS
data. Therefore, we repeated the K-nearest-neighbors experi-
ment on synthetic data simulating NGS reads. Recall that
sequences in this data set are of the same length and have low
mutation rate (3%). Supplementary Files S20-S25 include the
results of finding the nearest 1, 5 and 10 sequences to a query
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sequence. We found that a large number of single statistics are
effective in identifying the closest sequence(s), producing per-
fect results. Further, LD and EMD are no longer effective as
expected. A large number of multiplicative combinations are
able to achieve perfect results. However, single statistics, such
as Manhattan or Mismatch, would be more preferable to multi-
plicative combinations because of the huge number of NGS
reads.

K-nearest neighbors using third-generation sequencing

The newest forms of sequencing, third-generation sequencing,
generate reads of much longer length (average >10 000 nucleoti-
des) than the second/NGS sequencing. It is important to evalu-
ate the ability of the statistics to find the nearest neighbor in
such data. To this end, 1 query sequence was globally aligned
versus 100 of these sequences. Supplementary files S26-S31
show the results of this experiment. For the k=1 trial, no single
statistic correctly found the nearest neighbor, but 43 paired sta-
tistics found the nearest neighbor, demonstrating the effective-
ness of paired statistics. There was a good representation of
EMD and LD among these pairs. For the k=5 trial, two single
statistics (EMD and LD) found 5 of 5. All 35 paired statistics that
found all five nearest neighbors involved either EMD or LD.
However, for the k=10 trial, neither have any single statistic
nor any paired statistic found 10 of 10 nearest neighbors. The
best single statistic was EMD, which found 8 of 10. All paired
statistics that found eight nearest neighbors were some single
statistic paired with EMD. These results are expected and are
similar to the ones obtained on the p27 data set because of the
large difference in the length of the sequences in this set.
Overall, because of the noticeable differences in length, LD and
EMD as single statistics, along with combinations with other
statistics, are the most useful for finding nearest neighbors
among third-generation reads.

Processing a large number of sequences requires large
amount of memory and long time. Using histograms of shorter
k-mers reduces the memory and time requirements. Therefore,
in the next experiment, we study the effects of the size of the
histogram on the ability of a statistic to identify the closest
sequences.

K-nearest neighbors using different sized words

Owing to the potential confusion caused by K-nearest neighbors
and k-mers, we will be referring to the previously established k-
mers as n-mers for this section. Here, we investigated the
effects of using shorter and longer n-mers on the nearest neigh-
bor experiments. In the previous experiment on the microbiome
data set, we used histograms of 4-mers. In this case, we
repeated the three trials of finding the nearest neighbors (K=1,
K=5 and K=10) using 2-mers and 3-mers along with 5-mers
and 6-mers. Interestingly, the performance of the statistics
based on different sized n-mers attained the same accuracy
(Supplementary Files S14-S19 and S32-S55). However, the num-
ber of single or paired statistics that identified the nearest
neighbor(s) declines as the n-mer gets shorter. Table 1 shows
the number of single and paired statistics that obtained perfect
results with different n-mers. Reducing the size of the n-mer by
1 reduces the memory usage and increases the speed by a factor
of 4. As there are 4" n-mers in a histogram, decreasing n vastly
reduces memory usage while also inversely affecting speed.
These results show that using shorter n-mers improves both

Table 1. Number of single and paired statistics that correctly
obtained K-nearest neighbors from the K-nearest neighbor experi-
ments using different n-mers

K=1 K=5 K=10

Singles Pairs Singles Pairs Singles Pairs
n=6 24 1395 23 1304 1 108
n=>5 11 399 11 355 1 24
n=4 7 129 7 129 1 31
n=3 8 180 8 169 1 23
n=2 8 167 8 162 1 3

Note: Specifically, we repeated the experiments using 2-mers, 3-mers, 4-mers, 5-
mers and 6-mers on the same microbiome data set. In these experiments, we
used each single (of 33) and paired (of 2211) statistic for finding the nearest K
neighbors. The numbers indicate how many statistics found all nearest neigh-
bors. Even though some statistics can find all nearest neighbors, a larger number
of statistics achieves perfect results at higher values of n.

time and space while maintaining the same or very comparable
accuracy.

Up to this point, all of our experiments are based on global
alignment identity scores. Other applications require local
alignment scores instead of the global ones. Next, we discuss
the results of the K-nearest neighbors application using local
alignment scores.

K-nearest neighbors using local alignment

Local alignment is widely used as a sequence similarity meas-
ure. Using the synthetic data generated from the p27 set, one
query sequence was aligned locally versus all sequences in the
synthetic set. Supplementary Files S56-S61 include the results
of finding the nearest 1, 5 and 10 sequences to a query
sequence. Unlike the applications based on the global align-
ment, EMD and LD are not effective at all as single statistics of
finding the nearest one neighbor; additionally, any combination
involving either of them does not do well, as expected. No single
or paired statistic was able to find the nearest neighbor. For the
K =5 trial, a majority of single statistics found 2 of 5. Two paired
statistics performed slightly better than single statistics.
Specifically, Markov * Spearman?® and D2s * Markov? found 3
of 5. For the K=10 trial, nine single statistics found 8/ of 10;
These statistics include normalized vectors, harmonic mean,
EuclideanZ, Jeffrey divergence, KL-Cond, Jensen-Shannon,
Pearson coefficient, D2z and SimMM. Additionally, 618 paired
statistics identified 8/10. Many of these paired statistics consist
of two single statistics, both of which did not obtain 8 of 10,
showing the added value of pairing statistics. In sum, for appli-
cations based on local alignments, pairing two weaker single
statistics could enhance the performance. However, in practice,
single statistics should do just as good as the paired statistics at
finding the nearest neighbor(s). Further, as expected, EMD and
LD are no longer effective in identifying the nearest neighbors
as determined by local alignment identity scores.

Time efficiency

Given that the scope of this article is on alignment-free k-mer
methods, one of the most important evaluation criteria is time
efficiency. Many local and global alighment algorithms may be
needed in certain applications because of their level of accuracy.
However, if a particular algorithm requires only a quick similar-
ity search, the statistics discussed in this article highly excel
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Figure 5. Time to compute similarities for 4735 microbiome sequence pairs. The Minkowski family overall is the most time efficient, but others are comparable; any
statistics that use conditional probability such as the Markov family take considerably longer.

at being more time efficient than their alignment-based
counterparts.

We ran each statistic on an iMac with a 2.7 GHz Intel Core i5
and 8 GB of DDR3 RAM. After first computing the histograms of
4-mers, the time each statistic took on 28 500 microbiome
sequence comparisons was measured (Figure 5). Because the
cost of counting n-mers can be minimized with a simple index-
ing table, which is used by all statistics, we did not consider the
additional time needed to construct the histograms.

As expected, many of the statistics can be computed in one
line of MATLAB code and are relatively close in terms of time
efficiency. However, the slowest statistics are the N2 statistics,
KL Cond, revised relative entropy, Markov, Spearman and
SimMM. Spearman distance has the added cost of needing to
compute the ranks of each of the n-mer frequencies, which can
quickly decrease efficiency. The N2 series requires a table to
find the locations of other n-mers based on the neighborhood
definition. The other four statistics all require conditional
probabilities.

When deciding on which alignment-free k-mer statistic to
use for a particular application, it is important to take into
account the performance/cost ratio. Some statistics such as KL
Cond may perform well in terms of accuracy. However, if the
database search takes 50 times longer to complete, using a sim-
pler statistic, such as Manhattan, might be a better choice.
Although these statistics require linear time, the number of lin-
ear operations required can vary and produce important dis-
tinctions. For example, the divergence family can take almost
three times as long as the Minkowski family.

We have found that multiple combinations of statistics with
EMD and LD have been exceptionally useful in multiple experi-
ments. Computing a multiplicative statistic pair will have an
added time cost. However, as EMD and LD require a relatively
low number of linear operations, their combinations with other

efficient statistics can outperform conditional probability meth-
ods in both time and accuracy. Alternatively, the best choice for
a particular application might be a single statistic, as many are
able to perform well in filtering a database and processing NGS
reads.

Conclusion

As evident from the Encyclopedia of Distances, there are many
statistics to compare two k-mer histograms [22]. Therefore, we
decided to cover a good selection of statistics from each statisti-
cal family [17]. Our overall analysis was based on using global
alignment identity score as a ground truth. We have evaluated
each of the discussed statistics in terms of the following four
applications:

1. Sensitivity and specificity for simple database filtering at
identity scores >70%

2. Linear correlation with identity score to isolate useful statis-
tics at various cutoff values

3. K-nearest neighbors with various K values for clustering

4. Time efficiency as a reference for all other applications

In addition, we evaluated the K-nearest neighbors application
according to the identity scores obtained by a local alignment
algorithm. In terms of data sets, we were able to analyze the
statistics in conjunction with microbiome sequences, the
p275P! suppressor gene, synthetic sequences and 3™ generation
reads. The benchmark is general and can be used in evaluating
the statistics on additional data sets. In many cases, alignment
algorithms might be the best option in scanning a database in
terms of accuracy. But if the current experiment is in need of a
significantly more time efficient method at the cost of some
accuracy, alignment-free k-mer statistics would be the ideal sol-
ution. The Needleman-Wunsch algorithm on its own tells a
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great deal of information about the relationship between two
sequences. However, because of the vast amount of information
on faster alignment-free k-mer approaches, we can effectively
find ideal statistics that will work for particular applications in
considerably less time.

Key Points

¢ A large majority of k-mer based alignment-free statis-
tics are effective at simple database filtering and identi-
fying identical DNA sequences.
Multiplicative combinations of statistics with either
Earth Mover’s distance or sequence length difference are
among the top performers across many applications
based on global alignment. Even when sequences are
close in length (220-260 bp), multiplicative combinations
with Earth Mover’s distance or length difference still can
frequently enhance the performance of single statistics.

Reducing the k-mer length can decrease the time and

space requirements while maintaining comparable

accuracy.

* For applications based on sequences of the same length
or on local alignment, single statistics are effective in
identifying the closest sequence(s). Length-based statis-
tics such as Earth Mover’s distance or length difference
are no longer effective in such applications.

¢ An evaluation benchmarking tool is provided. Using the
benchmark, 33 statistics, their squares and their multi-
plicative combinations can be evaluated on any set of
DNA sequences, resulting in identifying the ideal statis-
tics for a specific purpose.

Supplementary Data

Supplementary data are available at https:/github.com/
TulsaBioinformaticsToolsmith/Alignment-Free-Kmer-
Statistics.
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