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Abstract

Background: The epidermis is a continuously regenerating tissue maintained by a balance 

between proliferation and differentiation, with imbalances resulting in skin disease. We have 

previously found that in mouse keratinocytes, the lipid-metabolizing enzyme phospholipase D2 

(PLD2) is associated with the aquaglyceroporin, aquaporin 3 (AQP3), an efficient transporter of 

glycerol. Our results also show that the functional interaction of AQP3 and PLD2 results in 

increased levels of phosphatidylglycerol (PG) in response to an elevated extracellular calcium 

level, which triggers keratinocyte differentiation. Indeed, we showed that directly applying PG can 

promote keratinocyte differentiation.

Objective: We hypothesized that the differentiative effects of this PLD2/AQP3/PG signaling 

cascade, in which AQP3 mediates the transport of glycerol into keratinocytes followed by its 

PLD2-catalyzed conversion to PG, are mediated by protein kinase CβII (PKCβII), which contains 

a PG-binding domain in its carboxy-terminus. Method: To test this hypothesis we used quantitative 

RT-PCR, western blotting and immunocytochemistry.

Results: We first verified the presence of PKCβII mRNA and protein in mouse keratinocytes. 

Next, we found that autophosphorylated (activated) PKCβII was redistributed upon treatment of 

keratinocytes with PG. In the unstimulated state phosphoPKCβII was found in the cytosol and 

perinuclear area; treatment with PG resulted in enhanced phosphoPKCβII localization in the 

perinuclear area. PG also induced translocation of phosphoPKCβII to the plasma membrane. In 
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addition, we observed that overexpression of PKCβII enhanced calcium- and PG-induced 

keratinocyte differentiation without affecting calcium-inhibited keratinocyte proliferation.

Conclusion: These results suggest that the PG produced by the PLD2/AQP3 signaling module 

may function by activating PKCβII.

Keywords

Aquaporin-3 (AQP3); Epidermis; Keratin-10; Phospholipase D2 (PLD2); Skin; Kinase

1. INTRODUCTION

The epidermis forms the mechanical and water permeability barrier of the skin, allowing 

terrestrial existence and protecting from various environmental insults. The predominant 

cells comprising the epidermis are keratinocytes, which form a stratified epithelium. At the 

basement membrane, the basal keratinocytes continuously proliferate to replace damaged 

cells and those sloughed to the surroundings. As they move upwards into the upper 

epidermal layers, the keratinocytes growth arrest and differentiate, expressing different sets 

of genes and proteins as they become more and more differentiated. A great deal is known 

about the signals that regulate proliferation and differentiation, including the fact that 

elevated extracellular calcium concentrations trigger keratinocyte differentiation [1], 

Nevertheless, a complete understanding of these processes, and the signaling molecules that 

modulate them, requires further study.

We have previously shown that the lipid-metabolizing enzyme phospholipase D2 (PLD2) 

and the water and glycerol channel aquaporin-3 (AQP3) physically and functionally 

associate in keratinocytes to produce phosphatidylglycerol (PG) [2, 3], PG levels are 

increased biphasically in response to increasing concentrations of calcium, with a maximal 

effect at approximately 125μM [3], This dose response is similar to that reported for 

calcium-induced keratinocyte differentiation [4], suggesting the possibility that the PLD2/

AQP3/PG signaling module might mediate keratinocyte differentiation. This idea is 

supported by our finding that manipulation of this module inhibited proliferation and 

promoted differentiation of keratinocytes [5], In particular, treatment of keratinocytes with 

liposomes formed from egg-derived PG promoted the differentiation and inhibited the 

proliferation of rapidly growing keratinocytes [5, 6], The mechanism by which PG exerted 

this effect, however, is unclear.

The protein kinase C (PKC) enzymes comprise a family of enzymes with 10 isoforms that 

are differentially regulated. The classical (or conventional) PKC isoforms, which include 

PKCα, PKCβI, PKCβII and PKCγ, require acidic phospholipids and are activated by 

increased diacylglycerol and calcium levels triggered upon phosphoinositide hydrolysis 

initiated by receptor engagement by various hormones, growth factors and other ligands. 

Different PKC isoforms are encoded by separate genes except for PKCβI and PKCβII, 

which represent splice variants of mRNA transcribed from a single gene; PKCβI and 

PKCβII differ in their C-terminal V5 regions. In PKCβII, this region is the location of the 

PG-binding domain and contains the molecular determinant necessary for nuclear 

translocation and enzyme activation [7, 8], In HL60 leukemia cells, PG in the nuclear 
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membrane selectively stimulates PKCβII activity 3–6 fold above the level achieved in the 

presence of optimal concentrations of calcium, diacylglycerol and phosphatidylserine [9], In 

fibroblasts, entry into mitosis is dependent upon activation of PKCβII by PG [10], 

Furthermore, the sequence in PKCβII responsible for binding to PG has been localized to 

the 13 amino acids in the C-terminus unique to PKCβII [7],

We hypothesized that PKCβII might serve as an effector enzyme for PG in keratinocytes to 

promote early keratinocyte differentiation. We tested this idea by examining the 

redistribution of phospho-PKCβII in keratinocytes treated with a moderately elevated 

calcium concentration (which maximally increases PG levels [3]) and PG liposomes. We 

also assessed the effect of overexpression of PKCβII on the calcium-induced inhibition of 

proliferation and stimulation of keratin 10 levels. We provide evidence for PKCβII activation 

in response to an elevated extracellular calcium concentration and PG liposomes as well as 

the ability of PKCβII to promote early keratinocyte differentiation.

2. METHODS

2.1. Culture of Primary Mouse Keratinocytes

Primary murine epidermal keratinocytes were prepared from 1 to 3 day old neonatal ICR 

CD-1 outbred mice as described in [11]. Treatment of mice conformed to policies in the 

Guide for the Care and Use of Laboratory Animals and monitored by the Institutional 

Animal Care and Use Committee (IACUC) of Augusta University. Harvested keratinocytes 

were plated at a density of 25,000 cells/cm2 and incubated overnight at 37°C with 5% 

carbon dioxide in Plating Medium composed of calcium-free minimum essential medium 

alpha (MEMα) supplemented with 2% dialyzed fetal bovine serum, 25μM CaCl2, 5ng/mL 

epidermal growth factor, 2mM glutamine, ITS+, 100U/mL penicillin, 100μg/mL 

streptomycin and 0.25μg/mL fungizone as in [12], After approximately 24 hours, Plating 

Medium was replaced with either a laboratory-prepared serum-free keratinocyte medium 

(SFKM) or commercially purchased Keratinocyte-serum free medium (K-SFM) (Gibco, 

Gaithersburg, MD). Initial experiments used SFKM containing 25μM CaCl2, 90μg/mL 

bovine pituitary extract, ITS+, 5ng/mL epidermal growth factor, 2mM glutamine, 0.05% 

BSA, 100U/mL penicillin, 100μg/mL streptomycin and 0.25μg/mL fungizone as described 

by Griner et al. [12], Our laboratory subsequently switched to commercial K-SFM 

supplementing pre-prepared K-SFM with 50μM CaCl2, 2.5μg recombinant human EGF and 

25mg bovine pituitary extract per the supplier’s recommendations [13], Medium was 

replaced every 1–2 days.

2.2. Preparation of PG Liposomes

Liposomes were prepared from egg-derived PG (Avanti Polar Lipids, Alabaster, AL). 

Briefly, PG in organic solvent was distributed into amber glass vials as 1mg aliquots, the 

solvent evaporated with nitrogen gas and the lipid stored under nitrogen at −20°C until use. 

For experiments, 0.5 mL serum-free medium was added to the amber vial to hydrate the 

lipid film followed by bath sonication using a Branson Sonifier with a microprobe and a cup 

horn.
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2.3. RT-PCR and Quantitative RT-PCR Analysis

Cultured primary mouse keratinocytes, epidermis or skin were collected in 0.5–1mL of 

Trizol and RNA was extracted according to the manufacturer’s protocol. The epidermis was 

isolated following overnight incubation of neonatal mouse skin in 0.25% trypsin in Hank’s 

buffered saline solution at 4°C to allow the enzyme to permeate along the dermal-epidermal 

junction of the skin. After a brief incubation at 37°C to promote trypsin proteolysis, the 

epidermis was manually separated from the dermis using forceps. Total skin was extracted 

immediately after harvest. Mouse brain tissue was also collected and immediately RNA-

extracted. First-strand cDNA synthesis was performed using Thermoscript RT-PCR System 

and oligo(dT) nucleotides (Sigma-Aldrich, St. Louis, MO) according to the manufacturer’s 

protocol. RT-PCR was performed using JumpStart RedTaq reaction mix (Sigma-Aldrich) 

and the primers for PKCβII and GAPDH (mPKCβ forward: 5’-

GCTGACAAGGGCCCAGCCTC-3’; reverse: 5’-GTGTGGTTCCGTGCCGCAGAG-3’ and 

mGAPDH forward: 5’-GCGGCACGTCAGATCCA-3’; reverse: 5’ 

CATGGCCTTCCGTGTTCCCTA-3’), also according to the manufacturer’s protocol. The 

reaction parameters consisted of heat activation at 94°C for 2 minutes followed by 35 cycles 

of denaturation at 94°C for 15 seconds, annealing at 50°C for 30 seconds and elongation at 

72°C for 30 seconds. The amplified product was resolved on a 1% TAE agarose gel. 

Quantitative RT-PCR was performed using Taqman probes (ThermoFisher Scientific, 

Waltham, MA) and analyzed by the delta-delta Ct method as described previously [13].

2.4. Western Blot Analysis

Near-confluent cultures of keratinocytes were incubated in SFKM (25μM CaCl2) or K-SFM 

(50μM CaCl2) alone or with medium containing the desired treatment, elevated calcium 

(125μM CaCl2) or 100μg/mL PG for 24 hours. Cells were then harvested in lysis buffer, 

with 30μL/cm2 of heated buffer (containing 0.1875M Tris-HCl, pH 8.5, 3% SDS and 1.5mM 

EDTA) added to each well. Protein concentrations were determined using a BioRad protein 

assay with BSA as the standard. After protein determination, 3X sample buffer (containing 

30% glycerol, 15% β-mercaptoethanol and 1% bromophenol blue) was added to each 

sample to constitute Laemmli buffer. Total protein was also extracted from mouse brain, 

homogenized epidermis and freshly isolated keratinocytes after shearing using an 18-gauge 

needle. Samples were stored at −20°C until analysis at which time protein samples were 

heated to near boiling and equal amounts were loaded onto 8% SDS polyacrylamide gels, 

separated by electrophoresis and transferred to Immobilon-FL transfer membranes 

(Millipore, Billerica, MA). After washing and blocking, the membranes were incubated 

overnight with primary antibody [recognizing PKCβII (Abeam, Cambridge, MA), pPKCβII 

(pSer660, Epitomics, Burlingame, CA), 1:10,000; K10 (Covance, Denver, PA), 1:15,000; and 

actin (Sigma-Aldrich or Santa Cruz, Santa Cruz, CA), 1:15,000] followed by secondary 

AlexaFluor florescent antibodies (Invitrogen, Carlsbad, CA or Licor, Lincoln, NE, 

1:10,000), all diluted in Odyssey blocking buffer containing Tween-20 (LiCor). 

Immunoreactive bands corresponding to the proteins of interest were visualized via an 

Odyssey®SA infrared imaging system from Li-Cor and quantified with the internal software 

according to the manufacturer’s instructions. The data are reported as means ± SEM after 

normalization to actin levels.

Bailey et al. Page 4

Open Dermatol J. Author manuscript; available in PMC 2020 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.5. [3H]Thymidine Incorporation into DNA

DNA proliferation assays were performed on primary mouse keratinocytes overexpressing 

PKCβII or empty vector incubated in SFKM containing 25μM or 125μM calcium. Briefly, 

cells were transfected as previously described and exposed to experimental treatments for 24 

hours. The cells were then incubated with 1μCi/mL [3H]thymidine (Moravek Biochemicals, 

Brea, CA) for 1 hour at 37°C. Reactions were terminated and macromolecules precipitated 

with cold trichloroacetic acid and the cells solubilized in 0.3M sodium hydroxide. [3H] 

Thymidine incorporation was measured in an aliquot using Ecolite scintillant (MP 

Biomedicals, Santa Ana, CA) and a Beckman Coulter LS 6500 multi-purpose scintillation 

counter (Brea, CA).

2.6. Immunocytochemistry

For immunocytochemistry PKCβII-specific and phosphoPKCβII-specific antibodies were 

generously provided by Dr. Denise Cooper (University of South Florida, Tampa, FL) [14]. 

The antibody recognizing PKCβII was raised against residues 655 to 671 (the C-terminus 

specific to PKCβII), and the phospho-specific antibody recognizes PKCβII phosphorylated 

on serine 660 of the C-terminus (residues 657–673) [14]. Primary murine keratinocytes were 

plated on glass BD BioCoat fibronectin-coated slides and at near-confluence were incubated 

in SFKM (25μM CaCl2) or SFKM containing 100μg/ml PG at 37°C. After the desired 

incubation period, cells were washed with PBS and fixed in 4% paraformaldehyde. After 

permeabilization in 0.2% Triton X-100, the slides were blocked in buffer containing 10% 

goat serum and 1% BSA in PBS and incubated in buffer containing either phospho-PKCβII 

(1:500) or keratin-10 (Abeam, 1:250) overnight. The slides were then incubated in Cy3-

conjugated secondary goat anti-rabbit IgG antibody (1:150) in 10% goat serum at room 

temperature and mounted with ProLong Antifade with DAPI (Invitrogen). Staining was 

visualized by multiphoton microscopy with a Zeiss LSM 510 confocal laser scanning 

microscope with a Meta System equipped with a Coherent Mira 900 tunable Ti:Sapphire 

laser for multi-photon excitation at 488nm, 543nm and 760nm wavelengths (Carl Zeiss 

Microscopy, Germany).

2.7. Keratinocyte Transfection

Primary mouse keratinocytes were transfected with wild-type PKCβII plasmid in a pcDNA3 

vector backbone (or the vector plasmid) via AMAXA nucleofection (Lonza, Cologne, 

Germany), using an Amaxa Nucleofector Kit for primary endothelial cells as in [15] 

according to the manufacturer’s instructions. The authors reported 40–60% transfection 

efficiency with this method [15]. The PKCβII plasmid was a generous gift from Dr. Lan Ko, 

(Augusta University). Transfected cells were then incubated in RPMI medium containing 

10% fetal bovine serum and antibiotic/antimycotic (100U/mL penicillin, 100μg/mL 

streptomycin and 0.25μg/mL fungizone) for 20 minutes, plated in Plating Medium 

(described above) and allowed to attach overnight. After 24 hours the plating medium was 

replaced with K-SFM (containing 50μM CaCl2).
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2.8. Statistics

All experiments were performed independently a minimum of three times. Values were 

analyzed for statistical significance by analysis of variance or repeated measures analysis of 

variance with a Student-Newmann-Keuls or Dunn’s post-hoc test using Prism (GraphPad 

Software, San Diego, CA). All quantitative data were expressed in the form of bar graphs, 

with the bars representing mean ± standard error ofthe mean (SEM).

3. RESULTS

3.1. PKCβII is Expressed in Mouse Keratinocytes

PKCβII is known to bind to and be activated by PG to trigger cell cycle progression in 

human leukemia cells [8], However, although multiple PKC isozymes have been identified 

in keratinocytes, there has been some debate regarding the presence of PKCβ in these cells 

[16 – 19], with an initial report failing to detect PKCβ in mouse keratinocytes using northern 

analysis [16]. Two subsequent studies found PKCβ in human skin [17], mouse keratinocytes 

[18] and mouse skin [19]. To resolve this issue, we first sought to determine if PKCβ could 

be detected by semi-quantitative RT-PCR using mouse brain as a positive control. PKCβ was 

found to be transcribed in primary mouse keratinocytes (Fig. 1A). Although the mRNA was 

much less abundant than in brain (Fig. 1B), quantitative RT-PCR using Taqman assays 

indicated that the cycle threshold was within a detectable range (approximately 30 cycles). 

The difference in the amount of cDNA amplified and separated also likely explains the slight 

apparent differences in molecular weight of the PKCβ band observed in brain and 

keratinocytes with semi-quantitative RT-PCR (Fig. 1A) since greatly different amounts of 

nucleic acid can separate slightly differently by electrophoresis. We next sought to determine 

whether the PKCβII protein was expressed using a PKCβII-specific antibody obtained from 

Dr. Denise Cooper [14]. This antibody was raised against residues 655 to 671 (the C-

terminus specific to PKCβII). Using this antibody it was shown that keratinocytes also 

express PKCβII protein (Fig. 1C). To ensure that expression of the enzyme was not an 

artifact of culture, we also demonstrated PKCβII protein expression in freshly isolated 

keratinocytes and epidermis (Fig. 1D), as well as mRNA expression in total skin (Fig. 1B). 

Therefore, we hypothesized that PKCβII might be an effector enzyme for PG in 

keratinocytes.

3.2. PKCβII is Redistributed Upon Provision of PG

We have shown that PG can inhibit proliferation and promote differentiation of 

keratinocytes, and based on the literature demonstrating that PKCβII is a PG-activated 

enzyme, we hypothesized that stimulation of PKCβII activity by PG may be the mechanism 

by which the lipid signal exerts its effects. Phosphorylation and translocation to cell 

membranes are considered hallmarks of PKC activation [20], We utilized 

immunocytochemical techniques to visualize the cellular localization of phosphorylated/

activated PKCβII upon treatment with PG, again using an antibody provided by Dr. Cooper 

recognizing PKCβII phosphorylated on serine 660 of the C-terminus (residues 657–673). 

Primary mouse keratinocytes plated on collagen-coated slides were subjected to 

immunohistochemical analysis. Under basal conditions, autophosphorylated PKCβII 

(phosphoPKCβII) was found diffusely throughout the entire cell with increased staining 
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around the perinuclear area (Fig. 2, left panel). A 1h treatment with PG (100μg/mL egg-

derived PG in the form of liposomes) increased staining in the perinuclear area (Fig. 2A, 

right panel) compared to the control (Fig. 2B, left panel). In addition, PG induced 

localization of PKCβII in the plasma membrane (Fig. 2B, right panel, arrows). Since 

PKCβII requires phospholipids for its activity, translocation to the membrane is thought to 

mark activation of the enzyme [21, 22], These results suggest that, as in leukemia cells [7 – 

9], PG activates PKCβII. Treatment of keratinocytes with PG followed by western analysis 

with the antibody recognizing phosphoPKCβII also showed a trend towards enhanced 

autophosphorylation (activation) of PKCβII (to a value of 1.32 ± 0.13-fold over the control 

of 1.0; n=6), but the increase did not quite achieve statistical significance (p=0.054).

3.3. A Moderately Elevated Extracellular Calcium Concentration Induces the 
Autophosphorylation/ Activation of PKCβII

We have previously observed an ability of moderately elevated extracellular calcium 

concentrations to increase PG levels in keratinocytes [3], suggesting the possibility that PG-

activated PKCβII may play a role in calcium-induced differentiation. To explore this 

possibility we over-expressed PKCβII and first assessed the effect of calcium on the 

autophosphorylation/activation of this enzyme. Primary mouse keratinocytes were 

transfected with either an empty vector or PKCβII plasmid vector, as described in the 

Materials and Methods section, and then cultured in the presence or absence of an elevated 

extracellular calcium concentrations. Total and autophosphorylated PKCβII levels were 

increased in mouse keratinocytes transfected with PKCβII plasma vector, and 

autophosphorylation of this overexpressed PKCβII was stimulated in response to elevated 

extracellular calcium (125μM) (Figs. 3A–C).

3.4. Over-Expression of PKCβII has no Effect on Calcium-Induced Inhibition of 
Proliferation but Increases the Levels of Keratin-10, a Marker of Early Keratinocyte 
Differentiation, in Primary Mouse Keratinocytes

To determine whether this over-expression of PKCβII affected the ability of elevated 

calcium levels to inhibit keratinocyte proliferation, we treated vector- and PKCβII-

transfected cells with medium containing basal calcium levels or a moderately elevated 

calcium concentration. Proliferation was assessed by measuring the incorporation of 

[3H]thymidine into the DNA of dividing cells. In cells expressing basal, physiological levels 

of PKCβII, that is, transfected with empty vector plasmid, stimulation with elevated 

extracellular calcium resulted in calcium-induced inhibition of proliferation (Fig. 3D), as 

described elsewhere [23], A similar inhibition was observed in the PKCβII-transfected cells, 

although this effect did not achieve statistical significance, suggesting that this enzyme 

likely does not mediate the anti-proliferative effect of an elevated calcium concentration.

Expression levels of keratin-10, a marker of keratinocyte differentiation, were also examined 

in cells overexpressing PKCβII. There was no change in the keratin-10 expression of 

keratinocytes over-expressing PKCβII and cultured under basal conditions. PKCβII over-

expression in combination with an elevated extracellular calcium concentration, however, 

resulted in a substantial up-regulation in keratin-10 expression, with p<0.01 versus all other 

conditions (Fig. 4). These results suggest that PKCβII alone is not sufficient to induce an 
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increase in keratin-10 expression, but instead works in concert with calcium to promote 

early differentiation, but not growth arrest, in primary mouse keratinocytes.

3.5. Over-Expression of PKCβII Affects the Pattern of Keratin-10 Distribution and Results 
in an Altered Morphology of Cells Grown in the Presence of Phosphatidylglycerol

Our previous findings suggested that PG stimulates keratinocyte differentiation and inhibits 

proliferation [5, 6]; therefore, we next examined the morphological effect of PG on 

keratinocytes over-expressing PKCβII. Mouse keratinocytes were again transfected with 

either PKCβII or empty vector and were then cultured on collagen-coated slides in medium 

containing basal calcium with or without 100μg/ml egg PG. The cells were then fixed, 

permeabilized and stained with an antibody specific for keratin-10 (Fig. 5). Interestingly, 

treatment with PG led to morphological changes consistent with later differentiation in cells 

transfected with PKCβII (Fig. 5A–D), as well as the formation of keratin-10 filaments, 

changes that were not seen in cells transfected with empty vector and stimulated with PG 

(Fig. 5D). Thus, PG in PKCβII-overexpressing cells induced enlargement and flattening 

reminiscent of the alterations observed with later keratinocyte differentiation; these changes 

also were not seen in keratinocytes overexpressing PKCβII in the absence of PG (Fig. 5A). 

These data suggest that keratinocyte differentiation in response to elevated calcium 

concentrations may be mediated through the activation of PKCβII induced by increased 

production of PG. This hypothesis is consistent with the observed ability of PKCβII 

overexpression to increase keratin-10 levels in the presence of a moderately elevated calcium 

concentration and of PG to promote differentiative changes in PKCβII-overexpressing 

keratinocytes.

4. DISCUSSION

Disruption in the normal form and function of skin can result in a significant amount of 

human suffering. Several human skin diseases, such as psoriasis, a hyperproliferative 

disorder of the epidermis, and the non-melanoma skin cancers (basal and squamous cell 

carcinoma) are the result of a breakdown in the carefully controlled program regulating the 

proliferation and differentiation of keratinocytes. Approximately 7 million Americans and as 

much as 3 percent of the world population suffer from the devastating effects of psoriasis 

(wwww.healthline.com/health/psoriasis/facts-statistics-infographic). Although usually not a 

fatal condition, the physical and emotional impact of psoriasis has been reported to be 

comparable with that of other serious medical conditions, including heart and lung disease, 

depression and cancer ([24, 25] and www.aad.org/media/stats/conditions/psoriasis). Basal 

and squamous cell carcinomas are the two most common skin cancers in the world, with 

more than 3.5 million new diagnoses each year in the United States (http://www.cancer.org). 

Our results contribute to the body of knowledge regarding the pathways regulating the 

normal growth and differentiation of epidermal keratinocytes that are dysregulated in these 

diseases. Our study provides insight into a possible role of PKCβII in keratinocyte 

differentiation. On the other hand, an inhibitor of PKC has been proposed as therapeutic 

option for psoriasis, based on its ability to reduce cytokine production in psoriatic patients 

[26], Our results suggest that targeting a PKC inhibitor more towards PKCθ and PKCα, and 
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less towards PKCβ, might improve the efficacy of such a therapy (although PKCα has also 

been demonstrated to play a role in keratinocyte differentiation [27]).

Although the precise mechanisms regulating the progression of keratinocytes through the 

multilayered stratified structure of the epidermis remain unknown, our laboratory has 

proposed a potential signaling module involving PG generation by a signaling module 

composed of AQP3 and PLD2. We have previously shown a functional and physical 

interaction between PLD2 and the glycerol channel AQP3 [2, 3]. Notably, the PLD2/AQP3 

signaling module was observed to be abnormal in psoriasis and non-melanoma skin cancers 

[28], suggesting a possible involvement of dysregulation of this module in such 

hyperproliferative skin diseases. Our laboratory has further shown that: (1) PLD2 can utilize 

AQP3-transported glycerol to generate PG, (2) elevated calcium concentrations increase PG 

levels and (3) this increase is likely mediated by PLD [3]. Maximal stimulation of calcium-

induced PG formation was observed at a calcium concentration optimal for stimulation of 

markers of early differentiation (e.g., keratin-10) [3, 4], These findings, combined with the 

observation that the C-terminal PKCβII V5 region binds PG and contains the molecular 

determinant necessary for translocation and activation of the enzyme [7, 8], led us to suspect 

that PKCβII may be the mediator of PG’s ability to promote keratinocyte maturation. Here, 

we present evidence that PKCβII is present in mouse keratinocytes (Fig. 1), consistent with 

previous reports [18, 19]. Although the brain expresses significantly more PKCβ than do 

keratinocytes, keratinocytes express PKCβ mRNA, although the band migrated slightly 

differently than the amplicon from brain, likely because of the difference in amounts in the 

two tissues, since abundance can alter electrophoretic separation. Nevertheless, PKCβ 
mRNA was also demonstrated by quantitative RT-PCR using Taqman assays. Since the 

Taqman probe only binds to the specific amplicon of interest, artifactual amplification of 

incorrect sequences will not be detected. In addition, we noted that mRNA levels tended to 

increase under conditions when keratinocytes would be expected to show less stem cell 

character and greater differentiation. This idea likely explains why PKCβ expression tends 

to rise with increasing time in culture as the cells reach confluence and begin to undergo 

contact-induced differentiation [29] and also to be higher in freshly isolated keratinocytes, 

which contain differentiated cells that do not attach to the tissue culture plastic upon seeding 

for culture. Expression tends to be higher also in epidermis and skin, as these tissues also 

contain large numbers of differentiated keratinocytes. The presence of PKCβ has also been 

detected in human skin [17]; nevertheless, a dearth of PKCβ isoform-specific antibodies 

with reactivity in formalin-fixed, paraffin-embedded tissue samples has hampered a 

complete characterization of PKCβII protein expression in human skin.

We also found that PKCβII is translocated/activated in response to PG treatment (Fig. 2). In 

addition, PKCβII over-expression induces an up-regulation of keratin-10 upon calcium-

induced stimulation of differentiation (Fig. 4), but has no effect on calcium-induced 

inhibition of proliferation (Fig. 3). Finally, overexpression of PKCβII in keratinocytes 

promotes keratin-10 filament formation and results in morphology consistent with later 

differentiation upon treatment with PG (Fig. 5). On the other hand, it could be argued that a 

toxic effect of the liposomal matrix is responsible for the reorganization of keratin filaments 

observed in (Fig. 5), since the concentration of egg PG used, 100 μg/mL, translates to 

approximately 120–130 μM, near the threshold for toxicity observed by Mayhew et al. [30], 
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Nevertheless, overall cell morphology was not markedly affected by PG as seen in (Fig. 2), 

suggesting that toxicity is likely not an issue.

Calcium functions as a precise regulator of keratinocyte maturation and is essential for 

normal differentiation [4, 31 – 33], such that an increase in extracellular calcium 

concentration can initiate this process. Thus, keratinocytes grown in a low-calcium medium 

proliferate and maintain an immature state in vitro, but will transition to a more 

differentiated state when exposed to elevated extracellular calcium levels [34, 35], 

Consistent with this effect, a calcium gradient has been observed in the epidermis in situ, 

with the lowest concentration observed in the basal layer where keratinocytes are actively 

proliferating and gradually increasing outward towards the more differentiated granular layer 

[33], The observation that extracellular calcium is able to increase PG levels led us to test 

whether PKCβII plays a role in calcium-induced differentiation. Thus, we experimentally 

altered the expression of PKCβII and recorded the effect of this manipulation on 

keratinocyte proliferation and differentiation. Proliferation was assessed by measuring the 

incorporation of [3H]thymidine into DNA in cells transfected with vector or PKCβII. In cells 

expressing basal, physiological levels of PKCβII (i.e., vector-transfected cells), stimulation 

with elevated extracellular calcium resulted in calcium-induced inhibition of proliferation 

(Fig. 3), as described by Bikle and colleagues [23], However, overexpression of PKCβII did 

not substantially alter this calcium-elicited inhibition, suggesting that PKCβII is not 

involved in the initial growth arrest triggered by calcium.

In an effort to determine if PKCβII plays a role in keratinocyte differentiation we next 

evaluated the effect of PKCβII overexpression on the levels of keratin-10, a marker of early 

differentiation, in the presence and absence of elevated extracellular calcium. Although we 

did not detect a statistically significant change in the levels of keratin-10 under basal 

conditions, PKCβII overexpression in combination with elevated extracellular calcium 

resulted in a substantial up-regulation of keratin-10 levels (Fig. 4). These results suggest that 

PKCβII alone is not sufficient to induce an increase in keratin-10 expression, but instead 

works in concert with calcium to promote early differentiation in primary mouse 

keratinocytes.

These results suggest that PKCβII can be activated not only by PG, but also by agents, such 

as extracellular calcium, that stimulate keratinocyte differentiation. This result, as well as 

our previous data indicating that PG can induce keratinocyte differentiation [5], prompted us 

to test the morphological effect of PG on keratinocytes overexpressing PKCβII. 

Interestingly, treatment with PG led to morphological changes consistent with entry into 

later differentiation in cells transfected with PKCβII. This morphological change was not 

detected in keratinocytes that were expressing basal levels of PKCβII (Fig. 5), suggesting 

that overexpressed PKCβII must be activated (by PG or the PG produced upon elevation of 

extracellular calcium levels) in order to exert its prodifferentiative effect.

CONCLUSION

In summary, we show that PKCβII is present in mouse keratinocytes and is translocated 

and/or activated upon stimulation of the AQP3/PLD2/PG signaling module by a moderate 
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elevation of extracellular calcium levels (which increases PG levels [3]) or direct provision 

of PG. We provide further evidence suggesting that PKCβII, activated in response to an 

elevated calcium level or provision of PG, can promote keratinocyte differentiation. This 

result suggests a potential mechanism by which PG affects keratinocyte function.
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LIST OF ABBREVIATIONS

AQP3 Aquaporin-3

K10 Keratin-10

K-SFM Keratinocyte serum-free medium

PG Phosphatidylglycerol

PKC Protein kinase C

PKCβII Protein kinase C-betaII

PLD2 Phospholipase D2

SFKM Serum-free keratinocyte medium
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Fig. (1). PKCβII protein is expressed in primary mouse epidermal keratinocytes, freshly isolated 
epidermal keratinocytes and the epidermis.
(A) RNA was isolated from primary mouse keratinocytes (1°MK) cultured to near 

confluence before incubation for 24 hours in medium containing basal (25μM) or 

moderately elevated (125μM) extracellular Ca2+concentrations as indicated and PKCβ 
expression monitored by semi-quantitative RT-PCR. (B) RNA was isolated from primary 

mouse keratinocytes (1°MK) incubated in medium containing a basal (50μM) extracellular 

Ca2+concentration, freshly isolated keratinocytes (before plating), isolated epidermis, total 

skin and brain as indicated and PKCβ expression monitored by quantitative RT-PCR using 

primer-probe sets from Applied Biosystems and a StepOne system as described in Methods. 

Results are expressed as the fold change in normalized cycle threshold relative to primary 

cultures of primary mouse keratinocytes (1°MK) cultured for 4 days, analyzed using the 

ΔΔCt method with GAPDH as the normalization control. Note that the brain expresses a 

significantly greater amount of PKCβ than do keratinocytes or skin tissue; therefore, in the 

inset the values obtained only from 1°MK cultured for the indicated number of days, freshly 

isolated keratinocytes (KC), isolated epidermis or total skin are plotted using a different 

scale. (C) Protein lysates were prepared from primary mouse keratinocytes (1°MK) cultured 

in medium containing basal (25μM) or moderately elevated (125μM) extracellular 

Ca2+concentrations. (D) Protein lysates prepared from primary mouse keratinocytes (1°MK) 

cultured in medium containing basal (25μM) or 125μM Ca2+, freshly isolated keratinocytes 

(fresh MK) or a homogenate of epidermis were analyzed by western blotting. Western 

analysis was performed using the PKCβII antibody obtained from Dr. Denise Cooper 

(University of South Florida, Tampa, FL). Commercially available antibodies yielded similar 

results. Brain was used as a positive control.
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Fig. (2). PG stimulates phosphoPKCβII redistribution in keratinocytes.
Keratinocytes grown on fibronectin-coated slides were stimulated for 60 minutes with 

medium containing a basal (25μM) calcium concentration (A) without (Con) or (B) with 

100μg/mL egg PG (PG), provided in the form of liposomes. Cells were then stained with an 

antibody recognizing phosphorylated PKCβII, an Alexa468-conjugated secondary antibody 

and the nuclear stain, DAPI, and visualized using a multiphoton Zeiss microscope. The 

primary antibody was omitted to serve as a negative control and showed no staining for 

PKCβII although DAPI was visualized (data not shown).
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Fig. (3). Overexpressed PKCβII is autophosphorylated/activated in response to an elevation of 
extracellular calcium concentration in mouse keratinocytes but has no effect on calcium-
inhibited proliferation.
Mouse keratinocytes were nucleofected with wild-type PKCβII (βII) or empty vector (EV) 

and then cultured in the presence of basal (25μM) or a moderately elevated extracellular 

calcium level (Ca; 125μM) for 24h. Cells were harvested and lysates were resolved on 8% 

SDS gels, transferred to PVDF membranes and probed with antibodies recognizing total 

PKCβII, autophosphorylated PKCβII and actin. (A) A representative experiment is 

illustrated. (B) Total PKCβII and (C) pPKCβII levels were quantified, normalized to actin 

and expressed relative to the PKCβII-transfected cells under basal conditions. Data represent 

the means ± SEM from at least 3 separate experiments. For total PKCβII, *p<0.05 vs EV or 

EV+Ca and for autophosphorylated PKCβII, #p<0.01 vs EV, *p<0.01 vs EV+Ca, ^p<0.001 

vs EV, +p<0.05 vs βII. (D)Keratinocytes nucleofected with wild-type PKCβII (βII) or empty 

vector (EV) were cultured in the presence of basal (25μM) or a moderately elevated 

extracellular calcium level (Ca; 125μM) for 24h. [3H]Thymidine was added to the medium 
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for 1 hour and DNA synthesis measured as described in Materials and Methods. 

[3H]Thymidine incorporation into DNA is expressed as the percentage of the control value 

and shown as the mean ± SEM (n=4; *p<0.01 vs EV or (βII).
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Fig. (4). Overexpressed PKCβII enhances calcium-induced keratin-10 protein expression 
(differentiation).
Keratinocytes nucleofected with wild-type PKCβII (βII) or empty vector (EV) were cultured 

in the presence of basal (25μM) or a moderately elevated extracellular calcium level (Ca; 

125μM) for 24h. Following cell harvest total lysates were resolved on 8% SDS gels, 

transferred to PVDF membranes and probed with antibodies recognizing keratin-10 (K10) 

and actin. A representative experiment is shown. Keratin-10 levels (normalized to actin and 

expressed relative to the PKCβII-transfected cells under basal conditions) were quantified 

and expressed as the mean ± SEM (n=4; *p<0.01 vs EV, (βII or EV+Ca).
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Fig. (5). PKCβII overexpression increases the PG-induced formation of keratin-10-containing 
intermediate filaments.
Mouse keratinocytes were nucleofected with wild-type (A and C) PKCβII (βII) or (B and 
D) empty vector (EV) and then cultured on coated glass slides in the (C and D) presence or 

(A and B) absence of 100μg/mL PG in 25μM calcium-containing medium for 24h. Cells 

were fixed, permeabilized, probed with an antibody recognizing keratin-10 and visualized 

with an Alexa468-conjugated secondary antibody. Immunofluorescence was examined by 

confocal microscopy.
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