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Ginsenoside Rg1 (Rg1), a purified, active component of the root or stem of ginseng, exerts positive effects on mesenchymal stem
cells (MSCs). Many recent studies have found that hematopoietic stem cells (HSCs), which can develop into hematopoietic
progenitor cells (HPCs) and mature blood cells, are another class of heterogeneous adult stem cells that can be regulated by
Rg1. Rg1 can affect HSC proliferation and migration, regulate HSC/HPC differentiation, and alleviate HSC aging, and these
findings potentially provide new strategies to improve the HSC homing rate in HSC transplantation and for the treatment of
graft-versus-host disease (GVHD) or other HSC/HPC dysplasia-induced diseases. In this review, we used bioinformatics
methods, molecular docking verification, and a literature review to systematically explore the possible molecular
pharmacological activities of Rg1 through which it regulates HSCs/HPCs.

1. Introduction

Ginsenosides are the active components of ginseng and com-
prise a group of sterol compounds. According to differences
in their glycosidic structure, ginsenosides are divided into
two subtypes: the dammarane type and the oleanane type
[1, 2]. Ginsenoside Rg1 (Rg1, molecular formula:
C42H72O14, Figure 1(a), image from PubChem), a member
of the ginsentriol subtype of dammarane ginsenosides, is an
important monomeric ginsenoside and the most abundant
component of Chinese/Korean ginseng. Rg1 not only acts
on the nervous, cardiovascular, blood, and immune systems
but also exhibits a variety of positive pharmacological activi-
ties, such as its neuroprotective activity [3] and its abilities to
treat myocardial ischemia [4] and repair hematopoietic
immune disorders [5]. To date, several clinical trials on the
use of drugs containing Rg1 for the treatment of vascular
dementia, hyperlipidemia, hypertension, Sjögren’s syn-
drome, rheumatic diseases, and ischemic stroke have been
registered on clinicaltrials.gov [6, 7].

Hematopoietic stem cells (HSCs) are adult stem cells that
can self-renew, differentiate into blood cell lineages, and exert
long-term effects on maintaining and producing all mature
blood cell lineages during the life cycle of an organism [8].
Under a stable metabolism status, most HSCs are in a static
state (quiescent HSCs), whereas hematopoietic progenitor
cells (HPCs) actively proliferate and maintain the daily hema-
topoietic function. When the body is stimulated, such as dur-
ing life-threatening blood loss, infection, and inflammation,
HSCs can be activated in the bone marrow to proliferate and
participate in blood formation [9, 10]. HSCs mainly function
in the specific bone marrow microenvironment (HSC niche),
which provides the signals needed to protect HSCs and main-
tain HSC differentiation [11]. Although the surface pheno-
types of human and murine HSCs differ, these cell types
possess the basic functions of HSCs. CD34 is a marker of
human HSCs, and clinical transplantation studies using
enriched CD34+ bone marrow cells have indicated the pres-
ence of HSCs with the ability to reconstitute bone marrow
within this fraction [12, 13]. For differentiation and functional
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research involving murine HSCs, a variety of markers are
commonly used to identify or isolate HSCs. In general, murine
HSCs do not express lineage-specific markers (Lin–) and are
positive for c-kit (CD117+ or c-Kit+) and stem cell antigen-1
(Sca-1+). More recently, the HSC population was further
clarified to include the markers CD150 and CD48, and as a
result, this population was defined by the marker profile
Lin–c-Kit+Sca-1+CD48–CD150+ [14–16].

In a previous study, we described the active regulatory
effects of Rg1 on the proliferation, differentiation, senes-
cence, and apoptosis of mesenchymal stem cells (MSCs)
[17]. Here, HSCs, a heterogeneous adult stem cell population
that completely differs from MSCs, were analyzed and syste-
matically reviewed. We used bioinformatics methods to ana-
lyze the potential molecular pharmacological role of Rg1 in
HSC/HPC regulation and reviewed the literature to summa-
rize the mechanisms through which Rg1 activates HSC
proliferation and differentiation and its antiaging effects in
HSCs/HPCs.

2. Prediction of Potential Rg1 Targets in HSCs/
HPCs Based on a Bioinformatics Analysis

The molecular structure of Rg1 from PubChem was ana-
lyzed to identify putative targets of Rg1, and the TargetNet
and SwissTargetPrediction platforms were also used to pre-
dict putative targets of the ginsenoside Rg1 [18, 19]. A com-
prehensive search identified 723 putative targets (623 from
TargetNet and 100 from SwissTargetPrediction) of Rg1
(Supplementary Materials 1 and 2). Furthermore, the top
20 targets (10 from TargetNet and 10 from SwissTargetPre-
diction) with relatively high probability among the putative
targets were pooled and used to predict associated diseases
that may be regulated by Rg1 (analyzed by DisGeNET using
the Metascape platform [20]). The results showed that graft-
versus-host disease (GVHD) is the top putative targeted dis-
ease that may be regulated by Rg1 (Figure 1(b)). This finding
suggests that Rg1 could be used as a potential monomeric
drug to reduce GVHD and that Rg1 could further improve
the success rate of HSC transplantation.

To perform an interactive bioinformatics analysis of the
relationships between HSC proliferation and migration and
Rg1, we analyzed the molecular functions of Rg1 through a
metaenrichment of pathway. Genes that may be related to
HSC proliferation or migration were analyzed using the
Comparative Toxicogenomics Database, and we identified
49 genes associated with HSC proliferation and 23 genes
(after removing repetition) associated with HSC migration
(Supplementary Materials 3 and 4). A metaenrichment anal-
ysis of Rg1 and HSC targets was performed using the Metas-
cape platform, and the results showed that G protein-
coupled receptor binding was enriched in the effects of Rg1
on HSC proliferation, whereas integrin binding and protein
homodimerization activity were enriched in the effects of
Rg1 on HSC migration (Figure 2).

In addition, we used bioinformatics methods to analyze
the potential molecular biological functions of Rg1 during
the process of HSC or HPC differentiation. Putative targets
of HSC or HPC differentiation were obtained using the
Comparative Toxicogenomics Database. A total of 183 and
359 genes (after removing repetition) related to HSC and
HPC differentiation, respectively, were identified (Supple-
mentary Materials 5 and 6). The results of the metaenrich-
ment analysis of pathways using the Metascape platform
showed that transcription factor binding and endopeptidase
activity are enriched molecular functions in HSC differenti-
ation that may be regulated by Rg1. Moreover, protein
domain-specific binding was found to be an additional
molecular function that may be regulated by Rg1 during
HPC differentiation (Figure 3).

Interestingly, the use of JVenn to visualize the specific tar-
gets through which Rg1 regulates HSCs [21] revealed that
angiotensin-converting enzyme (ACE, GeneID: 1636) was
the only overlapping gene through which Rg1 regulates HSC
proliferation and HSC/HPC differentiation (Figure 4). We
then used molecular docking to verify the interaction between
Rg1 and ACE. Briefly, the crystal structures of putative targets
were obtained from the Protein Data Bank, and AutoDock
Tools 1.5.6-Vina software was used for the analysis of binding
ability and sites. Additionally, PyMOL was utilized to visualize
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Figure 1: Molecular structure of Rg1 and the diseases that may be targeted by Rg1. (a) Molecular structure of ginsenoside Rg1. (b) GVHD is
the top putative disease targeted by Rg1, as shown by an analysis using the Metascape platform.
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the interaction between Rg1 and the ACE peptide chain. The
results showed that several hydrogen bonds may form
between Rg1 and ACE. Specifically, the use of the minimum
binding energy (affinity: -13.0 kcal/mol) in the docking analy-
sis revealed that hydrogen bond formed between Rg1 and
threonine in chain A of ACE (Figure 4).

Furthermore, the signal pathways and molecular mecha-
nism in the bioinformatics results provide some novel
research directions and may be worth further exploration
in in vitro/in vivo experiments. All the databases used in
the study are listed in Supplementary Material 7.

3. A Review of the Literature Reveals That Rg1
Regulates HSC Proliferation, Differentiation,
and Migration

HSCs differentiate into myeloid progenitor cells and pro-
lymphoid progenitor cells in the bone marrow to drive bone

marrow hematopoiesis [11, 22]. A previous study found that
Rg1 can regulate calcium-sensing receptor (CaSR) to
increase the number of Lin–Sca-1+c-Kit+ HSCs and lym-
phoid CD3+ cells in the bone marrow and peripheral blood
of CY-induced myelosuppressed mice and thereby restores
bone marrow function [23]. Interestingly, an analysis of
the 9 overlapping target genes through which Rg1 regulates
HSC differentiation using the Metascape platform revealed
that the calcium signaling pathway was the key KEGG path-
way through which Rg1 regulates HSC differentiation
(Figure 5(a)). This consistent finding confirms that the
CaSR-mediated calcium signaling pathway may be a crucial
target through which Rg1 regulates HSC differentiation.

In addition, some studies have shown that Rg1 improves
the hematopoietic activity of the bone marrow through
extramedullary hematopoiesis. Cyclophosphamide (CY)
can cause bone marrow cytotoxicity, leading to bone
marrow suppression and triggering extramedullary
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Figure 2: Metaenrichment analysis of the molecular effects of Rg1 on HSC proliferation or migration. (a) Ring summary shows overlapping
genes related to Rg1 and HSC proliferation at the gene level (the purple line shows the overlapping genes; the blue line shows a functional
correlation between genes). (b) Heatmap of terms enriched in the list of genes targeted by Rg1 to regulate HSCs. The terms are colored based
on the p value. (c) Ring summary of overlapping genes through which Rg1 regulates HSC migration at the genetic level. (d) Heatmap of
terms enriched in the genes targeted by Rg1 to regulate HSC migration. The terms are colored based on the p value.
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hematopoiesis [24, 25]. Extramedullary hematopoiesis is
characterized by the presence of pluripotent HPCs, includ-
ing erythroid lineage cells, myeloid lineage cells, and mega-
karyocytes, in the spleen and liver [26]. Liu et al. [27]
found that Rg1 treatment could effectively reduce the weight
of the spleen of CY-stimulated mice and reduce the absolute
number of c-Kit+ HSCs in the spleen and that these effects
are not caused by apoptosis, which suggests that Rg1 allevi-
ates CY-induced extramedullary hematopoiesis in the
spleen. Further research shows that Rg1 could upregulate
the proliferative activity of c-Kit+ HSCs in the spleen but
not in the bone marrow of CY-stimulated mice. Moreover,
Rg1 increases the number of c-Kit+/CD45+ HSCs in the
peripheral circulatory system. Most importantly, the effect
of Rg1 on HSCs in the bone marrow and peripheral blood
is not observed in splenectomy- and CY-induced mice.
These results systematically indicate that Rg1 improves
CY-induced myelosuppression by activating HSC prolifera-

tion in the spleen, particularly by allowing the homing of
HSCs from the spleen through the circulatory system to
the bone marrow [27]. In addition, the selective regulation
of HSCs in the spleen but not in the bone marrow also sug-
gested that the “spleen-bone marrow” axis homing of HSCs
plays a main/crucial role in Rg1 relieving extramedullary
hematopoiesis and myelosuppression. Moreover, quiescent
HSCs in bone marrow HSC “niche” can maintain hemato-
poietic homeostasis [28]. In the above study, after the new
“niche” formed, the homing HSCs derived from the spleen
may also serve as quiescent HSCs and further benefit bone
marrow hematopoietic homeostasis.

Interestingly, whether Rg1 directly activates and pro-
motes the proliferation of quiescent HSCs in the bone mar-
row niche was an open question. First, CD34+ cells account
for only 1.5% of human bone marrow mononuclear cells,
and murine Lin-Sca-1+c-Kit+ HSCs account for less than
1% of bone marrow cells. The treatment of mice with CY
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Figure 3: Metaenrichment analysis of the molecular effects of Rg1 on HSC/HPC differentiation. (a) Ring summary of overlapping genes
through which Rg1 regulates HSC differentiation at the genetic level (the purple line shows overlapping genes; the blue line shows a
functional correlation between genes). (b) Heatmap of terms enriched in the genes targeted by Rg1 to regulate differentiation. The
terms are colored based on the p value. (c) Ring summary of overlapping genes through which Rg1 regulates HPC differentiation at
the genetic level. (d) Heatmap of terms enriched in the genes targeted by Rg1 to regulate HPCs differentiation. The terms are colored
based on the p value.
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results in the appearance of a large amount of vacuole-like
degradation in the bone marrow cavity and a sharp decrease
in the number of bone marrow cells (including MSCs) [23,
29]. In this context, very few HSCs remain in the bone mar-
row, and the effect of Rg1 on enhancing the mobilization of
extramedullary hematopoiesis far exceeds the effect of Rg1
on the mobilization of HSCs in the bone marrow. Therefore,
the direct effect of Rg1 on quiescent HSCs in the bone mar-
row may be difficult to observe. Second, the researchers con-
tinuously administered Rg1 (15mg/kg/day) to CY-induced
myelosuppressed mice (splenectomy) for 7 days [27], and
the results showed that Rg1 could not effectively increase
the percentage of bone marrow Lin-Sca-1+c-Kit+ HSCs (no
significant difference), but an increasing trend was observed.
Third, Rg1 could also regulate MSCs to protect HSCs from
D-galactose- (D-gal-) induced damage [30], and the contin-
uous administration of Rg1 for 7 days could not completely
restore the histological morphology of the murine bone mar-
row (vacuolar pathological structures remained in the bone
marrow cavity) [23]. Thus, we infer that the regulatory effect
of MSCs on the hematopoietic microenvironment could be
delayed. Therefore, further investigation of whether Rg1
can activate HSCs in the bone marrow by prolonging the

duration of Rg1 administration to explore the recovery of
bone marrow HSCs in mice with splenectomy is warranted
(Figure 5(b)).

In addition, stromal-derived factor-1 (SDF-1)/C-X-C
chemokine receptor type 4 (CXCR4) is an important signal-
ing molecule in HSC homing to the bone marrow and bone
marrow implantation [31]. Rg1 can regulate the SDF-1α/
CXCR4 axis and plays a regulatory role in the vascular
intima [32]. These findings also suggest that Rg1 promotes
HSC homing from the spleen to the bone marrow cavity
and exerts hematopoietic effects in the bone marrow.

4. Mechanisms Involved in the Attenuation of
HSC Aging by Rg1

Traditionally, aging HSCs gradually lose the potential for
self-renewal and differentiation, and the likelihood of abnor-
mal metabolic cellular functions greatly increases [33]. An
increasing number of studies have shown that inflammation
and chemical or physical factors also cause DNA damage,
which can lead to HSC aging [10, 34, 35]. Excessive D-gal
results in the production of aldohexose and hydrogen perox-
ide via galactose oxidase and promotes the generation of
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Figure 4: Common proteins among putative proteins targeted by Rg1 and proteins related to HSC proliferation, HSC differentiation, and
HPC differentiation. (a) Venn diagram showing that one protein (ACE) was found in all four lists. (b) Three-dimensional schematic
representation showing the molecular docking model, active sites, and binding distances for Rg1 and ACE after the application of
ray tracing.
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oxygen-derived free radicals and superoxide anions, which
results in impairment of the functions of macromolecules
and cells [36, 37]. Rg1 inhibits oxidative stress and reduces
DNA damage, which results in enhancement of the antiag-
ing ability of Sca-1+HSCs/HPCs in a murine model of D-
gal-induced aging, and the effect is related to inhibition of
excessive activation of the Wnt/β-catenin signaling pathway.
The classic Wnt/β-catenin pathway is essential for the regu-
lation of stem cell pluripotency and the determination of cell
fate [38, 39]. When D-gal activates the Wnt/β-catenin path-
way, the Wnt ligand (a secreted glycoprotein that binds to
Frizzled receptors) forms a large cell surface complex with
low-density lipoprotein receptor-related protein (LRP) 5/6.
A previous study found that Rg1 can inhibit D-gal-induced
overactivation of the Wnt/β-catenin signaling pathway.
Rg1 can reduce β-catenin expression and glycogen synthase
kinase 3 beta (GSK3β) phosphorylation in the cytoplasm
and can further reduce the protein expression of β-catenin
in the nucleus via Ras-related C3 botulinum toxin substrate
1 (Rac1) and other factors; in addition, the binding of β-
catenin to the transcription factor TCF-4 in the nucleus is
reduced and ultimately inhibits c-Myc gene expression,

which results in the reduction of β-galactosidase expression
[40] (Figure 6).

A previous study also showed that Rg1 could mediate the
p53-p21-Rb signaling pathway to improve routine blood
index abnormalities caused by lead acetate and alleviate lead
acetate-induced HSC aging and aging-related inflammatory
responses. Lead acetate can cause DNA damage in HSCs
and induce cells to produce γ-H2AX. Rg1 can reduce the
DNA damage-induced increases in p53 transcription and
translation but does not affect the activity of P16, which
results in the amelioration of lead acetate-induced HSC
damage [41]. Studies also found that Rg1 can attenuate
ROS production to improve HSC function in various set-
tings [40, 42–44]. For example, Rg1 can decrease ROS pro-
duction and further increase the ratio of Bcl-2/Bax in the
radiation-induced HSC mitochondrial apoptosis (Figure 6).

Furthermore, Rg1 may inhibit some key genes in the
p16INK4a-Rb, p53-p21Cip/Waf1, and SIRT6/NF-κB signaling
pathways to protect against HSC aging induced by D-gal, t-
BHP, and radiation. The mechanism involves reducing DNA
damage, regulating the cell cycle, adjusting telomerase activity,
and compensating for the HSC telomere length [42, 45–47].
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Figure 5: Relevant bioinformatics data and mechanistic summary of the mechanism through which Rg1 regulates the proliferation,
differentiation, and migration of HSCs. (a) Venn diagram and KEGG pathway enrichment analyses revealed that the calcium signaling
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5. Overview of the Regulation of HPCs and
Mature Blood Cells by Rg1

After HSCs differentiate into multipotent progenitors
(MPPs), they develop into common myeloid progenitors
(CMPs) and common lymphoid progenitors (CLPs), the
classic pathway for the differentiation of HPCs [48].

Ginseng extract affects immune cell functions differently
according to the specific ginsenoside profile, and the immu-
nomodulatory effects of various ginsenoside monomers are
different [49]. For example, Rg1 inhibits TNF-α expression
in THP-1 human leukemia cells, whereas the ginsenoside
Rh1 increases TNF-α expression [50]. An Rg1/Rb1 mixture
and Rg1 exert different effects on IL-6 and TNF-α [49, 51].
These effects are also exhibited by the effect of total ginseno-
sides or Rg1 monomers on dendritic cells (DCs). Total sapo-
nins in ginseng roots can inhibit the maturation of DCs in
the presence of lipopolysaccharide (LPS) [51]. However,
10μg/ml Rg1 can increase CD83, CD80, and HLA-DR
expression, reduce CD14 expression in DCs derived from
human peripheral blood mononuclear cells, and induce
DCs to secrete cytokines (IL-6, TNF-α, and IL-1β) and che-
mokines (such as IL-8 and IP-10) [52]. Rg1 can stimulate the
proliferation of human granulocyte-macrophage progenitors
(GMPs) [53]. GMPs can develop into monocytes and myelo-
blasts. In LPS-activated macrophages, 10μM Rg1 can also
increase the TNF-α levels and decrease the IL-6 protein
levels, and these effects are related to regulation of the NF-
κB and PI3K/Akt/mTOR pathways [54]. Moreover, 50μM
Rg1 can inhibit RAW264.7 macrophage apoptosis induced
by serum deprivation by activating autophagy, and the
AMPK/mTOR pathway is one of the signaling pathways
associated with the antiapoptotic effects of Rg1 [55]. Rg1
has no obvious effect on megakaryocytes in the spleen of
CY-induced mice [27] but can inhibit platelet activation by
inhibiting the ERK pathway and attenuate arterial thrombo-
sis [56]. In addition, Rg1 can reduce the infiltration of eosin-

ophils and mast cells in a mouse model of allergic
rhinitis [57].

CLPs comprise another important branch of developing
HPCs that have the potential to differentiate and develop
into T cells, B cells, and natural killer (NK) cells [58]. Rg1
increases the proportion of T helper (Th) cells among total
T cells and increases NK cell activity in the mouse spleen
[5]. Specifically, Rg1 directly enhances the Th cell response
without the participation of antigen-presenting cells (APCs)
by increasing the IL-4 and IL-2 levels and reducing the IFN-
γ levels to reduce the T helper type 1 (Th1) cell population
and increase the T helper type 2 (Th2) cell population in
the spleen [59]. In a murine sepsis model, Rg1 increases
the neutrophil count in the abdominal cavity and inhibits
lymphocyte apoptosis in the thymus and spleen [60].

In total, various in vitro cell stimulation experiments and
in vivo animal disease models have shown that Rg1 could
regulate the development of myeloid and lymphoid progen-
itor cells and affect the activity and secretion of mature
blood cells, and the progeny of HPCs has also been shown
to regulate HPC behavior, which suggests that Rg1 may
effectively regulate both innate and adaptive immunity
(Figure 7).

6. Rg1 May Indirectly Regulate the HSC Niche

Niches with various functions exist in different areas of the
bone marrow. For example, the endosteal niche can support
the quiescence and maintenance of HSCs, whereas the arte-
riolar niche maintains quiescent HSCs, and the sinusoidal
niche supports the cycling of HSCs [61, 62]. New studies
have also indicated that HSCs in perisinusoidal niches are
protected from aging [63]. Moreover, MSCs, the vasculature,
and nerve fibers can maintain quiescent HSCs and/or con-
trol HPC differentiation through cell-to-cell communication
within the niche [64]. Importantly, Rg1 may be able to
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regulate MSCs, endothelial cells, nerve cells, and other cells
in the niche to support HSC quiescence or development.

MSCs are critical niche constituents of the bone marrow
and are major contributors to many currently known niche
factors, such as CXCL12, SDF, and IL-7 [65]. Rg1 can
effectively regulate MSC proliferation, differentiation, senes-
cence, and apoptosis [17]. Furthermore, studies on bone
marrow MSCs in aging D-gal rats have shown that Rg1
could directly enhance the antioxidant and anti-
inflammatory capabilities of bone marrow MSCs, improve
the microenvironment, and further prevent HSC senescence
[30, 66]. These results show that Rg1 could prevent HSC
senescence by regulating MSCs in the bone marrow niche.

Vascular endothelial cells play roles in supporting the
transport of HSCs [67], and endothelial-related signals
(e.g., Notch ligands and E-selectin) might regulate HSC
expansion and bone marrow hematopoiesis after myelosup-
pressive stress [68]. Rg1 can induce vascular endothelial
growth factor expression in human endothelial cells and
promote proliferation, migration, adhesion, and vasculogen-
esis in vitro [69, 70]. These results indicate that Rg1 may
expand HSCs by regulating endothelial cells in the HSC
niche.

HSCs mostly exist in a state of quiescence, and alter-
ations in the metabolism of quiescent HSCs help these cells
survive for extended periods of time in hypoxic environ-
ments [71]. The stimulation of quiescent HSCs by cell dam-
age initiates active division. The dysregulation of these
transitions can lead to stem cell exhaustion or the gradual
loss of active HSCs. Studies have shown that the adrenergic
nerves of the sympathetic nervous system mobilize HSCs
and promote the recovery of hematopoietic function in the

niche; moreover, adrenergic nerve-related Schwann cells
may contribute to the quiescence of HSCs through TGF-β
signaling [72, 73]. Rg1 promotes the proliferation of primary
Schwann cells and the expression of neurotrophic factors
while supporting the resistance of these cells to hydrogen
peroxide-induced oxidative damage [74, 75]. This finding
suggests that Rg1 may maintain quiescent HSCs by regulat-
ing Schwann cells.

Bone marrow adipocytes can act as negative regulators of
the hematopoietic microenvironment [76]. Rg1 inhibits the
development and maturation of adipocytes by activating C/
EBP homologous protein 10 in 3T3-L1 cells [77]. This
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Figure 7: Rg1 regulates HPCs and mature blood cells in the myeloid/lymphoid cell lineage. HSC: hematopoietic stem cell; MPP: multipotent
progenitor; CMP: common myeloid progenitor; GMP: granulocyte-macrophage progenitor; LPS: lipopolysaccharide; mφ: macrophage; DC:
dendritic cell; CLP: common lymphoid progenitor; NK: natural killer cell; Th: T helper.
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Figure 8: Rg1 may regulate MSCs, endothelial cells, neurocytes,
and adipocytes in the bone marrow niche and thus indirectly
maintain HSCs.
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finding suggests that Rg1 may also antagonize bone marrow
adipogenesis and thereby benefits the hematopoietic micro-
environment and protects HSCs.

In summary, in the bone marrow niche, Rg1 may allevi-
ate HSC senescence through MSCs, regulate endothelial cells
to expand HSCs, activate Schwann cells to maintain quies-
cent HSCs, and protect HSCs by inhibiting the formation
of adipocytes (Figure 8). However, the relevant direct evi-
dence must be verified by experimental data.

7. Conclusions and Remarks

Through the use of bioinformatics and molecular docking
methods to analyze the molecular pharmacological mecha-
nism through which Rg1 regulates HSCs/HPCs, we pre-
dicted that GVHD is a possible disease target of Rg1
therapy and that ACE is a potential target protein through
which Rg1 regulates the proliferation and differentiation of
HSCs/HPCs. A review of the literature also showed that
Rg1 may regulate HSC proliferation and can activate extra-
medullary HSCs to migrate to the bone marrow. These
results suggest a new strategy for HSC expansion in vitro
and a new method for improving the HSC homing rate
and alleviating GHVD in HSC transplantation in vivo.
Moreover, the ability of Rg1 to alleviate HSC aging and reg-
ulate HPC development suggests that Rg1 exerts direct
effects on the maintenance of HSCs/HPCs. However,
whether Rg1 can promote the proliferation of HSCs without
affecting their differentiation in vitro and whether Rg1 can
enhance the HSC homing rate while reducing GVHD during
HSC transplantation in vivo are worth further comprehen-
sive exploration.
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