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ABSTRACT: Artificial intelligence technology will be increasingly applied in the oil and gas industry. The rapid development of
artificial intelligence technology can solve problems such as high environmental sensitivity and complex production processes in the
oil and gas industry. In recent years, emerging technologies represented by artificial intelligence have developed rapidly, assisting
petroleum enterprises in digital transformation and intelligent upgrading. This article elaborates on the development trend of
artificial intelligence technology. Based on the business scenarios and characteristics of the oil and gas industry, the application status
of artificial intelligence technology in domestic and foreign petroleum technology service enterprises was summarized and analyzed.
The application scenarios of artificial intelligence technology in the fields of dynamic analysis of oil and gas reservoirs, intelligent
historical fitting, numerical simulation proxy models, and production plan optimization were analyzed with emphasis. Based on the
problems and challenges faced in the development process of oil and gas reservoirs, it is proposed that petroleum enterprises should
attach importance to the “three modernizations” innovation of data standardization, oil and gas field intelligence, and platform
collaboration, in order to achieve more refined intelligent analysis and management of oil and gas reservoirs and quickly develop
more targeted oil and gas reservoir development plans to assist in the intelligent transformation of oil and gas reservoir development.
On this basis, prospects for future artificial intelligence technology are proposed, pointing out that the development of artificial
intelligence technology will be faster and faster, and there will be higher demand for artificial intelligence technology in the
construction of digital oil and gas fields in China in the future. The research results have important reference value for the
development of the oil and gas industry.

1. INTRODUCTION
Artificial Intelligence (AI)1,2 is a new technological science
based on computer science that is used to simulate,3 extend,4

and expand human intelligence.5 In recent years, Li et al.6 have
conducted research on the application of artificial intelligence
in oil and gas reservoir development. Yao et al.7 believed that
with the explosion of oil and gas development data, the
improvement of computing power, and breakthroughs in
algorithms, the three carriages have promoted the rapid
development of artificial intelligence and become the core
driving force leading Industry 4.0 and a new round of
technological revolution and industrial transformation.8 Kuang
et al.9 believed that artificial intelligence technology is

increasingly dominant in the energy strategy of oil and gas.
However, due to the impact of energy structure, geopolitical
situation, epidemic situation, and dual carbon measures, on the
one hand, China’s oil and gas production cannot meet the
demand for consumption growth,10 with a high degree of
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external dependence and prominent energy security issues. On
the other hand, with the continuous increase in the
implementation of the dual carbon policy, the vigorous
development of new energy has brought new challenges to
the oil and gas industry, and transformation and upgrading are
urgent.11 With the rapid development of emerging technolo-
gies such as artificial intelligence, the digital economy has
provided new momentum for the transformation, upgrading,
and vitality of traditional industries. Shi et al.12 believed that
the oil and gas industry achieves business improvement and
transformation through digitization. The digital and cloud
era13 finds application value through the implementation of the
oil and gas industry. In this “two-way journey” process,14

traditional industries and new technologies accelerate integra-
tion, constantly creating new scenarios,15 paradigms, and
values. Due to the long industrial chain of the oil and gas
industry.16

This article focuses on the application status and develop-
ment trends of artificial intelligence technology in oil and gas
reservoir development, investigates the research progress of big
data and artificial intelligence in oil and gas field development,
reviews the construction process of intelligent oil fields in
domestic and foreign oil and gas development companies,
analyzes the existing problems and challenges, and proposes
suggestions for the development of future artificial intelligence
technology in oil and gas development. This will undoubtedly
play a prominent role in the construction of digital oil fields in
China.

2. APPLICATION STATUS OF ARTIFICIAL
INTELLIGENCE IN THE OIL AND GAS INDUSTRY

In the field of oil and gas development, artificial intelligence
can process a large amount of geological, geophysical, and
geochemical data. Zhang et al.17 used multivariate time series
and vector autoregressive machine learning to help petroleum
engineers more accurately identify potential oil and gas
reservoirs. Machine learning algorithms can discover potential
patterns hidden in existing data through analysis and
learning,18 thereby improving the accuracy and efficiency of
exploration.

The application of artificial intelligence in the entire oil and
gas development process is shown in Figure 1. By utilizing
artificial intelligence technology, intelligent production mon-
itoring and optimization can be achieved. By processing and
analyzing real-time monitoring data of production wells,
abnormal situations can be detected in a timely manner, oil
and gas production can be predicted, and corresponding

measures can be taken in advance to improve production
efficiency and reduce costs. Through the analysis and mining
of big data in the process of oil and gas development, more
accurate prediction results can be obtained to assist decision-
makers in formulating reasonable plans. This will be beneficial
for improving the management level and decision-making
system of the oil and gas industry.

In the application of artificial intelligence technology,19−21

Balashov et al.19 can also provide corresponding emergency
response and rescue measures for artificial intelligence through
analysis and learning of accident cases. For example, Statoil in
Norway uses artificial intelligence technology for safety
monitoring and accident prevention of its offshore oil and
gas platforms, effectively reducing the likelihood of accidents
occurring. Shell, an oil giant, uses artificial intelligence
technology to intelligently monitor and optimize the control
of its refining equipment, greatly improving the energy
utilization and product quality of the refining equipment.

The application in the field of oil and gas extraction mainly
includes intelligent bottomhole equipment and intelligent
water injection technology. Intelligent downhole equipment
can achieve intelligent management of oil wells and improve oil
recovery through adaptive control. Intelligent water injection
technology analyzes and predicts groundwater reservoirs. At
present, intelligent adjustments have been made to the water
injection plan, improving the water injection effect. The
application of artificial intelligence technology in the field of oil
and gas pipelines mainly includes pipeline safety monitoring
and intelligent maintenance. By real-time monitoring and
analysis of pipeline data, comprehensive monitoring of pipeline
operation status can be achieved, problems can be identified in
a timely manner, and corresponding measures can be taken to
ensure the safe operation of the pipeline. Intelligent
maintenance technology achieves intelligent maintenance of
equipment and the application of machine learning in the oil
and gas industry through data analysis and prediction of
pipeline equipment,22 improving the service life and opera-
tional efficiency of equipment.

The application of artificial intelligence in fracturing
technology is the first time in the industry that a permanent
optical cable clamp is used outside the casing string (with an
artificial intelligence fracturing sleeve on the casing string) in
cementing operations. Figure 2 is a schematic diagram of
installing an artificial intelligence fracturing system, with the
aim of better understanding the oil and gas reservoir and
providing a basis for later single well fracturing and
development history matching of the reservoir.23 Unlike
traditional completion methods, artificial intelligence fracturing
sliding sleeves do not require throwing balls or setting
composite bridge plugs to isolate segments. This technology
uses artificial intelligence downhole tools to activate the
fracturing sleeve, saving interval conversion time and fluid
volume, and can be used as a unique emergency response
method. If necessary, the sliding sleeve and optical cable can be
used as part of the completion string to be lowered into the
well. This can achieve full bore without the need for post
drilling and milling operations, further reducing the total
completion time and accelerating production. The reason why
operators adopt this method is because it can be targeted for
modification, has high operational efficiency, can save liquid
volume, and can dynamically adjust fracturing design using
fiber optic data. In this application, the artificial intelligence
fracturing sliding sleeve has multiple advantages, such as simpleFigure 1. Schematic diagram of artificial intelligence oil and gas fields.
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compatibility with optical fiber systems, more flexible
fracturing construction, and excellent fracturing control
capabilities. If heterogeneous reservoirs24 adopt multi cluster
fracturing methods (such as bridge plug perforation fractur-
ing), the cost will be high. Because it is necessary to identify
the optical cable first, and then adjust the direction of the
perforating gun to prevent it from penetrating the cable. On
the other hand, due to the use of a specially designed artificial
intelligence fracturing sleeve structure and the use of optical
cable anti pinch damage function, the risks and costs related to
the operation are eliminated. There is only one inlet point
during fracturing operations. This can increase the flow rate of
the fluid, achieve a faster increase in sand ratio, and reduce the
required hydraulic horsepower. Similarly, a single injection
point ensures that each fracturing channel can generate a crack,
without the occurrence of areas that cannot be modified.

In the past, domestic and foreign oil and gas reservoir
development decisions were based on empirical reservoir
engineering methods. These methods have outdated data and
personal experience. Therefore, it is not in line with the
development of modern oil and gas reservoir development.
The advantages of artificial intelligence technology in the fields
of dynamic analysis of oil and gas reservoirs, intelligent
historical fitting, numerical simulation proxy models, and
production plan optimization are gradually being reflected.

In recent years, domestic oil companies such as PetroChina,
Sinopec, and CNOOC have all made digital transformation
one of the strategic directions of their group companies. The
pace of combining emerging technologies such as artificial
intelligence and big data with traditional oil and gas business is
further accelerating. Compared with the intelligence status of
major international oil companies, in the data acquisition layer,
most of the high-end programmable logic controller (PLC)
and distributed control system (DCS) markets are still
monopolized by multinational corporations, and the digitiza-
tion and networking rates of equipment need to be improved.
At the infrastructure level, China’s cloud computing
capabilities rank among the top in the world, and Chinese
oil companies have all built private cloud data centers. At the
platform service level, petroleum enterprises have established
an oil and gas professional service platform with the ability to
provide microservices. However, the accumulation of experi-
ence and knowledge in industrial mechanisms, processes,

model methods, and other aspects is insufficient. At the
application service layer, there is a lack of mature professional
software for exploration and development, and the industrial
application developer community is not sound.

CNPC has deeply applied new generation information
technologies such as artificial intelligence in the exploration
and development field, established an exploration and
development artificial intelligence technology research and
development center, and developed an exploration and
development cognitive computing platform. By comprehen-
sively considering data, algorithms, and simulation conditions,
a one-stop artificial intelligence development environment is
provided for data processing, machine learning, model
publishing, and inference applications. Through its application
in practical business scenarios, the platform has shortened the
research cycle of logging oil and gas reservoir identification by
about 70%, and the accuracy of oil and gas reservoir
identification has reached over 90%. Exploration and Develop-
ment Dream Cloud, as the first independently controllable
industrial Internet platform in the domestic oil and gas
industry, has helped PetroChina build the largest data lake in
the Asian oil and gas industry. With the assistance of Dream
Cloud, the efficiency of application research and development
in Tarim Oilfield has increased by 30%.12 In the fault
prediction of a complex fault block area in an eastern oilfield,
the prediction time was reduced from 30 to 10 min, reducing
personnel investment by over 40% and workload by over 40%.
The overall efficiency of the collection operation was improved
by 10% to 20%.

CNOOC has formulated the “Top Design Outline for
Digital Transformation of Group Companies”, proposing the
overall blueprint for digital transformation of “one platform,
two systems, three clouds, four capabilities, and five major
improvements”, promoting the company’s leap from traditional
management mode to modernization, digitization, and
intelligence. Qinhuangdao 32−6 is China’s first offshore
intelligent oil field, which has achieved the reduction of
personnel in offshore oil fields, visualization of reservoir
research, collaborative production and operation, and scientific
strategic decision-making, promoting the transformation of
production operation methods and optimization of manage-
ment processes.

Figure 2. Schematic diagram of artificial intelligence fracturing optical fiber.
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The Chinese scientific research team utilizes machine
learning to summarize various intelligent algorithms. Through
model training, automatic feature engineering, and parameter
tuning, the optimal data model is automatically selected to
achieve intelligent analysis scenarios for oil and gas reservoirs,
such as analysis of production capacity control factors,
comprehensive dessert prediction, and fracturing parameter
optimization. At the same time, deep learning algorithms are
integrated to establish a reservoir uncertainty reduction model
based on Bayesian evidence learning framework, a complex
well control reservoir state prediction and production analysis
model based on convolutional neural networks (CNN), a multi
sequence reservoir state analysis and production prediction
model based on CNN and recurrent neural networks (RNN)
under different geological conditions, and a proxy model for
well control production optimization, To achieve rapid design,
real-time tracking, effectiveness evaluation, and rapid pre-
diction and optimization of multi well oil and gas field
production in oil and gas reservoir drilling and completion, as
well as reservoir engineering solutions, and to achieve rapid
continuous improvement and automatic updating of oil and
gas reservoir models driven by massive geological engineering
data.

3. RESEARCH PROGRESS IN ARTIFICIAL
INTELLIGENCE TECHNOLOGY
3.1. Artificial Intelligence Numerical Simulation

Optimization Technology. Artificial intelligence oil and
gas reservoir models are used to simulate the flow of fluids in
underground porous media under different conditions.
Comprehensive fitting of oil and gas reservoir history is
used25 in order to predict oil well production, optimize water
injection plans, and understand the connectivity between wells.
With the increasing accuracy requirements of oil and gas
development plans for numerical models of oil and gas
reservoirs, the computational time required for numerical
simulation of oil and gas reservoirs is a key challenge faced by
automatic historical fitting solutions. The agent model based
on machine learning can obtain the simulation results of oil
and gas reservoir models in a short period of time,26 and
greatly reduces the computational cost of a single simulation.
In recent years, artificial intelligence has adopted artificial
neural network technology to establish intelligent agent models
for reservoir simulation history fitting, sensitivity analysis, and
uncertainty evaluation. This model has been successfully
applied in the historical fitting of reservoir models, and the
output results predict the production of wells. Meanwhile, in
the rapid modeling of CO2 enhanced oil recovery reservoirs,
good results have been achieved in predicting the distribution
of reservoir pressure and phase saturation during and after
injection.

Artificial intelligence is a convolutional recursive hybrid deep
learning proxy model suitable for automatic reservoir history
fitting and uncertainty quantification.27 This study is based on
an image to sequence proxy modeling framework, integrating
residual convolutional networks and multilayer recurrent
neural networks to construct a high-precision proxy model
for reservoir numerical simulation, effectively enhancing the
accuracy and efficiency of modeling. By applying a multimodal
distributed estimation solving algorithm to automatic history
fitting, the problem of multiple solutions faced by automatic
history fitting is effectively solved. Combining principal
component analysis with proxy model assistance, principal

component analysis is used to reduce the dimensionality of
large-scale decision variables. Meanwhile, Figure 3 is a

multiobjective evolutionary algorithm assisted by a proxy
model. Using approximate functions instead of conventional
numerical simulations for production optimization, ultimately
obtaining the optimal production plan for the target reservoir.
A proxy model for numerical simulation was established using
deep neural networks. Principal component analysis (PCA),
singular value decomposition (SVD), and tensor methods were
used to optimize the parameters of the geological model, and
ESMDA was used for historical fitting. The results indicate that
the time required for the proxy model to complete a numerical
simulation is much shorter than the time required for the
numerical simulator operation, greatly accelerating the history
fitting process and establishing a proxy model based on radial
basis functions for multiobjective optimization problems in
history fitting. Using Pareto optimality as the optimization
criterion, five additive strategies were proposed for historical
fitting. Research has shown that using proxy model algorithms
for historical fitting research has higher fitting accuracy and
lower time cost compared to traditional algorithms, which
proposed an application scenario for an oilfield production
optimization agent model based on experimental design
(DOE) method. By experimenting with different development
plans within a certain block, regressing the cumulative oil
production and financial net present value of each plan, and
calculating the relevant parameters as the dependent variable, it
became possible to prioritize the experimental plan by
changing the constraint conditions.
3.2. Artificial Intelligence Automatic Recognition

Technology. Artificial intelligence automatic recognition is
an important link in the development process of oil and gas
reservoirs, and it is also a high-dimensional, difficult to solve,
and time-consuming problem.28 The process of artificial
history fitting is cumbersome and labor-intensive, requiring
high experience from researchers. Yang et al.29 proposed the
construction and application of a comprehensive research
digital platform for oil and gas exploration and development,
which greatly improves the solving efficiency of artificial
intelligence recognition. In recent years, the ensemble Kalman
filter (EnKF),30 ensemble smooth multiple data assimilation
(ESMDA),31 random gradient approximation algorithm,32

Markov process, and other non gradient methods for historical
fitting have been widely applied.33−35 At the same time,
breakthroughs in machine learning and deep learning have also
brought new ideas to artificial intelligence recognition.36−39

Figure 3. Artificial intelligence computing digital simulation
technology.
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Artificial intelligence uses the EnKF method to assist in
automated history fitting,40−42 and by establishing a reservoir
model, set the parameters that need to be fitted.43−46 Based on
the EnKF method combined with production performance
data, reservoir parameter inversion and reservoir simulation
optimization are achieved, greatly improving the fitting
accuracy.47−49 This method greatly reduces the workload of
reservoir engineering personnel and simplifies the history
fitting workflow. However, the upstream development of
China’s petroleum industry still faces challenges.50

The artificial intelligence automatic recognition proposes a
data-driven model for solving the inversion of fractured
reservoir fracture networks. This method combines principal
component analysis (PCA) with discrete cosine transform
(DST) to effectively extract the geological features of strongly
heterogeneous reservoirs, achieving rapid solving of nonlinear
intelligent history fitting problems.

The artificial intelligence automatic fitting technology starts
with analyzing the fitting phenomenon, categorizing the
dynamic and static contradictions, analyzing the influencing
factors through different contradictions, and repeatedly
correcting the model based on reality until it meets the
accuracy requirements. This method reduces the number of
reservoir numerical simulations and improves the efficiency
and accuracy of historical fitting. Artificial intelligence has
proposed a sensitivity analysis method for historical fitting
parameters based on adjoint models. This method constructs
the coefficient matrix of the adjoint model and obtains the
adjoint variable, establishes the sensitivity coefficient calcu-
lation equation and adjoint variable, and solves the sensitivity
coefficient matrix of the objective function with respect to the
control variable. Compared with the commonly used gradient
simulator method and experimental design method, it
effectively improves the efficiency of parameter sensitivity
analysis. The data-driven history fitting method based on deep
learning, combined with convolutional neural networks and
principal component analysis (CNN-PCA), has achieved high
accuracy for both developed and new wells.

Artificial intelligence has also implemented the Markov
chain based Monte Carlo method to continuously optimize the
static parameters of the model, such as permeability, to fit the
actual production dynamics, and obtain a reservoir numerical
model as close as possible to the real model, reducing fitting

time and improving the efficiency and accuracy of historical
fitting. This makes the predicted results of oilfield development
performance closer to actual production.
3.3. Artificial Intelligence Dynamic Analysis Technol-

ogy. The core of dynamic analysis of oil and gas reservoirs is a
typical multivariate and nonlinear problem. Traditional oil and
gas reservoir engineering methods cannot guarantee calcu-
lation accuracy. In recent years, machine learning methods
such as artificial neural networks, streamline simulation
technology, and support vector machines have been widely
applied in this field. Figure 4 shows the rational allocation of
production between injection and production wells using a
streamline model. Compared to traditional methods, machine
learning can improve the robustness and self-learning ability of
the model, meeting the needs of different stages of oilfield
production. Artificial intelligence utilizes neural network
algorithms to analyze surface and reservoir parameters and
predict the average oil flow rate of multi branch wells,
achieving good prediction accuracy. Artificial intelligence
utilizes long short-term memory (LSTM) neural networks to
predict oilfield production. The prediction accuracy has been
significantly improved compared to traditional analysis
methods. It has achieved good performance in terms of
convergence and prediction accuracy. Artificial intelligence
improves prediction accuracy by utilizing the correlation
characteristics between strata and oil well production. Applying
deep learning to fluid parameter prediction and creating a
mapping relationship between application research and oil and
gas production in reservoir inter well connectivity analysis.51

After inputting initial data, saturation pressure, formation
volume coefficient, and gas compression coefficient of other
wells can be predicted.

According to the international trend of artificial intelligence
development,52 artificial intelligence has now achieved the
optimization of fine water injection in old oil fields using big
data. This method automatically identifies the flow relationship
between layered injection and production wells, achieving the
calculation of the flow relationship between layered injection
and production wells in blocks, making it possible to utilize
multilayer and multidirectional production splitting technology
to solve the optimal water injection adjustment plan, calculate
the liquid production and oil production of oil production
wells in different layers and directions, and then predict

Figure 4. Artificial intelligence injection production well network streamline simulation technology for oil and gas reservoirs.
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production. Artificial intelligence utilizes multivariate time
series (MTS) and vector autoregressive (VAR) machine
learning models to predict the production of water drive
reservoirs. First, optimize the injection production well group
data through MTS analysis. Second, establish a VAR model to
predict production using the dependency relationship between
injection and production well flow rates. Experiments have
shown that the machine learning model53 has higher accuracy
in yield prediction results. At the same time, the security of the
predicted results has also been improved. Artificial intelligence
addresses the problems of traditional methods for predicting
oil reservoir production through water injection development.
A prediction model based on artificial neural networks and a
feature extraction method based on a random combination of
fluid physics and measurement data have been proposed. This
method evaluated the model by calculating the mean square
error and determination coefficient, drawing error distribution
histograms, and simulating data validation data intersection
plots, and achieved good experimental results.
3.4. Optimization Technology for Artificial Intelli-

gence Oil and Gas Reservoir Development Plans. In the
dynamic analysis of complex oil and gas reservoir development,
the accurate determination of local remaining oil depends on
the identification of response relationships between injection
and production wells and the quantitative prediction of
connectivity relationships. However, due to its difficulty in
quantification, long duration, and weak adaptability, at present,
qualitative identification mainly relies on manual labor. The
optimal injection and production control scheme can be found
through particle swarm optimization and gradient based
optimization algorithms. At the same time, artificial intelligence
utilizes technologies such as neural networks and decision trees
to build accurate oil and gas reservoirs and geological models.
By continuously adjusting and correcting, a scientific
foundation is laid for the design and formulation of
development plans.

The optimization technology of artificial intelligence oil and
gas reservoir development plans proposes a method based on
artificial intelligence technology54 for predicting the produc-
tion performance of target reservoirs with big data and helping
to improve recovery efficiency. This method can more
accurately describe the fluid distribution status of the reservoir,
simplify the calibration of dynamic models, and improve the
quality of historical fitting. Artificial intelligence utilizes
convolutional neural network technology to achieve automatic
well testing interpretation of radial composite reservoirs. This
method uses a logarithmic function for data transformation,
and uses mean square error as the loss function. The optimal
solution can be directly used to explain the pressure recovery
or pressure drop data of wells in radial composite reservoirs,
thus achieving automatic initial fitting of well testing parameter
interpretation. At present, artificial intelligence can achieve
rapid dynamic prediction of oilfield development based on
digital reservoir analogy knowledge. This method combines
statistical analysis of analogy reservoir samples, dynamic
attribute simulation, and decline curve analysis. In a fractured
carbonate reservoir, the predicted results provide production
yield, water content, duration of different development stages,
and final recovery rate, and further derive development
performance indicators such as water−oil ratio and recovery
degree, verifying the effectiveness and feasibility of the method.

On the basis of in-depth analysis of the application of
artificial intelligence technology, system functions such as data

integration and processing, and achievement management have
been designed. The virtualization installation and sharing of
different types of professional software in the cloud has
promoted the online operation of development and research
processes, as well as business collaboration among different
positions. The ultimate goal of artificial intelligence application
is to establish an indicator system for oil and gas field
development effectiveness, and to use fuzzy multiple evaluation
method to evaluate the development effect of oil reservoirs and
establish a sample library. The method based on big data
provides a fast and reliable decision-making approach for
selecting development plans in the sample library for oil and
gas field development plans.

Artificial intelligence technology can also use machine
learning methods to construct a hydraulic fracturing single
well productivity prediction model. Figure 5 shows the use of

probabilistic neural networks for reasonable fracturing
optimization prediction of deployed well locations. This
model can evaluate the fracturing effect of each well and
optimize the fracturing construction parameters. By learning
the formation fracture pressure of fracturing construction data,
effective prediction of formation fracture pressure can be
achieved. On this basis, artificial intelligence proposes a
process for establishing a dynamic response model for injection
production well groups based on neural networks. By studying
the historical production data of the injection production well
group and analyzing the sensitivity between the output and
input nodes of the neural network model, the connectivity
between the injection production wells is characterized. For
example, in response to the problems of rapid bottom water
coning, high water content, and low recovery rate in a certain
carbonate reservoir, artificial intelligence combined with
horizontal well logging interpretation and seismic plane
attributes is used to analyze the lateral heterogeneity changes
of the reservoir. By utilizing dynamic data to determine inter
well connectivity, a reliable understanding of inter well
connectivity in oil reservoirs can be obtained. This provides
effective guidance for the accurate evaluation of inter well
connectivity in such complex oil reservoirs and the deployment
of oil reservoir development in the area. Using artificial neural
networks to simulate injection production relationships, an
optimization model was established based on NPV (maximum
cash flow), achieving optimization of injection production
parameters, greatly reducing the problems caused by adjusting
parameters and historical fitting. Dagang Oilfield No.1 Oil
Production Plant uses the big data deep learning method to

Figure 5. Artificial intelligence well location optimization technology
for oil and gas reservoir deployment.
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predict the potential of low resistivity oil layers, which
increases the amount of reference data in the process of
identifying potential layers, optimizing algorithms, and
applying models. At the same time, the characteristics of low
resistivity oil and gas reservoirs were quantified, achieving a
transformation from manual experience to intelligence in
identifying low resistivity oil and gas reservoirs, and improving
prediction accuracy.

4. PROSPECTS FOR THE FUTURE DEVELOPMENT OF
ARTIFICIAL INTELLIGENCE TECHNOLOGY

The application and exploration of artificial intelligence in the
development of oil and gas reservoirs have achieved phased
results. However, due to the complex and ever-changing
underground conditions of oil and gas reservoirs, as well as
issues such as multiplicity, missing features, and small samples,
the difficulty of promoting artificial intelligence has increased.
In addition, there are prominent problems in the development
and production process of oil and gas reservoirs, such as large
differences in production capacity, complex main control
factors that affect production capacity, large workload of
traditional oil and gas reservoir numerical simulation, and long
calculation time. Conventional methods are difficult to solve,
and artificial intelligence technology still faces both oppor-
tunities and challenges in the future. In the future, artificial
intelligence technology can be effectively combined with oil
and gas field development to achieve the optimal solution of
complex problems in intelligent oil and gas reservoir
development using machine learning and deep learning
methods.50,55 In the future, attention should be paid to the
“three modernizations” innovation of standardization of oil and
gas development data,56 intelligence of oil and gas fields, and
platform collaboration,57 in order to achieve leapfrog develop-
ment and rapid upgrading of artificial intelligence in the oil and
gas industry.58,59

Figure 6 shows the roadmap for the development of artificial
intelligence technology in the oil and gas industry. The
development of artificial intelligence has gone through multiple
stages, facing many difficulties,60 as well as opportunities and
development. Through the intelligent application of multiple
links such as dynamic analysis of oil and gas reservoirs,

intelligent historical fitting,61 numerical simulation models, and
optimization of production plans,62 the state of oil and gas can
be described more accurately.63 The goal is to develop more
scientific development plans to improve the speed and
recovery rate of oil and gas extraction.64 The future reliable
intelligent oil and gas field development plan will be widely
applied.65

Currently, the construction of intelligent oil and gas fields is
developing rapidly,66 but overall it is in the initial stage of
exploration.67 We still face many challenges from data,
algorithms, and underground unknown factors. In the future,
driven by technologies such as big data, artificial intelligence,
5G, cloud computing, and the Internet of Things, the
intelligence level of oil and gas fields will rapidly develop.
This is not only an inevitable trend in the development of oil
and gas technology, but also an effective way to reduce costs,
improve quality, and increase efficiency in oil fields. The
construction of intelligent oil and gas fields requires the deep
integration of oil and gas exploration and development with
technologies such as big data, artificial intelligence, cloud
computing, and blockchain, which in turn leads to a batch of
disruptive technologies in the field of oil and gas fields, which
solves the technical requirements for oil and gas exploration
and development, and enhance the economic and social
benefits of oil and gas field exploration and development.

In the future, it is necessary to focus on data governance and
accumulate available oil and gas reservoir parameter samples
driven by geology, oil and gas reservoirs, big data, and other
factors, and to conduct more in-depth research on machine
learning and deep learning algorithms, as well as application
scenarios for oil and gas reservoir development, forming a
trend of development from intelligence in local application
scenarios to automation and intelligence in large-scale
scenarios, realize more refined intelligent analysis and manage-
ment of oil and gas reservoirs, and to develop more targeted oil
and gas reservoir development plans.

(1) Strengthen the application of artificial intelligence
technology.

In the process of oil and gas reservoir development,
emerging technologies such as big data and artificial
intelligence should be deeply integrated to achieve break-

Figure 6. Roadmap of the future development direction of artificial intelligence oil and gas reservoirs.6
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throughs in reservoir modeling, intelligent numerical simu-
lation, dynamic intelligent analysis of oil and gas reservoir
development, intelligent optimization of schemes, and
intelligent evaluation of effects; continuously innovate new
methods and algorithms, improve the intelligence level of oil
and gas development, and provide support for optimizing oil
and gas reservoir development technology policies and
dynamically implementing comprehensive adjustments.

(2) Emphasize the research and development of artificial
intelligence collaboration platforms.

In the era of artificial intelligence, oil companies face the
dilemma of overall high research and development costs and
low efficiency, which hinders the large-scale application of
artificial intelligence. At present, artificial intelligence has
entered the stage of intensive construction, and large models
are the infrastructure for AI algorithms to achieve large-scale
application replication. Based on a large model, it has fewer
annotated data, better model performance, less manpower
investment, lower marginal cost, and stronger universality.

(3) Enhance the innovation ability of artificial intelligence.
In the current context, oil companies should choose

domestically produced artificial intelligence platforms that are
independent and controllable, domestically produced deep
learning algorithm frameworks, domestically produced artificial
intelligence chips, and other products, and create domestic
artificial intelligence products and solutions that integrate
software and hardware for the field of oil and gas applications,
as well as enhance independent and controllable collaborative
innovation capabilities.

(4) Accelerate the construction of artificial intelligence
intelligence technology.

With the continuous progress of cognitive intelligence
technologies such as natural language processing (NLP) and
knowledge graph (KG), the integration and development of
multiple disciplines from data to knowledge, from under-
standing to thinking, and from perception to cognition have
made everything in the oil and gas business more thoughtful,
logical, and intelligent.

(5) Strengthen the construction of artificial intelligence
digital oil fields.

In terms of digital oilfield data, sufficient and high-quality
sample data for training is the foundation of artificial
intelligence.68 However, in the process of oil and gas reservoir
development, there is often a situation of big data and small
samples, especially insufficient “negative sample” data, and low
data quality, incomplete standardization, and insufficient
sharing degree restrict the maximization of data value.69 This
issue can be solved by strengthening data governance and
applying large models. The emergence of graphics processors
(GPUs) has significantly improved the speed of deep neural
network training. However, there is always a strong demand for
high-performance computing power during the development of
oil and gas reservoirs. Therefore, looking ahead to the future of
artificial intelligence technology,70 in order to solve ultra
complex exploration and development problems,71 it is
necessary to continuously improve the complexity and
generalization of models,72 and combine learning based and
model based methods.73,74 Artificial intelligence technology
has achieved certain results and is also facing difficulties.75

However, artificial intelligence has broad development
prospects, and the future oil and gas industry will definitely
achieve artificial intelligence,76 which will promote the
sustainable development of the entire oil and gas industry.77,78

5. CONCLUSIONS

(1) Strengthen the standardization of artificial intelligence
data; strengthen data standardization governance;
improve data quality and the automation, workflow,
and intelligence level of data processing work.

(2) Emphasize artificial intelligence model algorithms.
Petroleum enterprises should adopt autonomous,
controllable, and mature artificial intelligence modeling
platforms to conduct data processing or feature
engineering around the mechanism of oil and gas
business, and improve the model generalization ability.

(3) Strengthen the innovation of collaborative platforms
across various disciplines. Petroleum enterprises should
open their doors, strengthen cooperation with multi-
disciplinary information and communication fields such
as geology, geophysical exploration, and oil reservoir
engineering, jointly tackle key problems, and deeply
apply new generation information technologies such as
artificial intelligence.

(4) Finally, establish artificial intelligence oil and gas fields.
It is proposed that petroleum enterprises should attach
importance to the “three modernizations” innovation of
data standardization, oil and gas field intelligence, and
platform collaboration, to achieve leapfrog development
and achieve rapid upgrading of artificial intelligence in
the oil and gas industry.
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