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Abstract: Various techniques using artificial intelligence (AI) have resulted in a significant contribution
to field of medical image and video-based diagnoses, such as radiology, pathology, and endoscopy,
including the classification of gastrointestinal (GI) diseases. Most previous studies on the classification
of GI diseases use only spatial features, which demonstrate low performance in the classification of
multiple GI diseases. Although there are a few previous studies using temporal features based on a
three-dimensional convolutional neural network, only a specific part of the GI tract was involved with
the limited number of classes. To overcome these problems, we propose a comprehensive AI-based
framework for the classification of multiple GI diseases by using endoscopic videos, which can
simultaneously extract both spatial and temporal features to achieve better classification performance.
Two different residual networks and a long short-term memory model are integrated in a cascaded
mode to extract spatial and temporal features, respectively. Experiments were conducted on a combined
dataset consisting of one of the largest endoscopic videos with 52,471 frames. The results demonstrate
the effectiveness of the proposed classification framework for multi-GI diseases. The experimental
results of the proposed model (97.057% area under the curve) demonstrate superior performance over
the state-of-the-art methods and indicate its potential for clinical applications.

Keywords: Artificial intelligence (AI); deep learning; endoscopic video analysis; residual network
(ResNet) and long short-term memory (LSTM) model; classification of multiple gastrointestinal
(GI) diseases

1. Introduction

Different types of gastrointestinal (GI) diseases, such as colorectal cancer and tumor, are the
leading cause of death in the USA [1]. According to the American Cancer Society, approximately
76,940 people lost their lives in 2016 owing to different types of cancers in the GI tract [1]. The effective
diagnosis of such GI diseases is a tedious and time-consuming task. Most of the small GI lesions remain
imperceptible during the early stages, which ultimately evolves into a fatal ailment. Therefore, it is
essential to develop computerized approaches that can assist the physicians in effective diagnosis and
treatment. Therefore, substantial efforts were focused over the past few decades to develop artificial
intelligence (AI)-based computer-aided diagnosis (CAD) tools and applications in various medical
fields [2–4]. These fields include the detection of brain tumor [5], classification of different types of
skin cancers, diagnosis in radiation oncology, diabetic retinopathy, histologic classification of gastric
biopsy, and endoscopy [6–15].

In the field of endoscopy, the recent AI-based CAD tools utilize the strength of deep learning
(a set of advanced machine learning algorithms) for the analysis of various types of endoscopic scans.
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In general, deep learning algorithms are used to extract the optimal representations of training data.
A training algorithm optimizes the learnable parameters of the deep learning model [16]. Based on the
optimal features extracted from the training dataset, the CAD tool can analyze the newly acquired
clinical images prospectively. Artificial neural networks (ANNs) are the key component of such
deep learning-based image analysis tools that logically emulates the structure and activity of the
brain neurons on a computer. Various types of ANNs were proposed, including convolutional neural
networks (CNNs), in the field of image recognition [16,17]. However, all the supervised ANN-based
image recognition methods require a training dataset, which is used to estimate the optimal network
parameters for sufficient training. In the field of medical image analysis, similar training of an ANN
model is performed, which is called supervised learning (SL). In SL, the available training dataset
consists of both input images and appropriate output information. The primary portion of ANN
model is the stack of multiple layers, which comprise of learnable filters with different values of size
and depth. These layers extract the complex features from the available training dataset by using
different learning algorithms. Finally, the ANN network learns from these features without using
other handcrafted features [16,17]. After performing sufficient training, an ANN-based diagnostic
framework demonstrates the best performance in various clinical applications.

This research primarily focuses on the analysis of different deep learning models used in the
classification of GI diseases. We analyze in depth the performance of the most recent CNN models
considering the following perspectives: (1) the importance of spatial and temporal features in the
classification of GI diseases; (2) feature selection from different layers within a CNN network; (3)
combining the CNN and long short-term memory (LSTM); and (4) analyzing the effects of the temporal
features by considering different number of successive frames. Thus, we proposed a cascaded deep
feature-based framework by combining the deep residual network (ResNet) and LSTM to obtain the
best classification accuracy. Finally, we provide a novel spatiotemporal features-based pretrained
model for the classification of multiple GI diseases, which is our primary contribution. We have also
ensured that our pretrained model and the video indices of the experimental endoscopic videos are
publicly available for other researchers [18].

The rest of this paper is organized as follows: The related studies on endoscopy for the detection
and classification of different GI diseases are provided in Section 2, and a brief summary of our
contribution to this research is explained in Section 3. In Section 4, a comprehensive description of the
proposed classification framework for multiple GI diseases is presented. In Section 5, we illustrate the
experimental setup and performance analysis of the proposed method to validate its performance and
efficiency over the previous deep learning and handcrafted features-based methods. A discussion
on certain important issues relevant to this paper is presented in Section 6. Finally, Section 7 draws a
conclusion of our research work.

2. Related Works

In recent years, the strength of deep learning-based algorithms has been utilized in the
field of endoscopy, including capsule endoscopy (CE), esophagogastroduodenoscopy (EGD), and
colonoscopy [6–15]. To facilitate the physicians with the effective diagnosis of different GI lesions,
several CNN-based CAD tools have been proposed in the literature. These CAD tools are capable of
detecting and classifying even small lesions in the GI tract, which often remain imperceptible to the
human visual system. Before the advent of deep learning methods, many previous studies have focused
on the handcrafted feature-based methods, which mainly consider texture and color information.

Most of the previous studies have been carried out to perform the detection and classification of
different type of GI polyps in the field of CE. Generally, these methods followed a common approach of
the feature extracting and then classification to detect and classify the GI polyps. In [19], Karargyris et al.
proposed a geometric and texture features based method for the detection of small bowel polyps and
ulcers in CE. Log Gabor filters and the SUSAN edge detector was used to preprocess the images and,
finally, the geometric features were extracted to detect the polyp and ulcer region. Li et al. [20] utilized
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the advantages of a discrete wavelet transform and uniform local binary pattern (LBP) with a support
vector machine (SVM) to classify the normal and abnormal tissues. In this feature extraction approach,
wavelet transform combines the capability of multiresolution analysis and uniform LBP to provide
robustness to illumination changes, which results in better performance.

Similarly, another texture features-based automatic tumor recognition framework was proposed
in [6] for wireless CE images. In this framework, a similar integrated approach was adopted based on
LBP and discrete wavelet transform to extract the texture features of the scale and rotation invariants.
Finally, the selected features were classified by using an SVM. Yuan et al. [21] proposed an integrated
polyps detection algorithm by combing the Bag of Features (BoF) method with the saliency map. In the
first step, the BoF method characterizes the local features by using a scale-invariant feature transform
(SIFT) feature vectors with k-means clustering. Then saliency features were obtained by generating
saliency map histogram. Finally, both BoF and saliency features were fed into the SVM to perform
classification. Later, Yuan et al. [22] extended this approach with the addition of LBP, uniform LBP
(ULBP), complete LBP (CLBP), and histogram of oriented gradients (HoG) features along with SIFT
features for capturing more discriminative texture information. Finally, these features were classified
by using SVM and Fisher’s linear discriminant analysis (FLDA) classifiers by considering different
combinations of local features. The combination of SIFT and CLBP features with SVM classifier resulted
in top classification accuracy.

Seguí et al. presented a deep CNN system for small intestine motility characterization [7]. This
CNN-based method exploited the general representation of six different intestinal motility events by
extracting deep features, which resulted in superior classification performance when compared to
the other handcrafted features-based methods. Another CNN-based CAD tool was presented in [15]
to quantitatively analyze the celiac disease in a fully automated approach by using CE videos. This
proposed method utilized the advantages of a well-known CNN model (i.e., GoogLeNet) to distinguish
between the normal and abnormal (i.e., diagnosed with celiac disease) patients. Thus, the effective
characterization of the celiac disease resulted in better diagnosis and treatment when compared to
the manual analysis of CE videos. In [12], a multistage deep CNN-based framework for hookworm
(i.e., intestinal parasite) detection was proposed using CE images. Two different CNN networks, named
as edge extraction network and hookworm classification network, were unified, which simultaneously
characterized the visual and tubular patterns of hookworms.

In the field of EGD, a deep learning-based CAD tool was proposed for the diagnosis of
Helicobacter pylori (H. pylori) infection [9]. In this proposed framework, two-stage CNN models were used.
In the first stage, a 22-layers deep CNN was fine-tuned for the classification (i.e., positive or negative) of
H. pylori infection. Then, in the second stage, another CNN was used to further classify the dataset (EGD
images) according to eight different anatomical locations. Similarly, Takiyama et al. proposed another
CNN-based classification model to categorize the anatomical location of the human GI tract [8]. This
technique could categorize the EGD images into four major anatomical locations (i.e., larynx, esophagus,
stomach, and duodenum) and three subcategories for the stomach images (upper, middle, and lower
regions). A pretrained CNN architecture, named as GoogLeNet, was used for this classification problem,
which demonstrated high classification performance. In a recent study by Hirasawa et al. [13], a fully
automated diagnostic tool for gastric cancer was proposed by utilizing the detecting capability of
deep CNN-based architectures. A single-shot multibox detector (SSD) architecture was used to detect
early and advanced stages of gastric cancer from EGD images. The proposed method demonstrated
substantial detection capability even for small lesions when compared to the conventional methods.
The results of this study illustrated its practical usability in clinical practice for better diagnosis and
treatment. However, it demonstrated certain limitations as only high-quality EGD images could be
used from the same type of endoscope and endoscopic video system.

Generally, the various deep learning-based methods demonstrate either the problem of over-fitting
or under-fitting owing to the utilization of a large number of network parameters and the limited
amount of data available in the training dataset. This problem degrades the system performance in a
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real-world scenario. A similar problem also occurs in the domain of medical image analysis owing
to the unavailability of a sufficiently large training dataset. To address this issue, a transfer learning
mechanism is often adopted in this domain. In the field of colonoscopy, Zhang et al. [10] used this
approach for automatic detection and classification of colorectal polyps. A novel transfer learning
approach was applied to train the two different CNN models for the source domain (i.e., nonmedical
dataset) and then fine-tuning was performed for the target domain (i.e., medical dataset). Their method
performed the polyp detection and classification tasks in two different stages. In the first stage, an
image of interest (i.e., polyp image) was selected by using the CNN-based polyp detection model.
In the second stage, another CNN model was further used to categorize the detected polyp image into
either a hyperplastic polyp or an adenomatous colorectal polyp. The results of this study demonstrated
that the CNN-based diagnoses achieved a higher accuracy and recall rate than endoscopist diagnoses.
However, their method is not applicable for real-time colonoscopy image analysis owing to the use
of multistage CNN models. Another study by Byrne et al. [14], presented a single deep CNN-based
real-time colorectal polyp classification framework using the colonoscopy video images. In this study,
a simple CNN model was trained to classify each input frame into one of four different categories, i.e.,
hyperplastic polyp, adenomatous polyp, no polyp, or unsuitable. The end-to-end processing time of
this CNN model was 50 ms per frame, resulting in its applicability for the real-time classification of
polyps. In another study [11], an offline and online three-dimensional (3D) deep CNN framework was
proposed for automatic polyp detection. Two different 3D-CNNs, named as offline 3D-CNN and online
3D-CNN, were simultaneously used to exploit the more general representation of features for the
task of effective polyp detection. In this complete framework, the offline 3D-CNN effectively reduced
the number of false positives, whereas the online 3D-CNN was used to further improve the polyp
detection. The experimental results showed that the 3D fully convolutional network was capable of
learning more representative spatiotemporal features from colonoscopy videos in comparison with the
handcrafted or two-dimensional (2D) CNN features-based methods.

Endoscopy is a direct imaging modality, which captures the internal structure of the human GI
tract in the form of videos rather than a still image. Therefore, it is possible to extract both spatial and
temporal information from endoscopic data to enhance the diagnostic capability of different deep
CNN-based CAD tools. Most of the previous studies considered only the spatial information for
classification and detection of different GI diseases without considering the temporal information.
The loss of temporal information affects the overall performance of the CAD tools. In addition, the
maximum number of classes to be managed in the previous studies were also limited to eight [9],
which only considered limited GI diseases, such as a tumor or cancer.

To address these issues from previous researches, we considered 37 different categories in our
proposed work, which included both normal and diseased cases related to different parts of the human
GI tract. We proposed a novel two-stage deep learning-based framework to enhance the classification
performance of different GI diseases by considering both spatial and temporal information. Two
different models named as ResNet and LSTM were trained separately to extract the spatial and
temporal features, respectively. In Table 1, the strengths and weaknesses of previous studies and our
proposed method are summarized.
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Table 1. Comparison of our proposed and existing methods for endoscopy disease classification.

Endoscopy Type Method Purpose No. of Classes Strength Weakness

CE Log Gabor filter, SUSAN edge
detection and SVM [19]

Small bowel polyps
and ulcers detection 2 Computationally efficient Limited dataset and number of classes

Low detection performance

CE Texture features
(ULBP, wavelet) + SVM [20] Polyp detection in GI tract 2 Robust to illumination

change and scale invariant Limited dataset and number of classes

CE Texture features
(LBP, wavelet) + SVM [6]

Tumor recognition
in the digestive tract 2 Invariant to illumination change

Extract multiresolution features Limited dataset and number of classes

CE Texture features
(SIFT, Saliency) + SVM [21] Polyp classification 2 Extract scale invariant features Limited dataset and number of classes

CE Texture features (SIFT, HoG, LBP,
CLBP, ULBP) + SVM, FLDA [22] Polyp Detection 2 Extract scale invariant features

High classification performance Limited dataset and number of classes

CE CNN [7] Small intestine movement
characterization 6 High classification performance Limited number of classes

CE CNN [15] Celiac disease
classification 2 High sensitivity and specificity Limited dataset and number of classes

CE CNN [12] Hookworm detection 2 Edge extraction network results
in better performance Limited number of classes

EGD CNN [9] H. pylori
infection detection 9 Comparable performance of second CNN

with the clinical diagnosis reference standard
CAD performance should be enhanced.

A limited number of classes

EGD CNN [8] Anatomical classification
of GI images 6 High classification performance

Computationally efficient
Limited number of classes

Only used for anatomical classification

EGD CNN-based SSD detector [13] Gastric cancer detection 2 High sensitivity
Computationally efficient

Overall low positive prediction value
Limited dataset and number of classes

Colonoscopy CNN [10] Colorectal polyp detection
and classification 3 High detection performance Limited dataset and number of classes

Low classification performance

Colonoscopy CNN [14] Real-time colorectal polyp
type analysis 4 High accuracy and sensitivity Limited number of classes

Low specificity

Colonoscopy Online and offline 3D-CNN [11] Detection of colorectal
polyps 2 Computationally efficient CAD performance should be enhanced.

EGD, Colonoscopy,
Sigmoidoscopy,

Rectoscopy
CNN (ResNet) + LSTM (Proposed) Classification of multiple

GI diseases 37 Computationally efficient
High classification performance

Cascaded training of CNN and
LSTM requires more time
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3. Contribution

This is the first approach towards the classification of multiple GI diseases that includes 37 different
categories related to normal and diseased cases while considering different parts of the human GI tract.
The major contributions of this study can be summarized in the following five ways when compared
to the previous methods.

(1) To the best of our knowledge, this is the first approach to develop a comprehensive deep
learning-based framework for the classification of multiple GI diseases by considering deep
spatiotemporal features. In contrast, most of the previous studies [6–15] considered the limited
number of classes that are related to a specific type of GI portion.

(2) We proposed a novel cascaded ResNet and LSTM-based framework in the medical domain to
learn both spatial and temporal features for the different type of GI diseases. When compared
to the previous methods based on handcrafted features and simple 2D-CNNs, our method can
manage the large intraclass and low interclass variations among multiple classes more effectively.

(3) We deeply analyzed the performance of our proposed method by selecting the multilevel
spatial features for LSTM from the different layers of the ResNet network. Furthermore, the
performance of multilevel spatial features was also analyzed by applying principal component
analysis (PCA).

(4) We compared the performance of the various state-of-the-art CNN models and different
handcrafted feature-based approaches. Our analysis was more detailed, in contrast to previous
studies [8,9], which provided only a limited performance analysis for a small number of classes
related to a specific GI part.

(5) Finally, we have ensure that our trained model and video indices of experimental endoscopic
videos are publicly available through [18]; therefore, other researchers can evaluate and compare
its performance.

4. Proposed Method

This section presents our proposed method for the classification of multiple GI diseases, including
the CNN architecture for the extraction of spatial features, LSTM-based network for the extraction of
temporal features, and finally, the classification portion comprises of fully connected (FC) layers.

4.1. Overview of the Proposed Approach

The conventional image or video classification framework is comprised of two main stages, known
as the feature extraction stage and the classification stage. There are also certain other preprocessing
steps such as image resizing or batch normalization (BN) to adjust the dataset according to the network
compatibility. A brief flowchart of our method for the classification of multiple GI diseases based
on deep spatiotemporal features is illustrated in Figure 1. In the first preprocessing step, the size of
each endoscopic video frame was adjusted to 224 × 224 × 3 (according to the input layer size of the
CNN model). In the next steps, we used a cascaded CNN and LSTM-based deep network to extract
the spatial and temporal features, respectively, by using the resized sequence of frames. Using the
CNN model, a sequence of spatial feature vectors was extracted, which was subsequently inputted to
the LSTM for the extraction of temporal features. The final output of the LSTM comprises of a single
feature vector that contains both the spatial and temporal information for each given sequence of
frames. In the last step, the classification of the extracted spatiotemporal feature vector was performed
by categorizing the given video sequence into one of 37 different categories (i.e., 37 different categories
presenting the normal and diseased cases related to the human GI tract).
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Figure 1. Overall flow diagram of the proposed classification framework.

4.2. Structure of Our Proposed Model

Our proposed classification framework consists of a cascaded CNN and LSTM-based deep
networks with the capability to classify the video data based on spatiotemporal features. The primary
advantage of our network is its capability to categorize a variable length sequence of n successive
images (i.e., I1, I2, I3, . . . , In) with significant performance gain. For example, the use of more successive
images results in better classification performance. In addition, our cascaded deep learning model
demonstrated high performance in comparison with only CNN-based models. That is because the
CNN models only extract the spatial information by processing each input image independently
rather than considering both spatial and temporal features in the case of a video dataset. Owing to the
loss of temporal information in a CNN model, the overall classification performance is deteriorated.
To overcome the limitation of previous spatial features-based methods in the medical domain, our
study included a spatial variant of a recurrent neural network (RNN) named as LSTM along with
the conventional CNN model to enhance the classification performance. The overall structure of our
proposed classification framework is shown in Figure 2. The complete framework is comprised of
three different stages, i.e., spatial features extraction, temporal features extraction, and finally, the
classification stage. In each stage, a specific set of deep learning procedures was applied to the given
input sequence of endoscopic frames. Thus, the final class label was predicted for the input sequence
using 37 different categories of different GI diseases. The detailed explanation of each stage is presented
in the subsequent sections.
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4.2.1. Spatial Features Extraction using a Convolutional Neural Network

The first stage of our proposed classification framework included a deep CNN model named
ResNet18 [23], which was used for spatial features extraction from each input frame. The primary
reasons for selecting ResNet18 [23] was the high classification accuracy and the optimal number of
learnable parameters when compared to the other state-of-the-art deep CNN models [16,24–27]. In a
later section the experimental results quantitatively illustrate the significance of our selected ResNet18
model when compared to the other models.

The complete structure of the extraction model for spatial features is illustrated in Figure 2.
The entire network consists of multiple residual units, which can be considered as the basic building
block. These residual units are categorized into two different types based on the type of shortcut
connectivity (i.e., 1× 1 convolutional-mapping-based shortcut connectivity and identity-mapping-based
shortcut connectivity) [23]. The shortcut connectivity in an identity-mapping-based residual unit
maintains the depth of previous feature map without any modification whereas the shortcut connectivity
in the 1 × 1 convolutional-mapping-based residual unit increases the depth of the previous feature map
by applying the 1 × 1 convolution. Moreover, in each residual unit, there are two convolutional layers
with a filter size of 3 × 3 in sequential order. These filters contain the learnable parameters, which are
optimized during the training procedure. ResNet18 consists of a total of eight residual units, including
five identity mapping-based residual units and three 1 × 1 convolutional mapping-based residual
units, as shown in Figure 3. The use of more identity mapping-based residual units results in better
performance in terms of computational complexity and training time. In addition, both types of residual
units result in smoother information propagation in both forward and backward directions [28].
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identity-mapping-based residual unit.

The layer-wise structural details are further explained in Table 2, which demonstrates the flow
of information processing by the different layers of ResNet18 in a sequential order. In general, the
convolutional and FC layers are the main components of a conventional CNN model, which are used
for features extraction and classification, respectively. There are also certain other layers without
including the learnable parameters, such as a rectified linear unit (ReLU) layer, softmax, max pooling,
average pooling, and a classification layer. Our selected ResNet18 model primarily contains a total
of eighteen layers in which there are seventeen convolutional layers and one FC layer. These layers
encompass the learnable parameters (i.e., filter coefficients and biases), which are optimized through
the training procedure. Each convolutional layer is followed by the BN layer (it normalizes the feature
map of each channel) and then a ReLU layer (it performs a threshold operation).
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Table 2. Layer-wise configuration details of deep ResnNet18 model in our study.

Layer Name Feature Map Size Filters Kernel Size Stride #Padding Total Learnable
Parameters

Image input layer 224 × 224 × 3 n/a n/a n/a n/a n/a

Conv1 112 × 112 × 64 64 7 × 7 × 3 2 3 9600

Max pooling 56 × 56 × 64 1 3 × 3 2 1

Conv2-1–Conv2-2
(Identity Mapping)

56 × 56 × 64
56 × 56 × 64

64
64

3 × 3 × 64
3 × 3 × 64

1
1

1
1 74,112

Conv3-1–Conv3-2
(Identity Mapping)

56 × 56 × 64
56 × 56 × 64

64
64

3 × 3 × 64
3 × 3 × 64

1
1

1
1 74,112

Conv4-1–Conv4-2
(1 × 1 Convolutional Mapping)

28 × 28 × 128
28 × 28 × 128
28 × 28 × 128

128
128
128

3 × 3 × 64
3 × 3 × 128
1 × 1 × 64

2
1
2

1
1
0

230,528

Conv5-1–Conv5-2
(Identity Mapping)

28 × 28 × 128
28 × 28 × 128

128
128

3 × 3 × 128
3 × 3 × 128

1
1

1
1 295,680

Conv6-1–Conv6-3
(1 × 1 Convolutional Mapping)

14 × 14 × 256
14 × 14 × 256
14 × 14 × 256

256
256
256

3 × 3 × 128
3 × 3 × 256
1 × 1 × 128

2
1
2

1
1
0

919,808

Conv7-1–Conv7-2
(Identity Mapping)

14 × 14 × 256
14 × 14 × 256

256
256

3 × 3 × 256
3 × 3 × 256

1
1

1
1 1,181,184

Conv8-1–Conv8-3
(1 × 1 Convolutional Mapping)

7 × 7 × 512
7 × 7 × 512
7 × 7 × 512

512
512
512

3 × 3 × 256
3 × 3 × 512
1 × 1 × 256

2
1
2

1
1
0

3,674,624

Conv9-1–Conv9-2
(Identity Mapping)

7 × 7 × 512
7 × 7 × 512

512
512

3 × 3 × 512
3 × 3 × 512

1
1

1
1 4,721,664

Avg pooling 1 × 1 × 512 1 7 × 7 7 0

FC layer 37 18,981

Softmax 37

Classification layer 37

Total number of learnable parameters: 11,200,293

The first convolutional layer (i.e., Conv1) of our selected model generates an output feature map
X1 of size 112 × 112 × 64 by applying 64 different filters of size 7 × 7 × 3 over the given input image
X. After Conv1, the next max pooling layer further processes the output feature map X1 by applying
a filter of 3 × 3 pixels and generates a down-sampled feature map X2 of size 56 × 56 × 64. This
output feature map X2 is passed through the first identity mapping-based residual unit that applies
the two convolution filters (Conv2-1 and Conv2-2) in sequential order and generates an intermediate
feature map as f (X2, W2). Finally, the output feature map X3 of size 56 × 56 × 64 is generated by
adding X2 and f (X2, W2). The second identity mapping-based residual unit also performs a similar
operation and converts the feature map X3 to a new feature map X4. The next 1 × 1 convolutional
mapping-based residual unit further processes the feature map X4 by applying the two convolution
filters (Conv4-1 and Conv4-2) in sequential order and generates the first intermediate output feature
map as f (X4, W4). Meanwhile, a 1 × 1 convolution filter (Conv4-3) converts the feature map X4 to the
second intermediate output feature map as h(X4, W4). Finally, the output feature map X5 is obtained
by adding both intermediate feature maps f (X4, W4) and h(X4, W4).

Similarly, all the successive residual units process the output feature map of the previous residual
unit in the same way by using a different number of filters with different sizes and stride values as
listed in Table 2. Finally, the optimal feature vector x of size 1 × 1 × 512 is obtained after applying the
average pooling layer with filter size 7 × 7 pixels over the last output feature map X10 (i.e., the output
of the last convolutional layer). In this way, a set of n feature vectors {x1, x2, x3 . . . , xn} are obtained
by processing all the successive images (I1, I2, I3 . . . , In). These extracted feature vectors are further
used as the input to the LSTM network for temporal feature extraction. The remaining three layers
(i.e., FC, softmax, and classification layer) only participate in the training procedure. Therefore, after
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completing the training process, the output feature vector is selected after the average pooling layer
for further temporal feature extraction and classification rather than the final classification layer.

4.2.2. Temporal Features Extraction by Long Short-term Memory Model

In the second stage, LSTM, a variant of the RNN model [29], was used to exploit the temporal
information from the set of n features vectors that were extracted in the first stage by using ResNet18.
The structure of LSTM consists of n LSTM cells [30]. Figure 2 (Stage 2) illustrates the flow of n features
vectors (x1, x2, x3 . . . , xn) through the multiple LSTM cells. In the figure, hn and cn denote the output
(also known as the hidden state) and cell state at time step n, respectively. The hidden state, hn, contains
the output of the LSTM cell for the time step n and the cell state cn holds the information learned from
all the previous time steps (i.e., 1 to n − 1). The first LSTM cell (at time step n = 1) uses the initial
state of the network (h0, c0) and the input feature vector x1 to compute the first output h1 and the
updated cell state c1. At time step n (where n , 1), the LSTM cell uses the current state of the network
(hn−1, cn−1) and the input feature vector xn to calculate the output hn and the updated cell state cn.
Thus, the temporal information is exploited in the LSTM stage by using all the spatial feature vectors.

The basic structure of a standard LSTM cell is shown in Figure 4, which illustrates the flow of data
at time step n. In general, four components, named as input gate (in), forget gate ( fn), cell candidate
(gn), and output gate (on), are responsible for controlling the state information at time step n. The in
controls the level of the cell state update, whereas the fn controls the level of the cell state reset. The gn

adds the information to the cell state and finally, the on controls the level of the cell state added to the
hidden state. Based on these components, the complete structure of the cell is divided into three gates,
named as forget, input, and output gates, as highlighted in Figure 4.

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 10 of 32 

 

Total number of learnable parameters: 11,200,293 

4.2.2. Temporal Features Extraction by Long Short-term Memory Model 

In the second stage, LSTM, a variant of the RNN model [29], was used to exploit the temporal 

information from the set of 𝑛 features vectors that were extracted in the first stage by using ResNet18. 

The structure of LSTM consists of 𝑛 LSTM cells [30]. Figure 2 (Stage 2) illustrates the flow of 𝑛 

features vectors (𝑥1, 𝑥2, 𝑥3 … , 𝑥𝑛) through the multiple LSTM cells. In the figure, ℎ𝑛 and 𝑐𝑛 denote 

the output (also known as the hidden state) and cell state at time step 𝑛, respectively. The hidden 

state, ℎ𝑛, contains the output of the LSTM cell for the time step 𝑛 and the cell state 𝑐𝑛 holds the 

information learned from all the previous time steps (i.e., 1 to 𝑛 − 1). The first LSTM cell (at time step 

𝑛 = 1) uses the initial state of the network (ℎ0, 𝑐0) and the input feature vector 𝑥1 to compute the first 

output ℎ1  and the updated cell state 𝑐1 . At time step 𝑛 (where 𝑛 ≠ 1), the LSTM cell uses the 

current state of the network (ℎ𝑛−1, 𝑐𝑛−1) and the input feature vector 𝑥𝑛 to calculate the output ℎ𝑛 

and the updated cell state 𝑐𝑛. Thus, the temporal information is exploited in the LSTM stage by using 

all the spatial feature vectors. 

The basic structure of a standard LSTM cell is shown in Figure 4, which illustrates the flow of 

data at time step 𝑛. In general, four components, named as input gate (𝑖𝑛), forget gate (𝑓𝑛), cell 

candidate (𝑔𝑛), and output gate (𝑜𝑛), are responsible for controlling the state information at time 

step 𝑛. The 𝑖𝑛 controls the level of the cell state update, whereas the 𝑓𝑛 controls the level of the cell 

state reset. The 𝑔𝑛 adds the information to the cell state and finally, the 𝑜𝑛 controls the level of the 

cell state added to the hidden state. Based on these components, the complete structure of the cell is 

divided into three gates, named as forget, input, and output gates, as highlighted in Figure 4. 

. 

Figure 4. Internal connectivity of a standard LSTM cell. 

Furthermore, the three different type of learnable parameters, termed as input weights, 𝑊 =

 [𝑊𝑖𝑛
, 𝑊𝑓𝑛

, 𝑊𝑔𝑛
, 𝑊𝑜𝑛

]
𝑇

, recurrent weights, 𝑅 =  [𝑅𝑖𝑛
, 𝑅𝑓𝑛

, 𝑅𝑔𝑛
, 𝑅𝑜𝑛

]
𝑇

, and bias, 𝑏 =  [𝑏𝑖𝑛
, 𝑏𝑓𝑛

, 𝑏𝑔𝑛
, 𝑏𝑜𝑛

]
𝑇

, 

are included in the LSTM cell, which are responsible for learning the temporal information after 

performing sufficient training. These learnable parameters (𝑊, 𝑅, 𝑏)  and cell components 

(𝑖𝑛, 𝑓𝑛, 𝑔𝑛, 𝑜𝑛) are used to calculate the cell state 𝑐𝑛 and output ℎ𝑛 at time step 𝑛. The following 

mathematical computations are performed to determine the state information and cell components: 

𝑐𝑛  =  𝑓𝑛 × 𝑐𝑛−1 + 𝑔𝑛 × 𝑖𝑛                                                                          (1) 

ℎ𝑛  =  𝑜𝑛 × 𝑡𝑎𝑛ℎ(𝑐𝑛)                                                                                (2) 

𝑖𝑛  =  𝜎(𝑊𝑖𝑛
𝑥𝑛 + 𝑅𝑖𝑛

ℎ𝑛−1 + 𝑏𝑖𝑛
)                                                                    (3) 

𝑓𝑛  =  𝜎(𝑊𝑓𝑛
𝑥𝑛 + 𝑅𝑓𝑛

ℎ𝑛−1 + 𝑏𝑓𝑛
)                                                                    (4) 

𝑔𝑛  =  𝑡𝑎𝑛ℎ(𝑊𝑔𝑛
𝑥𝑛 + 𝑅𝑔𝑛

ℎ𝑛−1 + 𝑏𝑔𝑛
)                                                               (5) 

𝑜𝑛  =  𝜎(𝑊𝑜𝑛
𝑥𝑛 + 𝑅𝑜𝑛

ℎ𝑛−1 + 𝑏𝑜𝑛
)                                                                    (6) 

Figure 4. Internal connectivity of a standard LSTM cell.

Furthermore, the three different type of learnable parameters, termed as input weights,

W =
[
Win , W fn , Wgn , Won

]T
, recurrent weights, R =

[
Rin , R fn , Rgn , Ron

]T
, and bias, b =

[
bin , b fn , bgn , bon

]T
,

are included in the LSTM cell, which are responsible for learning the temporal information after performing
sufficient training. These learnable parameters (W, R, b) and cell components (in, fn, gn, on) are used to
calculate the cell state cn and output hn at time step n. The following mathematical computations are
performed to determine the state information and cell components:

cn = fn × cn−1 + gn × in (1)

hn = on × tanh(cn) (2)

in = σ(Win xn + Rin hn−1 + bin) (3)

fn = σ
(
W fnxn + R fn hn−1 + b fn

)
(4)

gn = tanh
(
Wgn xn + Rgnhn−1 + bgn

)
(5)
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on = σ(Wonxn + Ron hn−1 + bon) (6)

where tanh is the hyperbolic tangent function, which is calculated as tanh(x) = (ex
− e−x)/(ex + e−x).

It is used as a state activation function. The function σ is the sigmoid function, which is calculated as
σ(x) = (1 + e−x)−1 to compute the gate activation function.

In the first stage, ResNet18 processed the sequence of n successive images (i.e., I1, I2, I3 . . . , In) in a
sequential order to extract the spatial features. Then, the LSTM model processed all the spatial feature
vectors (a set of n feature vectors {x1, x2, x3 . . . , xn}) in a parallel fashion in the second stage. Therefore,
the feature accumulation block, as shown in Figure 2, is used to accumulate all the spatial feature
vectors (obtained from ResNet18 in the first stage) before inputting it to the LSTM model in the second
stage. The layer-wise structural details of our proposed LSTM model are listed in Table 3. The final
output of the LSTM model contains both the spatial and temporal information, which is followed by
the stack of FC layers to perform the final classification.

Table 3. Layer-wise configuration details of long short-term memory (LSTM) model in our study.

Layer Name Feature Map Size Total Learnable

Sequence input layer n × 1 × 1 × 512

LSTM 600 1,951,200

Dropout 600

FC layer 37 22,237

Softmax 37

Classification layer 37

Total learnable parameters: 1,973,437

4.2.3. Classification

In the final classification stage, the output hn of the LSTM cell at the last time step n is selected as
the final output feature vector rather than using all the outputs (i.e., h1, h2, h3, . . . , hn). Then, a stack
consisting of FC, softmax, and classification layers is used to perform the final classification as shown in
Figure 2. The output of the last LSTM cell is followed by a FC layer where the number of nodes is equal
to the number of classes. The primary purpose of the FC layer is to determine the larger patterns by
combining all the spatiotemporal features learned by the previous layers across the images. It multiplies
the input feature vector obtained from the last LSTM cell by a weight matrix W and then adds a bias
vector b. The final output obtained after this FC layer is presented as y = W·hn + b. The next softmax
layer converts the output y in terms of probability by applying the softmax function [31]. Finally,
the classification layer considers the output from the softmax layer and assigns each input to one
of the 37 different categories by using the cross-entropy loss function [31]. In conclusion, the final
class label is assigned to the given sequence of n successive images by exploiting both the spatial and
temporal information.

5. Experimental Setup and Performance Analysis

In this section, we analyze the performance of our proposed ResNet18 and LSTM-based
classification framework. We provide the details of the selected endoscopy dataset, experimental
configurations, various performance analysis metrics used to evaluate the quantitative performance,
observations, and analysis of the results as well as the comparison with other methods.

5.1. Dataset

To evaluate the performance of the proposed multiple GI diseases classification framework, we
selected an open access endoscopic videos dataset from Gastrolab [32] and the KVASIR dataset [33].
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The datasets contain various endoscopic videos related to different parts of the human GI tract, including
both normal and diseased cases. The details of each individual video (including the information about
normal and diseased cases as well as the anatomical district) are included as the video name. Based
on the available information, the complete dataset was categorized into 37 different classes including
both normal and diseased cases related to different parts of the human GI tract. These different classes
include the multiple anatomical locations (i.e., esophagus, stomach, small intestine, large intestine, and
rectum) of the human GI tract as shown in Figure 5.
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Figure 5. Different anatomical districts of the human GI tract.

Furthermore, the details of multiple subcategories of each anatomical district and their corresponding
number of classes with types of diseases and the number of training and testing sequences are listed in
Table 4. The entire dataset contains a total of 77 video files including 52,471 frames. In the preprocessing
part, all these frames were resized into fixed dimensions with the spatial size of 224 × 224; subsequently,
they were converted into a standard bitmap file format. We performed the two-fold cross-validation by
randomly dividing the entire dataset as 50% for training and the remaining 50% for testing. That is, in all
the performance comparisons, the numbers of training data are the same as those of the testing data as
shown in Table 4.

Table 4. Details of multiple subcategories of each anatomical district and their corresponding classes.

Gastrointestinal Tract Class Name
(Normal/Disease Cases)

Training Set
(Frames)

Testing Set
(Frames) TotalAnatomical District Subcategory

Esophagus

Larynx C1: Normal 387 387 774

Upper part
C2: Normal 625 625 1250
C3: Esophageal candidiasis 419 419 838
C4: Esophageal papillomatosis 272 272 544

Lower part (z-line) C5: Normal 250 250 500

Stomach

Cardia C6: Hiatal hernia 648 648 1296

Fundus
C7: Atrophic gastritis 241 241 482
C8: Atrophic and xanthoma gastritis 255 254 509

Body C9: Benign hyperplastic polyps 1070 1070 2140
C10: Adenocarcinoma (Cancer) 955 955 1910

Pylorus C11: Normal 1275 1275 2550

Small Intestine

Duodenum
C12: Normal 423 423 846
C13: Ulcer 1345 1345 2690
C14: Papilla vateri 702 702 1404

Terminal Ileum C15: Crohn’s disease 840 840 1680

Ileocecal C16: Severe Crohn’s disease 278 278 556

Ileocecal valve C17: Crohn’s disease 838 838 1676
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Table 4. Cont.

Gastrointestinal Tract Class Name
(Normal/Disease Cases)

Training Set
(Frames)

Testing Set
(Frames) TotalAnatomical District Subcategory

Large Intestine

Caecum

C18: Adenocarcinoma (Cancer) 1301 1301 2602
C19: Melanosis coli 342 342 684
C20: Caecal angiectasia 403 404 807
C21: Appendix aperture 694 694 1388

Ascending/
Transverse/Descending

Colon

C22: Adenocarcinoma (Cancer) 1293 1293 2586
C23: Melanosis coli 603 604 1207
C24: Other types of polyps 250 250 500
C25: Dyed resection margins 250 250 500
C26: Dyed lifted polyps 250 250 500
C27: Melanosis coli and tuber adenoma 243 243 486
C28: Inflammatory polyposis 382 382 764
C29: Normal 500 500 1000

Sigmoid Colon C30: Tuber adenoma 2212 2212 4424
C31: Polypoid cancer 282 282 564

Rectosigmoid C32: Ulcerative colitis 2071 2071 4142

Rectum

C33: Severe Crohn’s disease 1074 1074 2148
C34: Adenocarcinoma (Cancer) 1362 1362 2724
C35: Tuber adenoma 1069 1069 2138
C36: Normal 420 420 840
C37: A focal radiation injury 411 411 822

In the first stage, an online data augmentation [34] process (including random translation and
in-plain rotation) was used to solve the class imbalance problem [35] caused by the different number of
training samples in each class. The data augmentation process was performed only for the training
dataset in the first stage (i.e., spatial features extraction using ResNet18), and was not performed for
the testing dataset.
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The visual representation of our selected dataset for each class is shown in Figure 6. In this
diagram, each individual image presents a specific class from the total of 37 different classes (i.e., C1, C2,
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C3, . . . , C37). The primary challenge in our selected dataset was the high intra-class variance caused
by the different types of lesion structures and texture properties within the same class as depicted
in Figure 7. Furthermore, different viewing conditions and dynamic structural changes during the
endoscopy procedure may also increase the intra-class variance. To solve this problem, a high level of
abstraction was required to present the common characteristics of such types of datasets with high
intra-class variance. In addition, a sufficient amount of training dataset related to a particular domain
can also enhance the overall performance of the CAD systems. This type of dataset aids in analyzing
the performance of our proposed framework in a challenging scenario.
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Figure 7. Selected sample images for illustrating the high intra-class variance: (a) C18; (b) C22; (c) C34;
(d) C32; (e) C13; and (f) C30.

5.2. Experimental Setup and Training

The proposed framework was implemented with MATLAB R2018b (MathWorks, Inc., Natick,
MA, USA) [36] on a Windows 10 operating system. The deep learning library named as deep learning
toolbox was included in MATLAB for the implementation of various CNN models [37]. Any people
who purchase MATLAB R2018b [36] can use this library with the licenses based on the credits to
the authors of the CNN models. All the experiments were performed on a desktop computer with
a 3.50 GHz Intel®(Santa Clara, CA, USA) Core-i7-3770K central processing unit (CPU) [38], 16 GB
random access memory (RAM), and an NVIDIA (Santa Clara, CA, USA) GeForce GTX 1070 graphics
card [39]. The use of the graphics card provides the parallel processing capability for both the training
and the testing phase.

As explained in Section 4, our proposed method combined two types of image features for
classification of multiple GI diseases, i.e., the spatial features extracted by a deep CNN model in
the first stage, and then the temporal features that were extracted by using the LSTM model in the
second stage. Both the networks were trained separately by using the stochastic gradient descent [40]
optimizer method, which is generally used for optimal training of CNNs. It is a more efficient back
propagation algorithm for learning the discriminative linear classifiers by using a convex loss function.
Its primary goal is to optimize the learnable parameters of the model (i.e., filter weights and biases)
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by considering the derivative of the loss function. In addition, we initialized the parameters of the
first stage CNN model by using a pretrained ResNet18 model, which was successfully trained on the
ImageNet dataset [41]. This scheme was widely used in previous studies to initialize the network
parameters to make the network training process easier and time effective. In the case of the LSTM
model, the initial weights were randomly initialized by using a Gaussian distribution with zero mean
and 0.001 standard deviation, and the biases were initialized to zero. In Table 5, the parameters of the
training procedure used in our experiments are listed.

Table 5. Parameters of the stochastic gradient descent method for the training of both ResNet18 and
LSTM models in our experiments.

Model
Number of

Training
Epochs

Initial
Learning

Rate
Momentum L2-Regularization

Learning
Rate Drop

Factor

Mini-Batch
Size

ResNet18 8 0.001 0.9 0.0001 0.1 10

LSTM 10 0.0001 0.9 0.0001 0.1 50

The performance of our proposed method was evaluated by performing the cascaded training of
our ResNet18 and LSTM-based classification framework. In the first stage, we performed the training
of ResNet18 by using the training dataset (as listed in Table 4). Figure 8 shows the progress of training
loss and accuracy according to the different number of epochs for both folds of cross-validations.
The training loss approaches zero after a certain number of epochs, and the training accuracy approaches
100%, which illustrate that our selected model is sufficiently trained. In addition, after performing
several training experiments for different CNN models, we determined that the fine-tuning of a
pretrained model results in faster convergence rather than training from scratch. In other words, we
used the ResNet18 model which was pretrained with the ImageNet dataset [41]. Then, we performed
the fine-tuning of this model with our training dataset of Table 4. Therefore, we selected a pretrained
model of ResNet18 for spatial feature extraction in the first stage. Moreover, the average accuracy of
our selected ResNet18 based on the spatial features was higher than other deep CNN models. Thus,
both the ResNet18 and LSTM models were interconnected in a cascaded fashion, and separate trainings
were performed for both networks. The second stage training process was started after completing the
training for the ResNet18 model.
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Figure 8. Training loss and accuracy plots during the first stage (i.e., spatial features extraction by
ResNet18): (a) 1st fold cross-validation; and (b) 2nd fold cross-validation.

In the second stage, the output feature vectors (extracted from the trained ResNet18 model in the
first stage using the training dataset) were used to train our proposed LSTM model. In this stage, each
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training sample comprised of a set of n feature vectors (extracted from n successive frames in the first
stage) instead of a single feature vector. Thus, an intermediate features-based dataset was generated
from the extracted feature vectors, which was further used for temporal feature extraction. In our
experiment, a total of fifteen (i.e., n = 15) successive frames were used to generate a set of fifteen
feature vectors for each training sample. Figure 9 shows the progress of training loss and accuracy for
both folds of cross-validations. The training loss approaches to zero after a certain number of iterations
in the first epoch and the training accuracy approaches 100%, which shows the optimal convergence of
the second stage (LSTM) of our model. In Figure 9, it can also be observed that the convergence of
LSTM is faster and smoother when compared to ResNet18 (in the first stage). The primary reason for
this result is the use of an intermediate dataset (i.e., a set of discriminative spatial feature vectors) for
temporal feature extraction rather than using the successive frames.
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Figure 9. Training loss and accuracy plots during the second stage (i.e., temporal features extraction
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5.3. Evaluation of the Performance by Proposed Method

5.3.1. Performance Analysis Metric

We employed average accuracy, F1 score, mean average prevision (mAP), and mean average recall
(mAR) [42] to quantitatively evaluate the performance of our proposed ResNet18 and LSTM-based
classification model. Based on these four parameters, we evaluated the overall performance of the
model by calculating the average value for all the classes. These four metrics are defined as:

Accuracy =
1
K

K∑
k = 1

TPk + TNk
TPk + TNk + FPk + FNk

(7)

F1.Score = 2 ×
mAP × mAR
mAP + mAR

(8)

mAP =
1
K

K∑
k = 1

TPk
TPk + FPk

(9)

mAR =
1
K

K∑
k = 1

TPk
TPk + TNk

(10)

where TPk, FPk, TNk, and FNk denote the number of true positives, false positives, true negatives,
and false negatives, respectively, for each class k. The value of TPk presents the number of correctly
classified images from class k, FPk shows the number of images that are misclassified as belonging to
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class k. TNk indicates the number of images correctly classified that do not belong to class k and FNk
denotes the number of misclassified images that actually belong to class k. Here K denotes the total
number of classes, which is equal to 37 in our research.

5.3.2. Testing of the Proposed Method

The length of successive frames performs an important role in the system performance. The small
number of successive frames results in low temporal information, whereas the long sequence length
increases the processing time and the effects of noise. Therefore, we performed the training of our LSTM
model for thirty different number of frames (i.e., n = 1, 2, 3, . . . , 30). Then, the testing performance was
evaluated for each step size. Figure 10 shows the average performance results according to different
number of frames. In Figure 10, the green square box indicates the maximum average performance
whereas the red square box illustrates the maximum performance with respect to different performance
metrics (i.e., accuracy, F1 score, mAP, and mAR). Finally, based on the overall maximum average
performance, we determined that the best accuracy could be obtained when the numbers of frame was
15 (n = 15).
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As the next experiment, we performed a layer-wise performance comparison between our method
(ResNet18 + LSTM) and only a ResNet18 model by selecting the features from the different parts of the
network. Moreover, this additional experiment was also used to investigate the more discriminative
features at certain intermediate layers that could result in better performance. For this experiment,
the output feature vectors were extracted from five different layers (i.e., Conv6-2, Conv7-2, Conv8-2,
Conv9-2, Avg. pooling, as listed in Table 2) of ResNet18 with the feature map size of 14 × 14 × 256
(50,176), 14 × 14 × 256 (50,176), 7 × 7 × 512 (25,088), 7 × 7 × 512 (25,088), and 1 × 1 × 512 (512),
respectively. In the case of our method, the classification performance for each layer was obtained by
further extracting the temporal information from the LSTM model using these features. The layer-wise
features from ResNet18 model were classified using a k-nearest neighbor (KNN) classifier, which
is widely used for pattern classification [43]. The complete layer-wise performances of our method
and ResNet18 are listed in Table 6. Based on the overall performance, we concluded that the deeper
features result in better classification performance in the case of our method and the ResNet18 model.
However, the layer-wise performance of our method was still higher than the conventional ResNet18.
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Table 6. Performance comparison of our method using ResNet18 + LSTM with the conventional ResNet18 model based on feature extraction from different layers
(unit: %).

Layer Name Feature Dim.
ResNet18 [23] Proposed

Accuracy ± Std F1 score ± Std mAP ± Std mAR ± Std Accuracy ± Std F1 score ± Std mAP ± Std mAR ± Std

Conv6-2 50,176 75.86 ± 4.03 78.62 ± 1.28 81.64 ± 0.35 75.85 ± 2.69 87.15 ± 1.02 87.61 ± 0.04 88.85 ± 0.81 86.40 ± 0.85

Conv7-2 50,176 77.13 ± 3.61 79.61 ± 0.73 82.42 ± 0.76 77.02 ± 2.02 88.02 ± 2.78 88.94 ± 1.18 91.20 ± 0.12 86.81 ± 2.36

Conv8-2 25,088 84.39 ± 1.54 84.75 ± 0.69 85.92 ± 0.20 83.62 ± 1.15 89.07 ± 0.10 89.96 ± 0.88 91.24 ± 0.86 88.72 ± 0.91

Conv9-2 25,088 87.10 ± 0.70 87.57 ± 0.47 88.19 ± 0.17 86.97 ± 1.09 89.39 ± 1.10 89.70 ± 1.69 90.24 ± 1.61 89.18 ± 1.76

Avg. pooling 512 89.95 ± 1.26 90.35 ± 1.74 90.72 ± 1.17 89.99 ± 2.29 92.57 ± 0.66 93.41 ± 0.12 94.58 ± 0.37 92.28 ± 0.58

Table 7. Performance comparisons of our method (ResNet18 + LSTM) with the conventional ResNet18 with and without PCA (unit: %).

Method
ResNe18 [23] Proposed

Accuracy ± Std F1 score ± Std mAP ± Std mAR ± Std Accuracy ± Std F1 score ± Std mAP ± Std mAR ± Std

With PCA
(No. of eigenvectors = 136) 88.50 ± 1.01 90.16 ± 0.16 91.85 ± 0.11 88.52 ± 0.20 90.01 ± 0.17 91.82 ± 0.37 94.22 ± 0.40 89.54 ± 0.33

Without PCA 89.95 ± 1.26 90.35 ± 1.74 90.72 ± 1.17 89.99 ± 2.29 92.57 ± 0.66 93.41 ± 0.12 94.58 ± 0.37 92.28 ± 0.58
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Moreover, our method also showed a high average accuracy of 90.48% and mAP of 91.29% when
a still image (i.e., n = 1) was used, which are higher values when compared to other CNN-based
methods (an accuracy of 89.95% and mAP of 90.72% in the case of conventional ResNet18).

The extracted features from the last average pooling layer of ResNet18 were further analyzed
by applying PCA [44] technique as a post processing step. The main objective of this analysis was to
explore the discriminative nature of the features (i.e., to check if our selected features were distinctive
or redundant). For this purpose, all the extracted features of dimension 1 × 512 from the last average
pooling layer were projected to the eigenspace by applying the PCA. This eigenspace presented all
the input feature vectors in a new coordinate system in a more distinctive way. The dimensions of
these newly obtained features are selected based on the maximum variance (i.e., greater than 99%)
of the projected data on all the possible axes. The eigenvalue corresponding to each feature vector
was used to select a feature vector. In the case of our dataset, a new set of feature vectors (with the
feature dimension 1 × 136) was obtained by selecting a total of 136 eigenvectors with the highest
eigenvalues. In our proposed model, this new set of feature vectors were further used as inputs to
the LSTM model to explore the temporal information and then the final classification performance
was obtained as listed in Table 7. In addition, the PCA feature-based performance was evaluated for
ResNet18 by using the KNN classifier, which is also presented in Table 7. According to these final
classification results, we concluded that the PCA-based features reduced the performance in both cases
(i.e., our proposed model and ResNet18), whereas the original high dimension features resulted in
better performance. Finally, it can be concluded that our extracted features (from the last average
pooling layer) were already diverse, and the performance of our method was still high in comparison
with conventional ResNet18 after applying the PCA.

Figure 11 illustrates the more comprehensive classification performance of our model in terms
of the confusion matrix. It can be observed from these results that only a few classes (i.e., C16, C31,
C33, C34) showed a low classification performance owing to the high inter class similarities in terms of
lesion textures or GI organ structures. However, the overall performance of our proposed method was
significantly high for a dataset with several classes.
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5.3.3. Comparisons with Previous Methods

The performance of our proposed ResNet18 and LSTM-based methods were compared with the
various state-of-the-art deep CNN-based CAD tools that are used in the endoscopy domain [8,12,14,15].
To ensure a fair comparison, the performances of all the existing baseline methods were evaluated with
our selected dataset using the same training and testing data of two-fold cross-validation. In a recent study
related to endoscopy, two different CNN models—GoogLeNet [8,12,15] and InceptionV3 [14]—were
primarily used in the diagnosis of various type of GI diseases. Therefore, the performance of these two
models were evaluated in comparison with our proposed method. The experimental results showed
that our method outperformed these two deep CNN models [8,12,14,15] with significant performance
gain as listed in Table 8.

Further, we also compared the performance of our method with the recent CNN models [16,23–25]
used in image classification domains other than endoscopy. The main objective of these comparisons
was to estimate the performance of the existing state-of-the-art CNN models in the endoscopy image
analysis domain. The complete experimental results for all the selected baseline methods are listed in
Table 8. These results confirm that our proposed ResNet18 and LSTM-based method shows the highest
performance in the endoscopy image analysis domain for the classification of multiple GI diseases.

The discriminative ability of our proposed method, in contrast with other baseline methods, can
also be observed through the receiver operating characteristics (ROC) curve (an effective measure
used to evaluate the diagnostic ability of a model). It is created by plotting the true positive rate
(known as the probability of detection) against the false positive rate (known as the probability of
false alarm) at various threshold settings. From Figure 12, it can be observed that our proposed
method also shows the highest value for the area under the curve (AUC) with a value of 97.057% in
comparison with all the other selected baseline methods (i.e., SqueezeNet: 82.131%, AlexNet: 87.328%,
GoogLeNet: 91.097%, VGG19: 92.039%, VGG16: 93.060%, InceptionV3: 95.000%, ResNet50: 95.924%,
and ResNet18: 95.705%). All these ROC curves are presented by the average values obtained from
two-fold cross-validations. The figure on the left side provides an enlarged view to illustrate the
performance difference more clearly.J. Clin. Med. 2019, 8, x FOR PEER REVIEW 21 of 32 

 

 

Figure 12. Receiver operating characteristic curves of our proposed method and other baseline models 

with the area under the curve (AUC). 

The complete parametric and structural details of our proposed model and the other selected 

models are listed in Table 9. The AUC performance of ResNet18 is comparable with the second-best 

model named as ResNet50, as shown in Figure 12; however, the training parameters of ResNet18 are 

significantly less than half of that of ResNet50, as listed in Table 9. Therefore, we adopted the 

ResNet18 architecture as the backbone model to extract the spatial features, which are further used 

as inputs to the LSTM model to exploit the temporal information. In our proposed framework, the 

total learnable parameters were approximately 13.17M (including both ResNet18 and LSTM), which 

were still significantly lower than the second-best model (i.e., ResNet50) as shown in Table 9. 

Table 9. Parametric and structural comparisons of different deep CNN models with our proposed 

model. 

CNN Models Size (MB) 
No. of Conv. 

Layers 

No. of FC 

Layers 

No. of 

LSTM 

Layers 

Network 

Depth 

Parameters 

(Millions) 

Image Input 

Size 

SqueezeNet [24] 4.6 MB 18   18 1.24 227-by-227 

AlexNet [16] 227 MB 5 3  8 61 227-by-227 

GoogLeNet [8,12,15,17] 27 MB 21 1  22 7.0 224-by-224 

VGG19 [25] 535 MB 16 3  19 144 224-by-224 

VGG16 [25] 515 MB 13 3  16 138 224-by-224 

InceptionV3 [14,26] 89 MB 47 1  48 23.9 299-by-299 

ResNet50 [23] 96 MB 49 1  50 25.6 224-by-224 

ResNet18 [23] 44 MB 17 1  18 11.7 224-by-224 

Proposed 48 MB 17 1 1 19 13.17 224-by-224 

Furthermore, a sensitivity analysis was performed to evaluate the robustness of our method and 

other CNN models. A Monte Carlo simulation step [27] was performed to analyze this sensitivity 

performance. In this simulation setup, the performance of each individual CNN model was evaluated 

in an iterative way by randomly selecting 20% of the complete testing dataset as a subset of the testing 

dataset. A total of 200 iterations were performed for both folds of cross-validations. Finally, the 

average performance (i.e., average accuracy, F1 score, mAP, and mAR) as well as standard deviation 

were obtained for each model. The overall sensitivity performance of our method and all the selected 

models are illustrated in Figure 13. It can be observed in Figure 13a–d that the overall sensitivity 

Figure 12. Receiver operating characteristic curves of our proposed method and other baseline models
with the area under the curve (AUC).



J. Clin. Med. 2019, 8, 986 21 of 33

Table 8. Comparative classification performance of proposed method and different baseline CNN models (unit: %).

Methods
Accuracy F1 Score mAP mAR

Fold 1 Fold 2 Avg. ± Std Fold 1 Fold 2 Avg. ± Std Fold 1 Fold 2 Avg. ± Std Fold 1 Fold 2 Avg. ± Std

SqueezeNet [24] 78.69 77.00 77.84 ± 1.19 77.53 75.95 76.74 ± 1.12 78.38 75.16 76.77 ± 2.27 76.70 76.76 76.73 ± 0.04

AlexNet [16] 79.19 80.97 80.08 ± 1.26 80.31 80.66 80.49 ± 0.24 80.55 80.85 80.70 ± 0.21 80.08 80.47 80.28 ± 0.27

GoogLeNet [8,12,15,17] 83.36 85.82 84.59 ± 1.74 84.99 85.29 85.14 ± 0.21 84.67 85.92 85.29 ± 0.89 85.32 84.66 84.99 ± 0.47

VGG19 [25] 84.81 85.49 85.15 ± 0.48 84.57 86.02 85.29 ± 1.03 85.48 86.27 85.88 ± 0.56 83.67 85.77 84.72 ± 1.48

VGG16 [25] 83.88 87.57 85.72 ± 2.61 84.84 86.77 85.80 ± 1.37 85.20 87.28 86.24 ± 1.47 84.48 86.26 85.37 ± 1.26

InceptionV3 [14,26] 87.23 88.61 87.92 ± 0.98 87.80 89.10 88.45 ± 0.92 86.50 89.24 87.87 ± 1.93 89.14 88.96 89.05 ± 0.13

ResNet50 [23] 88.94 90.17 89.55 ± 0.87 90.13 91.06 90.60 ± 0.66 89.59 91.82 90.70 ± 1.58 90.68 90.32 90.50 ± 0.26

ResNet18 [23] 90.84 89.06 89.95 ± 1.26 91.58 89.13 90.35 ± 1.74 91.55 89.89 90.72 ± 1.17 91.62 88.37 89.99 ± 2.29

Proposed 92.10 93.03 92.57 ± 0.66 93.49 93.33 93.41 ± 0.12 94.32 94.84 94.58 ± 0.37 92.68 91.87 92.28 ± 0.58
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The complete parametric and structural details of our proposed model and the other selected
models are listed in Table 9. The AUC performance of ResNet18 is comparable with the second-best
model named as ResNet50, as shown in Figure 12; however, the training parameters of ResNet18
are significantly less than half of that of ResNet50, as listed in Table 9. Therefore, we adopted the
ResNet18 architecture as the backbone model to extract the spatial features, which are further used as
inputs to the LSTM model to exploit the temporal information. In our proposed framework, the total
learnable parameters were approximately 13.17M (including both ResNet18 and LSTM), which were
still significantly lower than the second-best model (i.e., ResNet50) as shown in Table 9.

Table 9. Parametric and structural comparisons of different deep CNN models with our proposed model.

CNN Models Size (MB) No. of Conv.
Layers

No. of FC
Layers

No. of LSTM
Layers

Network
Depth

Parameters
(Millions)

Image
Input Size

SqueezeNet [24] 4.6 MB 18 18 1.24 227-by-227

AlexNet [16] 227 MB 5 3 8 61 227-by-227

GoogLeNet [8,12,15,17] 27 MB 21 1 22 7.0 224-by-224

VGG19 [25] 535 MB 16 3 19 144 224-by-224

VGG16 [25] 515 MB 13 3 16 138 224-by-224

InceptionV3 [14,26] 89 MB 47 1 48 23.9 299-by-299

ResNet50 [23] 96 MB 49 1 50 25.6 224-by-224

ResNet18 [23] 44 MB 17 1 18 11.7 224-by-224

Proposed 48 MB 17 1 1 19 13.17 224-by-224

Furthermore, a sensitivity analysis was performed to evaluate the robustness of our method and
other CNN models. A Monte Carlo simulation step [27] was performed to analyze this sensitivity
performance. In this simulation setup, the performance of each individual CNN model was evaluated
in an iterative way by randomly selecting 20% of the complete testing dataset as a subset of the testing
dataset. A total of 200 iterations were performed for both folds of cross-validations. Finally, the average
performance (i.e., average accuracy, F1 score, mAP, and mAR) as well as standard deviation were
obtained for each model. The overall sensitivity performance of our method and all the selected models
are illustrated in Figure 13. It can be observed in Figure 13a–d that the overall sensitivity performance
of our proposed method is higher while considering average accuracy, F1 score, mAP, and mAR when
compared to all the existing baseline models.
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Figure 13. Sensitivity analysis plot of our method and various baseline models in terms of (a) average
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A t-test performance analysis [46] was further performed to illustrate the significance of the
performance difference between our method and ResNet18. The reason why the t-test performance
analysis was performed only against ResNet18 is because ResNet18 shows the second-best accuracy
as shown in Table 8. In general, this performance analysis is often used to illustrate the performance
difference between two systems or algorithms in a more discriminative way. It is based on a null
hypothesis (H), which assumes that there is no performance difference (i.e., H = 0) between two
models. Then, a rejection score (p-value) is calculated to check the validity of the null hypothesis based
on the performance of the two models (in this case, our method and the second-best model). Figure 14
illustrates the t-test performance (for the values of mean (µ), standard deviation (ρ), and p-value) for
our method and the second-best model. These results were calculated for all the performance measures.
The obtained rejection scores (p-values) in case of the average accuracy, F1 score, mAP, and mAR were
1.51 × 10−43, 6.87 × 10−20, 4.67 × 10−10, and 1.03 × 10−33, respectively. All these p-values are less
than 0.01, which indicate that the null hypothesis is rejected (i.e., H , 0) at a 99% confidence score
for all the performance metrics. Based on these results, it can be concluded that there is a significant
performance difference between our method and the second-best method. Furthermore, the higher
mean (µ) performance of our method indicates its superiority over the second-best baseline model.
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(b) average F1 score; (c) mAP; and (d) mAR.

We also performed Cohen’s d [47] analysis, by which the size of the difference between the two
groups were demonstrated using the effect size [48]. Cohen’s d analysis is widely used for analyzing the
difference between two measured values. Generally, Cohen’s d is classified as small at approximately
0.2–0.3, as medium at approximately 0.5, and as large at greater than or equal to 0.8. For example, if
the calculated Cohen’s d is closer to 0.2–0.3 than 0.5 and 0.8, we can say that the difference between
measured values has a small effect size. If the calculated Cohen’s d is closer to 0.8 than 0.2–0.3 and
0.5, we can say that the difference between measured values has a large effect size. The calculated
Cohen’s d values for the performance of the two models (our method and the second-best model)
were approximately 1.57 (closer to 0.8), 0.96 (closer to 0.8), 0.64 (closer to 0.8), and 1.33 (closer to 0.8)
for average accuracy, F1 score, mAP, and mAR, respectively. Consequently, we concluded that the
difference in the performances between our method and the second-best model has a large effect while
considering the average accuracy, F1 score, mAP, and mAR.

In this section, we present the performances of various handcrafted feature-based methods that
were also compared with our proposed CNN and LSTM-based classification framework for further
comparison. In this comparison, three known handcrafted feature extraction methods, named as
LBP [49], histogram of oriented gradients (HoG) [50], and multilevel LBP (MLBP) [51], were considered.
Then, the extracted features from each method were classified by using four different classifiers:
adaptive boosting (AdaBoostM2) [52], multiclass SVM (multi-SVM) [53], random forest (RF) [54],
and KNN. All these handcrafted feature-based methods exploit the low-level features (i.e., edge
or corner information). We evaluated the performance of 12 different handcrafted feature-based
classification methods for our selected dataset to obtain a fair comparison. The detailed results for all
these classification methods are listed in Table 10.

Among all these handcrafted feature extraction and classification methods, HoG + RF (i.e., HoG
feature extraction method followed by the RF classifier) demonstrated superior performance. Hence,
the HoG feature extraction method exploited the more discriminative low-level features in comparison
with the other two methods. Furthermore, the RF classifier considers a tree structure to determine
the classification decision, which resulted in a better performance and controlled the over-fitting
problem. However, there is a significant performance difference between our method and the best
handcrafted feature-based method (HoG + RF). Our proposed method outperformed all the handcrafted
feature-based methods.
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Table 10. Comparison of classification performance of the proposed method with different handcrafted feature-based methods (unit: %).

Method Classifiers
Accuracy F1 Score mAP mAR

Fold 1 Fold 2 Avg. ± Std Fold 1 Fold 2 Avg. ± Std Fold 1 Fold 2 Avg. ± Std Fold 1 Fold 2 Avg. ± Std

LBP [49]

AdaBoostM2 36.90 34.57 35.74 ± 1.65 28.85 26.55 27.70 ± 1.63 36.90 34.57 35.74 ± 1.65 23.68 21.55 22.61 ± 1.51

Multi-SVM 45.53 42.15 43.84 ± 2.39 43.34 41.35 42.35 ± 1.41 44.05 41.94 42.99 ± 1.49 42.66 40.77 41.72 ± 1.34

RF 57.37 56.84 57.10 ± 0.37 53.40 54.31 53.85 ± 0.64 54.53 55.06 54.79 ± 0.37 52.31 53.58 52.95 ± 0.90

KNN 49.68 51.24 50.46 ± 1.10 46.28 48.44 47.36 ± 1.53 45.73 47.99 46.86 ± 1.59 46.84 48.90 47.87 ± 1.46

HoG [50]

AdaBoostM2 40.28 38.41 39.35 ± 1.33 33.04 32.68 32.86 ± 0.25 40.28 38.41 39.35 ± 1.33 28.00 28.44 28.22 ± 0.31

Multi-SVM 47.96 51.73 49.84 ± 2.67 51.95 55.66 53.80 ± 2.63 68.13 66.64 67.39 ± 1.05 41.97 47.79 44.88 ± 4.11

RF 60.10 62.72 61.41 ± 1.85 61.73 64.66 63.19 ± 2.07 68.03 69.29 68.66 ± 0.89 56.49 60.61 58.55 ± 2.91

KNN 50.14 56.26 53.20 ± 4.33 52.22 57.13 54.68 ± 3.47 57.37 59.45 58.41 ± 1.47 47.93 54.98 51.45 ± 4.99

MLBP [51]

AdaBoostM2 46.42 41.62 44.02 ± 3.40 40.04 34.85 37.45 ± 3.67 46.42 41.62 44.02 ± 3.40 35.20 29.98 32.59 ± 3.69

Multi-SVM 56.18 54.76 55.47 ± 1.00 53.72 52.49 53.10 ± 0.87 55.70 53.81 54.75 ± 1.33 51.87 51.23 51.55 ± 0.45

RF 61.56 61.24 61.40 ± 0.22 56.98 58.16 57.57 ± 0.84 58.41 59.75 59.08 ± 0.95 55.62 56.65 56.13 ± 0.73

KNN 54.38 56.43 55.40 ± 1.45 50.90 53.49 52.20 ± 1.83 50.92 53.21 52.06 ± 1.61 50.88 53.78 52.33 ± 2.05

Proposed 92.10 93.03 92.57 ± 0.66 93.49 93.33 93.41 ± 0.12 94.32 94.84 94.58 ± 0.37 92.68 91.87 92.28 ± 0.58
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6. Discussion

Our proposed deep CNN and LSTM-based classification framework shows the best performance
with a high AUC of 97.057%. This remarkable performance of our proposed system increases its
usability in the diagnosis of several GI diseases by automatically detecting different types of GI lesions
or abnormalities, such as polyps, ulcers, or cancers from endoscopic videos. Our AI-based CAD
system can assist the physicians in an effective diagnosis and treatment of many complex GI diseases.
Furthermore, the classification of the endoscopic videos can, itself, be beneficial in retrieving the
previously stored videos related to the current situation of a patient. Thus, the past cases can provide
a path toward correct diagnostic decision. Therefore, we can also utilize our proposed classification
framework for efficient endoscopic video frame retrieval by using the predicted class labels. The overall
block diagram for our class prediction-based retrieval system is shown in Figure 15. In this retrieval
section, the first step is to predict the actual class for the given query (i.e., successive endoscopic
video frames). To predict the actual class label, a probability score corresponding to each class label is
obtained for the given query by using our proposed classification framework. Based on the highest
probability score, the corresponding class label is chosen as the actual class label. In the second step,
the relevant cases related to input query frames are explored only within the predicted class based on
feature matching. In this feature matching stage, the extracted spatiotemporal feature vector from
the input query frames is matched one by one with the feature database of that predicted class by
calculating the Euclidean distance. Based on the minimum distance, the frame index (i.e., name or ID
information) is selected. Finally, the relevant frame is retrieved from the database by using the frame
index information obtained in previous stage.
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Figure 15. Class prediction-based retrieval system by using our proposed classification framework.

A few correctly retrieved examples are illustrated in Figure 16 by using our class prediction-based
retrieval system. It can be observed that the retrieved endoscopic frames have high intra-class variance
with varying illumination and contrast. However, our proposed system still outperforms with 100%
retrieval performance for all the selected cases. Moreover, the classification performance for these
selected example cases is also 100%, which can be observed in Figure 11 (confusion matrix performance
for each class). Further, Figure 17 shows the probability score corresponding to each input query. It can
be observed that the highest probability score is obtained for the actual predicted class, which shows
that the proposed classification model is capable of extracting the discriminative features for the given
query. In conclusion, this significant performance gain (in both classification and retrieval sections)
shows that our method can be robust to the high intra-class variance of a dataset.
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Figure 17. Examples of the correctly classified frames by our proposed method with probability score
graph: (a) C6; (b) C19; (c) C24; and (d) C37.

There are a few classes in our selected dataset that show the low retrieval performance, as
shown in Figure 18. The primary reason for this performance degradation is the anatomical structural
overlapping and identical shape of different GI lesions among different classes. Figure 18a shows a
few incorrectly retrieved results as C30 (i.e., tuber adenoma in sigmoid colon) and C32 (i.e., ulcerative
colitis in rectosigmoid part of large intestine) are retrieved for an input query of C16 (i.e., severe
Crohn’s disease in terminal ileum of small intestine). It can be observed from Figure 18a that the lesion
characteristics among these three classes (i.e., C16, C30, and C32) show a resemblance that may cause
the incorrect retrieval. Similarly, certain other incorrect retrieval cases were obtained for an input
query of C31 (i.e., polypoid cancer in sigmoid colon), C33 (i.e., severe Crohn’s disease in the rectum),
and C34 (i.e., adenocarcinoma in the rectum) owing to identical lesion characteristics, as shown in
Figure 18b–d. Moreover, Figure 19 shows the probability score corresponding to each input query in
which significantly higher probability scores can be observed corresponding to multiple predicted
class labels. These multiple higher scores show the structural or lesion similarities among multiple
classes, which can result in classification errors. However, the retrieval performance in these cases
can be enhanced by exploring the input query in multiple classes, which can be selected based on a
multiple probability scores that is greater than a certain threshold.
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Figure 18. Examples of the incorrectly retrieved frames by our proposed method: (a) C16; (b) C31; (c)
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7. Conclusion 

In this paper, a novel CNN and LSTM-based classification framework was proposed for the 

classification of multiple GI diseases using endoscopic videos. Moreover, our proposed classification 

framework is further utilized to design a class prediction-based endoscopic video retrieval system. 

The proposed spatiotemporal features-based method is capable of encoding more discriminative 

representations of multiple endoscopy scans when compared to the features learned only from spatial 

information. Therefore, both spatial and temporal information results in better classification and 

retrieval performance. The performance of the proposed method was evaluated thoroughly using a 

publicly available dataset from GastroLab as well as the KVASIR database. Moreover, the same 

dataset and experimental protocol was adopted for the various state-of-the-art methods to make a 

fair comparison. The proposed method achieved 97.057% area under the curve as the best results, 

together with an average accuracy of 92.57%, F1 score of 93.41%, mAP of 94.58%, and mAR of 92.28. 

In addition, the obtained t-test rejection scores (p-values) of our proposed and second-best method 

are less than 0.01 (1.51 × 10−43 , 6.87 × 10−20 , 4.67 × 10−10 , and 1.03 × 10−33  in the case of the 

average accuracy, F1 score, mAP, and mAR, respectively), which indicate that the null hypothesis is 

rejected (i.e., 𝐻 ≠ 0) at a 99% confidence score for all the performance metrics. After performing a 

detailed analysis, we observed that our method consistently achieved high classification performance 

in comparison with various state-of-the-art deep CNN and handcrafted features-based methods of 

LBP, HoG, and MLBP. The classification and retrieval performance of the proposed system reveals 

its applicability to clinical diagnosis, treatment, education, and research. We also ensured that our 

trained model is publicly available to aid other researchers in performance comparisons. 
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Figure 19. Examples of the incorrectly classified frames by our proposed method with probability score
graph: (a) C16; (b) C31; (c) C33; and (d) C34.

7. Conclusions

In this paper, a novel CNN and LSTM-based classification framework was proposed for the
classification of multiple GI diseases using endoscopic videos. Moreover, our proposed classification
framework is further utilized to design a class prediction-based endoscopic video retrieval system.
The proposed spatiotemporal features-based method is capable of encoding more discriminative
representations of multiple endoscopy scans when compared to the features learned only from spatial
information. Therefore, both spatial and temporal information results in better classification and
retrieval performance. The performance of the proposed method was evaluated thoroughly using
a publicly available dataset from GastroLab as well as the KVASIR database. Moreover, the same
dataset and experimental protocol was adopted for the various state-of-the-art methods to make a
fair comparison. The proposed method achieved 97.057% area under the curve as the best results,
together with an average accuracy of 92.57%, F1 score of 93.41%, mAP of 94.58%, and mAR of 92.28.
In addition, the obtained t-test rejection scores (p-values) of our proposed and second-best method are
less than 0.01 (1.51 × 10−43, 6.87 × 10−20, 4.67 × 10−10, and in the case of the average accuracy, F1
score, mAP, and mAR, respectively), which indicate that the null hypothesis is rejected (i.e., H , 0)
at a 99% confidence score for all the performance metrics. After performing a detailed analysis, we
observed that our method consistently achieved high classification performance in comparison with
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various state-of-the-art deep CNN and handcrafted features-based methods of LBP, HoG, and MLBP.
The classification and retrieval performance of the proposed system reveals its applicability to clinical
diagnosis, treatment, education, and research. We also ensured that our trained model is publicly
available to aid other researchers in performance comparisons.

As a future work, we are planning to increase the dataset by considering more than 37 classes.
In addition, we are planning to perform the real-time detection of small lesions using an endoscopic
video. We also plan to improve the overall classification performance by combing multiple deep
CNN models.
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