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Abstract

Background: Structural variation (SV) represents a significant, yet poorly understood contribution to an individual’s
genetic makeup. Advanced next-generation sequencing technologies are widely used to discover such variations, but
there is no single detection tool that is considered a community standard. In an attempt to fulfil this need, we
developed an algorithm, SoftSearch, for discovering structural variant breakpoints in lllumina paired-end next-
generation sequencing data. SoftSearch combines multiple strategies for detecting SV including split-read,
discordant read-pair, and unmated pairs. Co-localized split-reads and discordant read pairs are used to refine the
breakpoints.

Results: We developed and validated SoftSearch using real and synthetic datasets. SoftSearch’s key features are 1)
not requiring secondary (or exhaustive primary) alignment, 2) portability into established sequencing workflows, and
3) is applicable to any DNA-sequencing experiment (e.g. whole genome, exome, custom capture, etc.). SoftSearch
identifies breakpoints from a small number of soft-clipped bases from split reads and a few discordant read-pairs
which on their own would not be sufficient to make an SV call.

Conclusions: We show that SoftSearch can identify more true SVs by combining multiple sequence features.
SoftSearch was able to call clinically relevant SVs in the BRCA2 gene not reported by other tools while offering
significantly improved overall performance.
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Introduction

Many patients at high-risk for developing cancer have a
negative finding from mutation screening [1]. One possible
explanation for the discordance is that the mutation is not of a
single base or small insertions or deletions, but rather a large
structural rearrangement (SV) that is missed when looking for
smaller events. For instance, women with a family history of
breast or ovarian cancer with point mutations in the BRCA1
and BRCA2 genes are clinically recognized to have a high risk
of developing breast cancer. However, structural variations in
BRCA1 and BRCAZ2 are also risk factors for the disease [2—4].
A recent study has suggested that the frequency of SV in
BRCA1 and BRCA2 genes could comprise as high as 18% of
all BRCA mutations [5], and many of these are likely causative
of cancer susceptibility in the families in whom they were
identified [6], and is recommended to be used in clinical
practice [6]. Until recently, the process of SV discovery in
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disease genes like BRCA1 and BRCAZ2 required gene-specific
probes to amplify and quantify the genomic DNA structure and
amount, which made it difficult to identify new genes
contributing to breast cancer risk though mechanisms such as
SV.

Next-generation  sequencing technologies offer the
unprecedented capacity to characterize SVs at the genome
wide scale, many of which were not possible to discover on
conventional microarray platforms [7]. Three commonly used
approaches to identify SVs are read depth, read-pair, and split
read. Read depth approaches, such as CNVnator [8], identify
changes in copy number by categorizing areas of the genome
that have higher or lower coverage than expected. Read pair
approaches such as BreakDancer [9] and HYDRA [10], detect
SVs by utilizing mated reads that map to the reference genome
with an unexpected orientation (e.g. both align to the + strand
of DNA), align to different chromosomes, or that display an
abnormal insert size (i.e. with a distance between mapped
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read-pair ends smaller or larger than expected from lllumina
sequencing protocol). Finally, split-read approaches like
SPLITREAD [11] and CREST [12], use single reads that
initially only partially align to the reference genome.
SPLITREAD requires all possible locations of reads to be
mapped (a computationally expensive exercise), and then
looks for areas where clusters of reads map but their mates do
not (i.e. an unmated read pair referred as uRP). The unmapped
read from the uRP is split into smaller fragments and then
remapped to the genome to resolve the breakpoint. An
alternative strategy involves the use of soft-clipped reads. Soft-
clipped reads are reads where one portion of the read is
mapped to the genome, but the other portion differs
substantially from the reference genome at that location.
CREST uses a local assembly the unmapped bases from
overlapping split reads and then search the genome for their
location. The advantage of this method is that it precisely
defines the location of the breakpoint at base pair resolution. Its
disadvantages are that it doesn’'t use information from
discordant read pairs to find additional support for the
breakpoint and the assembled contig from the split reads must
be sufficiently long enough to map uniquely to one location in
the genome.

Many split-read tools do not use read-pair information and
many read-pair tools do not use split-read information. SVseq2
[13] , PRISM [14], and recently DELLY[15] are exceptions.
SVseq2 attempts to resolve split reads, requiring both sides of
the split read to be aligned within a maximum allowable size
and then looks for discordant read pairs (DRPs) to support the
SV. Alternatively, PRISM looks for DRPs where only one end
maps with reliable mapping, then uses these areas to attempt
split-read mapping of unmapped reads at the focused loci, thus
decreasing the search space for mapping fragments of reads.
For these approaches, both sides of a read are required to be
mapped and an additional alignment step is needed. DELLY
expects multiple insert size libraries to be generated, but can
operate given only one (like most sequencing experiments). It
first seeks out clusters of discordant read pairs, and then looks
for reads where one mate aligns but the other does not, and
then uses a split-read mapping algorithm for unmapped read
from the unmated pair. This assumes that the unaligned mates
span the putative breakpoint, which prohibits their alignment.

To circumvent these limitations, we developed SoftSearch,
which effectively uses the intrinsic information from the initial
alignment process. According to the SAM/BAM format
specification [16], columns 3 and 4 are the chromosome and
position of the read, and columns 7 and 8 are the chromosome
and position of the corresponding mate. Assuming soft clipping
delineates the exact breakpoint position and direction, DRPs
overlapping such soft-clipped areas should already contain the
information about the type and size of SV, obviating the need
for secondary alignments. Thus SoftSearch is able to detect
large Insertions, large deletions, inversions, tandem
duplications, novel sequence insertion locations, and
chromosomal translocations.
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Methods

Breakpoint Detection

The general strategy for SoftSearch is given in Figure 1.
SoftSearch requires only two inputs: a BAM file of aligned
reads and the genome to which the reads were aligned. BAM
files can come from any aligner capable of encoding soft-
clipping into reads (e.g. BWA, Novoalign, Bowtie, Mosaik, etc.).
If not supplied with any arguments, or the —h flag, SoftSearch
will display the available parameters, a brief explanation of
those parameters, and usage statement. The distribution of
insert sizes is computed from a subset of properly paired
reads. The user can specify the number of standard deviations
away from the mean to define insert sizes that are larger or
smaller than expected. After removing unmapped reads and
PCR duplicates, a new SAM file is created for soft-clipped
reads excluding any reads that contain the “#” value in the
quality string — which indicates poor quality sequencing. This
filtering step is essential to exclude thousands of false positives
resulting from poor quality reads (data not shown). At each
genomic location, the number of reads with either left- or right-
soft clipped bases is computed. Left-clipped bases are defined
when a read on the minus strand has soft clipping at the 3’ end
of the read, or alternatively the 5’ portion of the read if on the
positive strand (Figure S1). Soft-clipped reads with more than 5
unmapped bases are passed through for further analysis.

Next, soft-clipped reads supporting a break point event are
combined if the left/right orientation is in the same direction. A
putative breakpoint is defined when there is at least x soft-
clipped reads beginning at position y. The number of soft-
clipped reads that must be co-located is a user defined
parameter — requiring fewer events increases the detection of
false positives, but increases the sensitivity. Because small
deletions can also cause an accumulation of soft-clipped reads,
we search the reference genome sequence in the region where
the soft-clipped bases are located. Using the longest soft-
clipped read as the query sequence, we calculate how many
edits are needed to transform the query sequence into a match
in the reference sequence (a.k.a. the Levenstein distance;
LevD) around the location in which it was observed. If this
“local LevD” is less than 5% we consider the soft-clipped bases
as matched to the reference genome then the event is a small
deletion in which case is excluded from the remaining analysis.
Otherwise, the event is considered a putative structural variant
and sent for further processing.

Structural Variant Calling

Each putative breakpoint is searched for a minimum number
DRPs at a given distance that support a SV. For a left-clipped
breakpoint, SoftSearch looks in the DRP BAM file for a read
that aligns upstream on the “-” strand. This strand information
is crucial to ensure that the DRP crosses the junction formed
by the split-read. Using the mate location as a starting point,
SoftSearch looks for soft-clipped reads near the discordant
read-mate (the other discordant read in the pair). If the mate is
oriented on the “+” strand, then SoftSearch will look upstream
the same number of bases to identify a right-clipped read. If no
additional split-read is found, then the position of the mate is
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Figure 1. The general strategy for SoftSearch. A) Left clipped reads are defined as where the clipped portion of the read is at a
smaller genome coordinate than the opposite end (opposite for right clipping). For a left clipped read located on the “+” strand,
SoftSearch looks upstream for a discordant read pair where the read is oriented in the “-” direction. The orientation and location of
the mate is where SoftSearch links the first region to. To increase the likelihood of exactly detecting the breakpoint, it then looks
upstream for a right clipped read cluster. If none is found, then the default breakpoint location is the discordant read mate location;
otherwise it is the position of soft clipping at the right clipped read. B) SoftSearch determines discordant read pairs by their insert
size and orientation and places them in a temporary BAM file. It also reads the input BAM file for soft clipped reads and converts

them to a BED file. Overlapping soft clip locations are counted to identify putative breakpoints, and then queried against the

discordant read pair bam file for properly oriented supporting reads, which are then output in VCF format.

doi: 10.1371/journal.pone.0083356.g001

used as the putative breakpoint. SoftSearch then calculates the
“distal LevD” to determine whether or not the sequence that is
soft-clipped is actually present near the proposed mate
breakpoint site. This differs from the local LevD which looks for
the soft-clipped bases near where they were initially observed.
The LevD in this instance is more of an annotation, which the
user can decide later whether or not to trust SVs with low LevD
scores. The orientation and insert size of the DRP is used to
annotate the type of SV present, either as insertion (insert
greater than 0, but less than expected), deletion (insert larger
than expected), inversion (reads on same strand), tandem
duplication (read1 begins before read 2), or inter-chromosomal
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translocation (Figure S1). As an aside, SoftSearch is also
capable of using only discordant read pair information, rather
than leveraging the soft-clipping information. In this case, the
average location of the discordant read pair clusters are treated
as soft clipped reads and the breakpoint is flagged. This type of
analysis would be well suited for Mate-pair analysis, since the
biotin junction (a part of the library preparation) can make
sequences difficult to resolve accurately, causing large number
of soft-clipped reads. Variants are exported in VCF4.1 format,
with several annotations that can be used for post-process
filtering. To do all of this extracting and merging effectively,
SoftSearch heavily leverages the BEDTools [17] and samtools
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[16] packages. SoftSearch is implemented in perl with BASH
system calls to BEDTools and samtools. SoftSearch can be
downloaded from http://bicinformaticstools.mayo.edu/.

Simulation Data set

To estimate the sensitivity and specificity of SoftSearch and
other tools, we created an artificial genome using
Genome_Smasher (v.3871; http://code.google.com/p/genome-
smasher/). Structural variants inserted into the synthetic
genome were based on gold-standard calls for the HapMap
sample NA12878 [18]. These variations included 616 deletions,
265 duplications, and 84 insertions. Random sequences were
used to fill in the insertions since the actual sequences were
not available. Since the number of modifications was limited,
we also supplemented random variations until the sample
contained the following SVs: 1227 deletions, 526 tandem
duplications, 424 insertions, 1750 inversions, and one inter-
chromosomal translocation. Inversions ranged between 1kb to
50kb, Insertions were between 1kb-10kb, and a chromosomal
translocation between chr19 and 21. More simulation datasets
at 4x and 40x coverage are presented on the SoftSearch
website (https://code.google.com/p/softsearch/wiki/
Performance).

Real Data sets

To further test the performance of the variant detection
methods on non-simulated data, we ran experiments from 3
different experimental designs: a 40X whole genome, a 4X
whole genome, and a 2000X custom capture panel. All
datasets are annotated with a set of experimentally validated
structural variants. The 40X whole genome sequence data for
the HapMap sample NA12878 was downloaded from ftp://ftp-
trace.ncbi.nih.gov/1000genomes. The 4X genome, (also a
HapMap sample) was downloaded from (ftp.
1000genomes.ebi.ac.uk/vol1/ftp/data/NA18507/alignment/) as
a BAM file that had already been aligned using BWA (0.5.9-
r16) to an alternative version of the human genome (ftp.
1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/
phase2_reference_assembly sequence/hs37d5.fa.gz). The
experimentally validated positions were downloaded from the
2013-07-23 release of the Database of Genomic Variation
(http://dgv.tcag.ca/dgv/app/home). Finally we used an in-house
targeted custom capture of 122 DNA repair genes sequenced
at about 2000X coverage (manuscript in preparation). The 40X
HapMap sample was aligned to a previous assembly of the
human genome (hg18), but the other two datasets were
aligned to the hg19 assembly. To be consistent with the
assembly, we converted the NA12878 sample back to FASTQ
to using PICARD (http://picard.sourceforge.net) and aligned to
hg19 using Novoalign (v2.08.01) with the following non-default
command line parameters: -x 5 -i PE 425,80 -r Random --hdrhd
off -v 120 -c 12. The “--hdrhd” parameter disables the checking
of identity between headers in paired end reads, “-x” is the gap
extension penalty, “-PE 425,80” is the expected insert size
distribution, “-r Random” randomly allocated multi-mapped
reads equally between identical positions, “v 120" sets the
structural variation penalty, and “-c 12” is the maximum number
of threads to use.
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Methods Comparison and Variant Calling Accuracy

In this manuscript we compare structural variant results from
five methods: SoftSearch, BreakDancer version
1.1_2011_02_21 [19], CREST [12], DELLY [15], and SVseq2.2
[13]. No version numbers are available for CREST or DELLY.
For most tools, there were few parameters that could be
changed modulate the sensitivity, in which case only the
default parameters were used. The exceptions were
SoftSearch and BreakDancer. We ran the analysis using two
parameter settings for BreakDancer and three settings for
SoftSearch to show how these settings influence the results.
For clarity of the results, we have indicated the parameter
settings in the results of each analysis. There were two settings
used for BreakDancer: BreakDancer_1 refers to the default
settings, whereas in BreakDancer_2 we increased the insert
size to call a discordant read pair from 3 to 4 standard
deviations and increased the minimum number of reads
supporting an event from 2 to 5. SoftSearch modifications were
as follows: In SoftSearch_1 we decreased the minimum
number of softclipped reads from 5 to 2, decreased the number
of spanning reads from 5 to 0, and decreased the insert size to
call a discordant read pair from 6 to 4 standard deviations.
SoftSearch_2 is default parameters. We also included
SoftSearch_3 which was designed to mimic the BreakDancer
default parameters where we did not require softclipped read
support and looked for events with only two supporting read
pairs with an insert size greater than 3 standard deviations. All
metrics for time and memory estimates are the average of two
repeated runs.

To assess the performance of each application, we use the
closestBed tool in the BEDTools package[17] to find out how
close predicted breakpoints were to the nearest true (i.e.
experimentally characterized or spike-in) breakpoints. If a
predicted breakpoint was within the normal insert size range
(less than 600bp) to the true breakpoint, the prediction was
considered a true positive event. False positives were any
predicted breakpoint not within the acceptable range, and false
negatives are any breakpoint in the real or simulated dataset
that were not identified by the breakpoint detection tool. We
define precision as TP/(TP+FP) and recall as TP/(TP+FN),
where TP=true positive, FP=false positive, and FN=false
negative. To summarize the results from the simulation data,
we use the F-score: 2*(precision*recall)/(precision+recall).

Results

Simulated Whole Genome

Precision and recall cannot be measured from the real
dataset since the entire complement of true positive variations
is not known. Therefore, to test the precision and recall of
various algorithms in a realistic scenario, we generated a
simulated genome based on real structural variants identified in
the HapMap Sample NA12878. Mills et al. [18], have previously
reported a “gold standard” set of validated duplications,
deletions and inversions in this sample. However, the numbers
of validated breakpoints were limited, so we also supplemented
known variations with random variations. The final number of
breakpoints used in the synthetic genome was 1227 deletions,
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Table 1. Summary Statistics from the Synthetic Whole Genome (40X).

Break Dancer_1 Break Dancer_2 Soft Search_1 Soft Search_2 Soft Search_3 Crest Delly SVSeq2
TP 2,907 2,884 3,558 3,483 3,527 2,686 2,972 3,154
FN 1,022 1,045 371 446 402 1,243 957 775
FP 385 3 666 58 601 21 381 176
Precision 0.88 1.00 0.84 0.98 0.85 0.99 0.89 0.95
Recall 0.74 0.73 0.91 0.89 0.90 0.68 0.76 0.80
F-score 0.81 0.85 0.87 0.93 0.88 0.81 0.82 0.87
CPU (h) 7.56 - - 13.06 -- 162.64 72.16 5.37
Memory (GB) 0.19 - - 0.58 - 5.40 6.21 3.18

TP=True positive; FN=False negative; FP=False positive; Bold indicates best result.

doi: 10.1371/journal.pone.0083356.t001

526 tandem duplications, 424 insertions, 1750 inversions, and
one inter-chromosomal translocation. A single translocation
was simulated, since these types of variations are generally
regarded as the easiest to detect.

SoftSearch was able to recall the largest number of true
positive SV calls (i.e. those called by the variant detection
algorithm that are truly present in the synthetic genome). The
results are shown in Table 1. SoftSearch was able to identify
89-91% of the simulated structural variant breakpoints
(regardless of parameter setting), whereas SVSeq2, DELLY,
BreakDancer, and CREST were comparable at recalling 80%,
76%, 73-74%, and 68%. CREST and BreakDancer_2 had the
highest precision at 99% and 100%, followed by SVSeq2,
DELLY, BreakDancer, and SoftSearch (all between 84-97%).
In terms of computational speed, SVSeq2, SoftSearch and
BreakDancer were by far the fastest on the 40X simulated
genome dataset; completing in fewer than 5.4, 8, and 13 hours,
respectively. DELLY completed the analysis in less than 72
hours, but CREST required 20-30 times longer than the two
fastest algorithms. Note that the simulated data might have
some intrinsic characteristics that might be more favourable to
some applications than others. We observed a somewhat
different ranking when analysis real datasets. SoftSearch and
BreakDancer used less than 0.6GB, whereas other tools used
3.2-6.2GB (Table 1).

SV Detection in Whole Genome Sequencing

We attempted to recall the breakpoints of known structural
variants that have previously been validated in the HapMap
NA12878 sample [18]. This sample was sequenced on an
lllumina HiSeq (2.4 bilion 100 bp paired end reads).
SoftSearch recalled the most true positive results
(n=3,622-4,736), followed by SVSeq2 (n=3,497), and
BreakDancer (n=2,325; both settings) (Figure 2A). As one
would expect, many of the SVs (74%) were identified by more
than one tool and 19% by all tools.

SoftSearch, SVSeq2, and BreakDancer were the most
similar, respectively identifying 72-94%, 70%, and 46% of the
discoverable breakpoints independently. There were no
differences in results between BreakDancer_1, and
BreakDancer_2. Note that the false positive detection rate
could not be determined in this sample since, true but un-

PLOS ONE | www.plosone.org

validated structural variants might be present in these HapMap
samples. Instead, we assume that the number of false
positives would be somewhat similar to that of the simulated
data set. CREST and SVSeq2 took the longest amount of CPU
time at 255 h and 425 h, respectively. SoftSearch completed
the analysis in less than 90 hours using only 0.6 GB memory.
BreakDancer was faster at 9 hours and 0.7GB memory.

We used a similar approach to evaluate the performance on
a low coverage HapMap NA18057 sample as well. SoftSearch
identified the most true positive breakpoints, followed by
BreakDancer, then DELLY and CREST (Figure 2B). Strikingly,
SoftSearch_3 found 20-fold more true breakpoints than
SVSeq2 (n=3,174 versus n=155). Only 43 SV were identified
using SoftSearch’s default parameters, which is not surprising
since it requires 5 reads to be softclipped even though most of
the genome is only sequenced at 4X or lower. There were no
differences in results between BreakDancer 1, and
BreakDancer_2. In this analysis, SoftSearch took the longest
time to complete (60 CPU hours) compared to less than 5.3
hours for all other tools, which is expected given the relatively
large number of breakpoints identified. SoftSearch, CREST,
and BreakDancer all used < 1.4GB of memory whereas DELLY
used 6GB.

Structural Variations in the BRCA2 Gene Identified in
Custom Captures

We also used high coverage custom capture experiments to
identify how SV detection performs on high coverage datasets
(~2,000X of 122 genes). CREST, SVSeq2 and SoftSearch
identified a 6.6kb heterozygous deletion of the BRCA1 gene,
but CREST and SVSeq2 missed a 71bp tandem duplication in
the BRCA2 gene (Figure 3), both of which were experimentally
validated by Myriad Genetics (www.myriad.com). SVSeq2 also
made several false positive calls for each sample (data not
shown). BreakDancer and DELLY did not detect any SVs in the
target region.

Discussion
SoftSearch is a new breakpoint detection tool for paired-end

next generation sequencing instruments that uses multiple
sequence features to infer breaks point to characterize location
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Figure 2. Overlap of true positive calls for the NA12878 and NA18507 datasets.

doi: 10.1371/journal.pone.0083356.9002

and type of structural variants. SoftSearch uses less memory,
has a fast and consistent run time, and is more sensitive than
other tools. SoftSearch does not require additional alignment
steps so it can easily plugged into existing workflows. The
results obtained from the analysis of the whole genome
simulations datasets, showed that SoftSearch is able to identify
more accurate breakpoints than other tested tools. The higher
sensitivity of SoftSearch was also observed in high and low
coverage HapMap samples (40X and 4X coverage), and a high
coverage 122 gene custom capture dataset. The significantly
higher recall obtained with SoftSearch on the 4x coverage
HapMap highlights that the SoftSearch strategy of combining
multiple sequence features to call breakpoint is more effective
than relying only on a single feature. Compared to DELLY that
operates on similar principle, SoftSearch’s count requirement
for these features is lower. DELLY must first identify a
significant cluster of paired end reads and then the breakpoints
of those clusters are refined using the split reads. SoftSearch
works in the opposite direction, first identifying anywhere in the

PLOS ONE | www.plosone.org

genome softclipped reads occur at exactly the same point. If
there are only a few read pairs supporting the event, then the
discordant reads cannot be distinguished from background and
the variant is missed. In the case of SoftSearch, anywhere at
least two discordant read pairs support a split read will be
reported. Finally, SVSeq2 was the most comparable to
SoftSearch in terms of recall. One limitation of SVSeq2 is that it
will only annotate variants as insertion or deletion, even when
breakpoints overlap with known inversions (Table S1).

The analysis of a high coverage (at 2,000X) 122 genes
capture experiment, although done on a very limited scale (12
samples), shows that SoftSearch was able to detect a 71bp
tandem duplication in the BRCA2 that was not called by either
BreakDancer or CREST. This result again highlights
SoftSearch’s sensitivity but also emphasizes its ability to
process custom capture experiments. This is of particular
importance since many more exomes or custom capture
experiments than genomes have been sequenced, many of
which have not yet been exploited for SV discovery.
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doi: 10.1371/journal.pone.0083356.g003

As a final point of this discussion, we would like to stress that
each of the tested algorithms is capable of identifying correctly
breakpoints and structural variants missed by the other tools.
This suggests that a combined approach that could summarize
the results of multiple structural variant callers would result into
the highest possible sensitivity.

Supporting Information

Figure S1. Strategy for detecting SV from right and left
clipped reads.

(TIFF)
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