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Abstract

Genetic differences contribute to variations in the immune response mounted by different

individuals to a pathogen. Such differential response can influence the spread of infectious

disease, indicating why such diseases impact some populations more than others. Here, we

study the impact of population-level genetic heterogeneity on the epidemic spread of differ-

ent strains of H1N1 influenza. For a population with known HLA class-I allele frequency and

for a given H1N1 viral strain, we classify individuals into sub-populations according to their

level of susceptibility to infection. Our core hypothesis is that the susceptibility of a given

individual to a disease such as H1N1 influenza is inversely proportional to the number of

high affinity viral epitopes the individual can present. This number can be extracted from the

HLA genetic profile of the individual. We use ethnicity-specific HLA class-I allele frequency

data, together with genome sequences of various H1N1 viral strains, to obtain susceptibility

sub-populations for 61 ethnicities and 81 viral strains isolated in 2009, as well as 85 strains

isolated in other years. We incorporate these data into a multi-compartment SIR model to

analyse the epidemic dynamics for these (ethnicity, viral strain) epidemic pairs. Our results

show that HLA allele profiles which lead to a large spread in individual susceptibility values

can act as a protective barrier against the spread of influenza. We predict that populations

skewed such that a small number of highly susceptible individuals coexist with a large num-

ber of less susceptible ones, should exhibit smaller outbreaks than populations with the

same average susceptibility but distributed more uniformly across individuals. Our model

tracks some well-known qualitative trends of influenza spread worldwide, suggesting that

HLA genetic diversity plays a crucial role in determining the spreading potential of different

influenza viral strains across populations.
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Author summary

Levels of immunity to strains of H1N1 influenza can vary, depending on the individual.

This strongly influences how the disease spreads in a population. Accounting for such var-

iations is a major challenge for the epidemiology of infectious diseases. We study the effect

of population-level genetic heterogeneity on the epidemic spread of different strains of

H1N1 influenza. We model the immune response of specific ethnicities to a number of

H1N1 viral strains, using this information to study disease spread for these (ethnicity,

viral strain) epidemic pairs. Our results show that larger genetic diversity at the level of

immune response, leading to the presence of susceptibility sub-populations with a broad

distribution of susceptibilities, protects against the spread of influenza in a population.

We also show that populations with a small number of highly susceptible individuals, but

with a large number of less susceptible ones, should exhibit smaller outbreaks than popu-

lations with the same average susceptibility but where it is more uniformly distributed.

Our work captures some qualitative trends of influenza spread worldwide, providing a

first attempt at understanding how susceptibility heterogeneities arising from variations

in immune response determine disease spread in populations.

Introduction

A central aim of epidemiological studies is to identify factors that place some populations at

greater risk of contracting an infectious disease than others [1]. Such factors can be associated

with each of the three legs of the “epidemiologic triad” for infectious diseases, the combination

of an external causative agent, a susceptible host, and an environment that links these two

together [2]. Each of these could vary across populations. However, even if the causative agent

was unique and environmental factors assumed to be largely common, variations intrinsic to

the host can lead to large inhomogeneities in epidemic progression across populations [1, 2].

Such variations are ignored in standard formulations of compartment models for infectious

diseases, which project all properties of the host onto a small set of states describing the host

status. These states are typically taken to be susceptible, infected or recovered, with respect to

the progress of the disease [3].

The influenza pandemic of 2009 originated in a new influenza virus, pandemic H1N1 2009

influenza A (pH1N1), to which a large fraction of the population lacked immunity [4]. The

virus responsible is thought to have arisen from a mixture of a North American swine virus

that had jumped between birds, humans and pigs, with a second Eurasian swine virus that cir-

culated for more than 10 years in pigs in Mexico before crossing over into humans [4]. This

pandemic caused extensive outbreaks of disease in the summer months of 2009, across the

USA, Brazil, India and Mexico, leading on to high levels of disease in the winter months. The

pandemic virus had almost complete dominance over other seasonal influenza viruses and was

unusual in its clinical presentation, with the most severe cases occurring in younger age groups

[4].

The severity of the H1N1 2009 pandemic can be assessed in terms of the basic reproduction

number (R0), a fundamental dimensionless epidemiological parameter representing the aver-

age number of secondary infections caused by a typical infectious individual in a fully suscepti-

ble population. An R0 > 1 leads to an expected exponential increase in the number of infected

individuals at early times, an increase which saturates before decreasing as infected individuals

recover, whereas for R0 < 1, the number of infected individuals decreases monotonically. We

compile estimates of R0 values for the pH1N1 epidemic across several countries from the
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literature, and list them in Table 1. Substantial variation in R0 values, ranging from about 1.2 at

the lower end to values of 3 and above at the upper end, is evident from this table. This varia-

tion across countries illustrates the need to account for host-specific susceptibilities to disease.

The immune response of the host, modulated by prior infections and vaccinations, is usually

the central factor influencing R0, although location-specific contact rates and health-seeking

behaviour contribute as well. In this work, we study how the spread of influenza in a popula-

tion is affected by variation in naïve host immune response.

Epidemics are typically modelled through deterministic compartmental-type models, rep-

resented by coupled non-linear ordinary differential equations. The SIR model is particularly

well suited for studying the spread of influenza, since H1N1 is a virus which spreads from per-

son-to-person through contact, without requiring a vector for transmission. The lack of a long

incubation period and a relatively rapid recovery makes it possible to ignore the effects of

immigration and emigration, as well as of births and deaths due to natural causes [3]. Models

such as the SIR model and related models typically assume that individuals in the population

are all alike, which allows one to reduce the number of model parameters to be estimated from

data, and leads to mathematical models that can be more feasibly studied from an analytical or

computational perspective. However, increasing efforts have been devoted during recent years

to assessing the impact of individual heterogeneities in disease spread [14]. These heterogene-

ities can be of very different nature, when considering for example populations structured in

specific spatial configurations [15–19], such as households [20] or age-structured populations

[15], or when there exist heterogeneous individual susceptibilities, infectivities or recovery

periods due, for example, to genetic [15, 21] or behavioural [22] reasons. Network or individ-

ual-based models provide a methodology for simulating each individual as a separate entity

(an agent) with a specified susceptibility, an individual-specific ability to infect others as well

as a specified time to recovery, while also being flexible enough to incorporate specific interac-

tion patterns between agents. Such models, however, typically require estimating a large num-

ber of parameters. Individual-based models come with substantial overheads in terms of

computational resources. In addition, their inherent stochasticity makes extensive averaging

necessary [23, 24].

A straightforward generalisation of the simplest version of the SIR model involves sub-

dividing populations into smaller groups or sub-populations. Individuals in each sub-popula-

tion can be considered to be homogeneous, but individuals across different sub-populations

can be modelled as responding differentially to the disease, as in the models of [18–21, 25–29].

Prior work has mainly focused on the theoretical analysis of these models, and relatively few

attempts have been made to incorporate clinical or biological heterogeneities known to be rele-

vant at the individual level, into population-level epidemic models. Incorporating such

Table 1. R0 values for the pH1N1 epidemic in different parts of the world, compiled from literature.

Strain Country Basic reproduction number (R0) Reference

A/H1N1 (2009) New Zealand 1.55 (95% confidence interval: 1.16 to 1.86) [5]

A/H1N1 (2009) USA 1.3–1.7 [6]

A/H1N1 (2009) Iran 1.32 (95% confidence interval: 1.11 to 1.59) [7]

A/H1N1 (2009) India 1.45 [8]

A/H1N1 (2009) Singapore 1.2–1.6 [9]

A/H1N1 (2009) Canada 1.57 (urban) and 3.91 (rural) [10]

A/H1N1 (2009) China 1.68 [11]

A/H1N1 (2009) Japan 2.0 to 2.6 (Early May); 1.21 to 1.35 (May-July) [12]

A/H1N1 (2009) Mexico 1.72 (Mexico City) [13]

https://doi.org/10.1371/journal.pcbi.1006069.t001
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individual-level immunological information into population-level epidemic models account-

ing for susceptibility or infectivity heterogeneities has been recently identified as a major chal-

lenge for mathematical epidemiology [30].

Both innate and adaptive immune responses are initiated when an individual is exposed to

the influenza virus. The innate response induces chemokine and cytokine production. Type I

interferons are among the most important cytokines produced by the innate immune response

and act to stimulate dendritic cells (DCs), enhancing their antigen production. The adaptive

immune system can recognise the presence of an intracellular virus and mount a response

only if a molecule called the human leukocyte antigen (HLA) binds to and ‘presents’ fragments

of viral proteins (epitopes) to the extracellular environment. Professional antigen presenting

cells such as DCs present viral antigens to CD4+ T-cells through HLA class-II and to CD8+ T-

cells through HLA class-I molecules. The CD4+ T-helper cells promote a B-cell response and

antibody secretion. HLA class-I molecules can be found on the surface of all cells, and interact

with T-cell receptors (TCRs) present on CD8+ T-cells [31, 32]. These cells are also called cyto-

toxic T lymphocytes, or CTLs.

The central role of HLA-mediated presentation of antigens in the magnitude and specificity

of CTL response in infectious diseases in general [33], and in influenza A in particular [34, 35],

have been well studied. A recent study shows that the targeting efficiency of HLA, a function of

the binding score of a given HLA allele and the conservation score of a given protein, corre-

lates with the magnitude of the CTL response, and also with the mortality due to influenza A

infection [36]. These studies also show that considering a single HLA allele is insufficient to

determine the strength of the CTL response [34, 37].

Each individual has 6 HLA class-I alleles, the combination of all 6 alleles being referred to

as an HLA genotype. Cross-reactivity between HLA alleles can result in two individuals with

completely different HLA genotypes presenting the same number of high affinity epitopes

[38]. Also, some alleles correlate with stronger (HLA-A�02 [34]) or weaker (HLA-A�24 [36])

CTL response to the influenza A virus. This raises a number of questions. Does a high risk

allele always correlate with a severe influenza epidemic, or can the presence of diverse HLA

alleles offset this risk? Are there specific patterns of susceptibility resulting from diversity in

HLA, which can confer greater protection to a population? We answer these questions by

using the full HLA genotype of each individual, and with an assumption that a person who

presents a larger number of high affinity viral epitopes will mount a stronger CTL immune

response than one who presents a smaller number [33–37, 39–43]. We use genetic diversity in

HLA alleles to inform epidemiological parameters at the population level and study their influ-

ence on the epidemiological spread of H1N1 influenza.

We assume that all other factors affecting disease spread, such as contact patterns [44],

health-seeking behaviour [45] and migration [46] are uniform among all individuals in a pop-

ulation, and across all populations. Such factors have been studied in the literature [44–46],

largely using theoretical models or data collected for small cohorts. Immunological memory of

an individual is also an important aspect of the immune response, and can be affected by fac-

tors such as the strain with which an individual was first infected [47, 48], prior history of

infections [48] and inherited factors [49]. For lack of data regarding these factors, the model

described in this work does not incorporate age and immunological history explicitly. To offset

this limitation, we focus first on H1N1 strains isolated during the 2009 pandemic, for which

immunological memory and vaccination proved insufficient to curb the spread of disease [4,

50]. We mine this data for characteristics which correlate with epidemic size, and test whether

these correlations hold for strains isolated in years other than 2009.

In a previous paper [51], we developed a method to group together individuals who can be

expected to have a similar CTL response, using the frequency of occurrence of HLA class-I
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alleles and the full proteome of the pathogen. We formulated an algorithm to generate all

possible HLA genotypes given the frequency of occurrence of each allele in a particular popu-

lation. Algorithms available through the IEDB resource [52] were used to predict the epitopes

presented by each such HLA genotype. Clustering was then carried out on these HLA geno-

types based on the number of epitopes presented from each viral protein. In this work, we use

the algorithm presented in [51] to generate HLA genotypes and thereby predict high affinity

epitopes presented by each such genotype. We thus identify sub-populations of individuals

with comparable susceptibility to the virus. The relevant parameter in this case is the total
number of such epitopes presented, irrespective of the viral protein from which these epi-

topes originate. We cluster individuals into groups based on this information, and use the

clustering results to calculate the rate at which susceptible individuals become infected. This

rate can be connected to the parameter β which appears in the conventional compartmental

SIR model, which can be used to track the progress of the epidemic through the population.

The prevalence of different HLA class-I alleles in different parts of the world is available

through the Allele Frequency Net Database (AFND) [53]. Each population in the AFND is

given an ethnicity tag. We predict epidemic sizes using our model for 61 such ethnicities, as

well as for 81 strains of influenza A (H1N1) virus isolated in 2009, and 85 strains isolated

before or after 2009, for which the genome (and hence proteome) sequence is known

[54, 55].

Our results show that if we assume that the susceptibility of a given individual is inversely

proportional to the number of high affinity epitopes that this individual presents for a given

viral strain, we can qualitatively reproduce some known trends of influenza spread world-

wide. Moreover, although the basic reproduction number R0 for a given population and a

given viral strain remains the main parameter that controls the epidemic size, other charac-

teristics of the population can also significantly impact epidemic spread. In particular, we

show that a composition of HLA genotypes which results in sub-populations with widely

differing susceptibilities confers protection against the spread of influenza. Moreover, popu-

lations where most of the individuals are less susceptible but where a small sub-set of individ-

uals is highly susceptible, are better in terms of containing the disease than populations that

are otherwise configured, even if they have the same value of R0. We show that the full distri-

bution of susceptibilities across a population is required to predict the final epidemic size,

but that one can extract useful information from low order moments of this distribution.

Although these results are derived from pH1N1 strains, we find that the same trends apply

even for viral strains isolated before or after 2009. We also show that populations with fre-

quent occurrence of an allele associated with high risk for one strain do not always experience

severe epidemics when considering influenza strains in general. We verify these conclusions

by comparisons to synthetic data.

Materials and methods

To model epidemics at the population level, we use a deterministic SIR epidemic model. We

describe a population as being formed out of a number of sub-populations. Each sub-popula-

tion is defined according to their specific susceptibility to the viral strain. To define these sub-

populations in practice, starting from biological data, we employ the probabilistic method

developed in [51]. This method uses well-tested and benchmarked algorithms for epitope pre-

diction [52] to predict the viral epitopes presented by individuals represented by different

HLA class-I genotypes. We link these genotypes to individual susceptibility against the patho-

gen. We can then group individuals with comparable susceptibilities into well-defined sub-

populations.

Impact of genetic heterogeneity on epidemiology of H1N1 influenza
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We represent different epidemic scenarios in terms of epidemic pairs, formed by consider-

ing both the pathogen (different influenza strains) and the specific population (in this work,

ethnicities) with different sub-population structures. We then use the SIR framework to track

the spread of influenza through the population. The ordinary differential equations used in the

model are coded in Matlab and solved numerically using Matlab’s ode45 solver.

Generating HLA class-I genotypes

The frequency of different HLA class-I alleles for different ethnicities estimated through large-

scale genotyping is available from public databases [53]. Each individual possesses three pairs

of HLA class-I genes. One HLA-A, -B and -C allele is obtained from each parent. Provided we

assume that these 6 alleles occur independent of each other, we can draw 2 genes each from

the full set of possible A, B and C alleles, sampling them according to the empirically measured

prevalence of that allele in the population. Each combination of 6 alleles is referred to as an

HLA genotype. The likelihood of finding an individual with the exact HLA genotype gener-

ated, is given by the product of the likelihood of finding each of the 6 alleles comprising the

genotype. A generated genotype is only accepted if the likelihood of finding an individual with

that genotype is larger than 10−6.

Forming susceptibility sub-populations

An adaptive CD8+ T-cell mediated immune response can only be mounted against a virus if

epitopes from the virus are presented by HLA class-I molecules. The binding between the epi-

tope and the passing CTL takes place through a receptor called the T cell receptor (TCR). Not

all TCRs are capable of recognising all viral epitopes. Thus if an individual presents a large

number of high affinity epitopes, it is reasonable to assume that there is an enhanced probabil-

ity that one or more of these epitopes can be recognised by their TCRs. Such individuals can

be argued to have low susceptibility to the virus. Conversely, the ability of the immune system

to present only a small number of epitopes will reduce the chance that they can be recognised.

Such individuals can be argued to be more susceptible to the viral infection. This link between

HLA class-I genotypes and disease susceptibility is supported, among others, by [33–37, 39–

43].

Predicting epitopes. For a given H1N1 influenza viral strain V and particular ethnicity E
forming an epidemic pair (E, V), we predict the entire set of epitopes presented by each HLA

class-I allele in that ethnicity using different algorithms available through the IEDB analysis

resource [52]. A consensus of three algorithms is used: an artificial neural network [56], a sta-

bilized matrix method [57], and a combinatorial peptide-library based method [58]. These

three algorithms use very different approaches for predicting epitopes for a given HLA allele.

In a study carried out by Sette et. al., all peptides with strong binding affinity, IC50< 50nM,

with their cognate allele were found to be immunogenic [59]. We restrict ourselves to predic-

tions with high likelihood of being immunogenic by ensuring coincident prediction by all

three algorithms, and by only considering epitopes with predicted IC50< 50nM. From these

results, we compute the number of high affinity epitopes presented by each individual, repre-

sented by their HLA genotype, in the population.

Susceptibility sub-populations. The clustering of HLA genotypes into sub-populations is

carried out on the basis of the number of epitopes presented, under the hypothesis that more

susceptible individuals present fewer epitopes. Thus, we cluster individuals so that individuals

within the same group present a similar number of epitopes, whereas individuals from differ-

ent groups present different numbers of epitopes. The susceptibility of each such group is
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then,

si /
1

ei
ð1Þ

where si relates to the susceptibility of individuals in group i, and ei denotes the average num-

ber of epitopes presented by the HLA genotypes belonging to sub-population i. A discussion

of the proportionality constant is provided in the section Estimating the proportionality
constant.

Using the number of individuals N in the population and the classification of genotypes in

clusters, we can calculate the fraction of individuals xi in each sub-population i 2 {1, . . ., m}, as

xi ¼
number of individuals in cluster i

total number of individuals in the population
: ð2Þ

All the calculations described above are for a single (ethnicity, viral strain) epidemic pair.

The values of all these parameters must be recalculated for each such epidemic pair being stud-

ied, since, among others, the parameter m depends on (E, V).

Mathematical model

For each epidemic pair (E, V) we use an SIR-based model to study the spread of influenza.

Each population is divided into susceptibility sub-populations; see Fig 1. Our main assump-

tions are:

1. The population is closed and spatially well-mixed.

2. All individuals in the population have equal infectivity and recovery rates.

3. Individuals in each sub-population have the same susceptibility.

4. Individuals in different sub-populations have different susceptibilities.

We use the SIR epidemic model of [21], considering a closed population of N susceptible

individuals and a initially infected individuals. The dynamics of the epidemic are represented

by the coupled equations

dSiðtÞ
dt
¼ � biSiðtÞIðtÞ; 8i 2 f1; 2; . . . ;mg; ð3Þ

dIðtÞ
dt
¼ IðtÞ

Xm

i¼1

biSiðtÞ � gIðtÞ; ð4Þ

dRðtÞ
dt
¼ gIðtÞ: ð5Þ

Here Si(t), I(t) and R(t) are the numbers of susceptible (at sub-population i), infected and

recovered individuals at time t and initial conditions are given by

Sið0Þ ¼ Ni; 8i 2 f1; 2; . . . ;mg; ð6Þ

Ið0Þ ¼ a� Ni; 8i 2 f1; 2; . . . ;mg ð7Þ

Rð0Þ ¼ 0; ð8Þ

Impact of genetic heterogeneity on epidemiology of H1N1 influenza
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N ¼ N1 þ N2 þ . . .þ Nm; ð9Þ

N þ a ¼
Xm

i¼1

SiðtÞ þ IðtÞ þ RðtÞ: ð10Þ

We use a = 1 in our numerical calculations to represent a single infective individual who

introduces the disease into a fully susceptible population.

Fig 1. Model sketch. The SIR model with susceptibility sub-populations used in this work. (a) Initially, individuals belong to one of the

susceptibility sub-populations. Infection is seeded by a initially infected people. (b) At the end of the epidemic, all individuals are either

recovered or have never been infected.

https://doi.org/10.1371/journal.pcbi.1006069.g001

Impact of genetic heterogeneity on epidemiology of H1N1 influenza

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006069 March 21, 2018 8 / 32

https://doi.org/10.1371/journal.pcbi.1006069.g001
https://doi.org/10.1371/journal.pcbi.1006069


The parameter βi governing the infection of susceptible individuals belonging to the ith sub-

population is assumed to be a composite of three factors,

bi ¼ acsi: ð11Þ

We take αsi 2 [0, 1] to represent the probability of a successful contact between a susceptible

individual from the ith sub-population, and an infective individual, leading to infection. The

quantity α accounts for factors such as the infectiousness of the pathogen, or the infectivity of

the infective individual, while si is related to the susceptibility of individuals in sub-population

i. The parameter c represents the average number of contacts per individual per unit time. We

note here that, since the dimensions of c are person−1time−1, βi has dimensions person−1time−1.

An alternative notation in the literature takes the infection rate to have units time−1, with S and

I representing proportion of susceptible or infected individuals, rather than numbers. This

would be equivalent to working with the alternative parameter b̂i ¼ biN.

Since individuals in all the ethnicities are considered to be homogeneously mixed and

all our numerical computations are carried out with the same number of individuals

(N + a = 104), we assume the parameter c to be the same for all the epidemic pairs under con-

sideration. Further, since our interest is in analysing the impact of susceptibility heterogene-

ities in the spread dynamics, we take α to be the same regardless of the epidemic pair (E, V)

under consideration. Thus, when comparing the spread dynamics between two epidemic

pairs, heterogeneity in susceptibilities emerges as the main factor in our models determining

the difference in these dynamics.

Finally, we note that the parameter β, given by

b ¼
1

N

Xm

i¼1

Nibi; ð12Þ

can be seen as the counterpart of (β1, . . ., βm) when the population is considered homoge-

neous. It corresponds to the parameter widely used and estimated, usually by estimating the

basic reproduction number R0, in the literature from epidemiological data for different patho-

gens and populations.

Estimating the proportionality constant

For a given (E, V) pair, and using Eq (1), the susceptibility of each sub-population is inversely

proportional to the average number of epitopes presented by individuals in that group. Thus

we can write si ¼ z 1

ei
where z is a proportionality constant which captures other components

of the immune system that affect susceptibility, including all aspects of the innate and humoral

immune response. We assume these aspects to be the same across all individuals and pairs,

since only heterogeneities related to HLA profiles are considered in this work. Then, βi is given

by

bi ¼ acz
1

ei
¼ y

1

ei
; ð13Þ

where y = αcz accounts for contributions to βi that are assumed to be the same across different

individuals and pairs. The value of β in Eq (12) can be calculated as a weighted average of the
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βi values, as

b ¼
1

N

Xm

i¼1

Nibi ¼
1

N

Xm

i¼1

Niy
1

ei
¼ y

Xm

i¼1

Ni

N
1

ei
¼ y

Xm

i¼1

xi
1

ei
: ð14Þ

The quantity β is henceforth referred to as average susceptibility. We note that our algorithm

reports ei = 0.07 as the minimum value of the average number of epitopes presented by a sub-

population in any epidemic pair, so that β is always finite.

One way to obtain y is to scale to an experimentally determined value for β, given a specific

ethnicity and viral strain (E0, V0). Values for β have historically been estimated using tech-

niques such as serotyping the same set of people at different time points to estimate the change

in the fraction of individuals susceptible to a given pathogen. Other methods are reviewed in

[60]. Once we have a value of β for one epidemic pair (E0, V0), we can calculate values xi and ei
for this epidemic pair using the HLA genotype generation, epitope prediction and clustering

methods outlined above. These can be inserted into Eq (14), allowing us to compute the value

y, which we have assumed to be the same across all epidemic pairs. Values of xi and ei for each

pair (E, V) can be used, together with this value of y, to get a β for any pair (E, V).

In this work, we use the value of R0 estimated in [13] for the Mexico City population for the

2009 H1N1 pandemic originating in Mexico La-Gloria. This was chosen as a reference because

HLA class-I allele frequency for this ethnicity, as well as the protein sequence of this viral strain

were available. In [13], an exponential curve was fit to the data of number of infections over

time during the initial phase of the epidemic. The distribution thus estimated was used to com-

pute R0. The R0 estimated in this manner was 1.72. We use this R0 to compute β for this epi-

demic pair, and use the epitopes and sub-populations for the pair (E0, V0) = (Mexico City

Mestizo pop 2, A/Mexico/LaGloria-8/2009) to estimate y. We note that we are using a particu-

lar β estimated in the literature for a specific pair (E0, V0) for computing y, and then consider-

ing y to be the same across different pairs. By doing this, we are scaling the rate of the event
Si + I! I + I in all the simulations for any pair (E, V) to the value of β obtained from data for

the given pair (E0, V0).

Summary statistics for comparing epidemics

We focus on the following global epidemiological characteristics:

FI1 ¼
Rð1Þ
N þ a

¼ Total fraction of individuals suffering from the infection

during the outbreak;

R0 ¼ Basic reproduction number ¼ Number of secondary infections

caused by a typical infected individual in a fully susceptible population;

until they recover:

In our model, the ability of an individual to transmit the disease does not depend on the

sub-population that the infected individual belongs to, since infectivity is considered to be the

same across sub-populations. The SIR model of Eqs (3)–(10) was analysed in [21], where it

was proved that R(1) is the only positive solution of

N þ a � Rð1Þ �
Xm

i¼1

Nie
�

biRð1Þ
g ¼ 0; ð15Þ

and FI1 can be derived from R(1) by applying FI1 ¼
Rð1Þ
Nþa . The basic reproduction number
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R0 is the number of secondary infections that a typical infected person causes when introduced

into a large population of susceptible individuals. In the classical SIR model for homogeneous

populations, R0 is given by

R0 ¼
bN
g
: ð16Þ

In order to calculate R0 for our system of equations (Eqs (3)–(10)), we consider the case

when a small number of infected individuals is introduced into a large population of N suscep-

tible individuals. We assume the number of susceptible individuals (Si(0) = Ni for all i) to be

large, such that a� Ni. This approaches the limit in which there is an unlimited source of sus-

ceptible individuals at the beginning of the epidemic. Then the dynamics of the initially

infected population in terms of a(t), the number of initially infected individuals at time t
declines as

daðtÞ
dt
¼ � gað0Þ; ð17Þ

and thus a(t) = a(0)e−γt. Let I(1)(t) be the number of secondary infections caused up to time t,
with I(1)(0) = 0, by the a initially infected individuals. Then

dIð1ÞðtÞ
dt

¼
Xm

i¼1

biSiaðtÞ ¼ að0Þe� gt
Xm

i¼1

biNi; ð18Þ

so that Ið1ÞðtÞ ¼ að0Þ
Pm

i¼1
biNi

e� gs

� g

h it

0
.

The basic reproduction number is given by

R0 ¼ lim
t!1

Ið1ÞðtÞ ¼ að0Þ
Xm

i¼1

biNi
e� gt

� g

� �1

0

¼

Pm
i¼1

biNi

g
að0Þ; ð19Þ

so that by setting a(0) = 1 we get

R0 ¼

Pm
i¼1

biNi

g
: ð20Þ

For m = 1, this expression leads to the well-known basic reproduction number for the

homogeneous case (Eq (16)).

Parameters characterising epidemic pairs. Our model predicts values of FI1 and R0 for

each pair (E, V). Any given epidemic pair (E, V) corresponding to an ethnicity E and a viral

strain V has a susceptibility profile described by the number m of sub-populations, and by vec-

tors (β1, . . ., βm) and (N1, . . ., Nm). The susceptibility profile of any epidemic pair (E, V) is

described by a Susceptibility Profile Vector (SPV)

SPVðE;VÞ ¼ ðb1; . . . ; b1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N1

; b2; . . . ; b2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N2

; . . . ; bm; . . . ; bmÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Nm

:

The quantities FI1 and R0 can be expected to directly depend on the SPV(E, V), where we

omit (E, V) from now on for ease of notation. For example, it is clear that for a given epidemic

pair, R0 directly depends on the total number of individuals, N, the recovery rate, γ, and the
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average susceptibility

b ¼
1

N

Xm

i¼1

Nibi ¼ E½SPV�:

On the other hand, the quantity of central interest to epidemic modeling, the final epidemic

size FI1 for a given epidemic pair, could depend on the full distribution of the SPV. For con-

creteness, we examine the dependence of FI1 on the lower order moments of the distribution,

such as the standard deviation, the skewness and the coefficient of variation, defined respec-

tively as

sðSPVÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ðSPVÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðSPVi � bÞ
2

s

;

SkðSPVÞ ¼ SkewnessðSPVÞ ¼

1

N

XN

i¼1

ðSPVi � bÞ
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðSPVi � bÞ
2

s !3
;

CVðSPVÞ ¼
sðSPVÞ

b
:

We note that a long left tail of the distribution represented by SPV would result in Sk(SPV)<

0, indicating the presence of a small number of individuals with susceptibility significantly

lower than the mean. On the other hand, when the population has a small representation of

individuals with susceptibility significantly higher than the mean, we have Sk(SPV)> 0.

Workflow

The workflow used in this paper is summarised in Fig 2.

Results

To compute FI1, we solve Eqs (3)–(10) with N + a = 104 individuals, a = 1. Each simulation is

allowed to run for (0, T), where time T is large enough to ensure that the epidemic has died

out. In particular, T is chosen to be large enough for each considered epidemic pair so that R
(T)� R(1) obtained from the simulation satisfies Eq (15) with some error � < 10−2. The

recovery rate used was γ = 1/3 day−1 [13].

The input to Eqs ((3)–(10)) was determined for 61 ethnicities and 81 viral strains isolated in

2009, leading to the study of 4, 941 epidemic pairs. Of these, 1, 392 cases had R0 > 1, and 718

cases had FI1> 0.5. The distributions of SPV characteristics across these 4, 941 epidemic

pairs is provided in Fig 3. The number m of susceptibility sub-populations varied from 1 (578

cases) to 23 (1 case, A/Giessen/6/2009 with Kenya Nandi ethnicity). The most common value

for m was 5, seen in 647 cases spanning 80 strains and 32 ethnicities. Details regarding ranges

of calculated parameters for strains isolated before or after 2009 can be found in the supporting

information; see S1 Fig. All estimated parameters are provided for all epidemic pairs in a sup-

plementary file; see S1 File.

Results presented in upcoming sections are for H1N1 strains isolated in 2009, unless stated

otherwise.
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Dependence of epidemic size and R0 on average susceptibility

We first examine the relationship between the average susceptibility (β), the basic reproduc-

tion number (R0) and the epidemic size (FI1); see Fig 4. We note that Eq (16) predicts a

linear relationship between R0 and β. As can be seen in Fig 4(a), most (E, V) pairs have β<
2 × 10−4person−1day−1, while pairs with higher values of β correspond to those with large epi-

demic sizes (FI1> 0.6). These pairs have R0 > 7, implying β> 2.33 × 10−4person−1day−1 from

Eq (20).

In Fig 4(b) we focus on epidemic pairs with R0 < 7. In this plot, there are a large number of

points with epidemic size FI1� 0. Upon closer examination, these points turn out to have

R0 < 1, as expected. We note that R0 = 1 implies β = 0.33 × 10−4person−1day−1, which corre-

sponds to the point in Fig 4(b) where the epidemic size starts to rise above 0. In all further

plots, we focus on the (E, V) pairs where 1< R0 < 7 and m> 1, leading to the analysis of 956

epidemic pairs.

No single parameter predicts epidemic size

In Fig 4(b), where the relationship between β and FI1 is shown, it can be seen that a high value

of average susceptibility leads to a larger epidemic. The red line corresponds to the epidemic

size when the susceptibility compartment is homogeneous (i.e., m = 1). We see that this line

forms an upper bound on the FI1 values for epidemic pairs with m> 1. It has been proved

that the final epidemic size is always lower in an epidemic pair with heterogeneous susceptibil-

ity, than an epidemic pair with the same average susceptibility but with homogeneous suscepti-

bility [21, 28, 44, 61]. The predictions in our simulations agree with this result. However, we

observe a spread of FI1 values when considering epidemic pairs containing heterogeneous

susceptibilities and having the same average susceptibility β; see Eq (12). This shows that het-

erogeneity plays a role in determining the extent of an epidemic even when the average suscep-

tibility remains constant.

Fig 2. Workflow. Summary of the steps carried out in this work. Inputs from external sources are shown in dotted parallelograms.

https://doi.org/10.1371/journal.pcbi.1006069.g002
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To study what aspects of this heterogeneity have the greatest impact on epidemic size, we

examine the dependence of FI1 on the characteristics of the susceptibility profile vector dis-

cussed above (m, β, σ(SPV), CV(SPV) and Sk(SPV)); see Fig 5. The main trends that can be

identified are the following:

Fig 3. Variations in SPV characteristics, 2009 strains. Histograms for the values of the different susceptibility profile vector characteristics for

the 4, 941 epidemic pairs involving H1N1 strains isolated in 2009: (a) σ(SPV); (b) Sk(SPV); (c) CV(SPV); (d) m; and (e) β.

https://doi.org/10.1371/journal.pcbi.1006069.g003
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• Epidemic pairs leading to positive skewness of the SPV seem to yield smaller epidemic sizes

on average; see Fig 5(a).

• Pairs corresponding to SPV with larger coefficient of variation also yield smaller epidemic

sizes; see Fig 5(c).

• Epidemic pairs containing more sub-populations (larger m) correspond to small epidemic

sizes; see Fig 5(d).

In our data, a positive value for Sk(SPV) corresponds to epidemic pairs with R0 < 2. Fig 4

shows that even with such small values for R0, FI1 can take on a wide range of values, going up

to 0.8. Yet, epidemic pairs in our data set with positive Sk(SPV) always have FI1< 0.2; see Fig

5(a). This suggests that having a positive skewness, corresponding to a distribution where

most of the people have low susceptibility, but a small number of people have susceptibility sig-

nificantly larger than the mean, lends some protective effect to the population.

Although σ(SPV) does not directly affect R0, it influences it indirectly due to the positive

correlation between β and σ(SPV). To remove this correlation, one can analyse CV(SPV)

instead; see Fig 5(c). This figure indicates that epidemic pairs with larger values of CV(SPV)

lead to smaller epidemic sizes.

We provide correlation coefficients r(θ, τ) 2 (−1, 1) between our summary statistics

τ 2 {FI1, R0} and SPV characteristics θ 2 {m, β, CV(SPV), σ(SPV), Sk(SPV)} in Table 2. The

parameter β provides the best predictor for both R0 and FI1. On the other hand, the heteroge-

neity described by CV(SPV), and the skewness of the susceptibility distribution described

through Sk(SPV), also emerge as good predictors of FI1.

To further examine the connections between the SPV characteristics θ 2 {m, β, CV(SPV), σ
(SPV), Sk(SPV)} and τ 2 {FI1, R0} and concentrating specifically on the role of σ(SPV) and m,

we describe two case studies below.

Case study 1—σ(SPV). Fig 5(b) shows that most of the epidemic pairs in our data

set have σ(SPV)< 10−4person−1day−1. Although the correlation between σ(SPV) and FI1 is

Fig 4. R0 cannot predict epidemic size exactly. The dependence of FI1 on R0 and β is shown for: (a) all epidemic pairs involving strains

isolated in 2009; (b) epidemic pairs involving strains isolated in 2009, and with R0 < 7. Only epidemic pairs with m> 1 are plotted. The red line

shows the epidemic size in the case of homogeneous susceptibilities. We see that when R0 > 1, FI1 takes on a wide range of values for any given

R0.

https://doi.org/10.1371/journal.pcbi.1006069.g004
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not statistically significant (see Table 2), we notice that a high value of σ(SPV) (> 1.5 ×
10−4person−1day−1) corresponds to moderate values for FI1. We examine two (E, V) pairs

with high σ(SPV); see pairs 1 and 2 in Table 3 and their corresponding epidemic dynamics

in Fig 6. These two pairs have similar values for σ(SPV), and yet have significantly different

epidemic sizes (0.48 for pair 1, and 0.74 for pair 2). We also see from Fig 6(b) and 6(d), that

the infection runs its course faster in pair 2 than in pair 1. Both these phenomena can be

explained by the fact that pair 2 has a significantly higher β (2.33 × 10−4person−1day−1, com-

pared to 1.42 × 10−4person−1day−1 for pair 1). We can also see from Fig 6 that the sub-popu-

lation with highest βi is the one most affected by the infection, while the sub-populations

Fig 5. FI1 as a function of SPV characteristics. The dependence of FI1 on several characteristics of the susceptibility profile vector of each (E,

V) pair involving an H1N1 strain isolated in 2009: (a) skewness of the SPV; (b) standard deviation of the SPV; (c) coefficient of variation of the

SPV; (d) number of susceptibility sub-populations, m.

https://doi.org/10.1371/journal.pcbi.1006069.g005

Table 2. Correlation coefficients r(θ, τ) between summary statistics of the epidemic and SPV characteristics.

SPV Characteristic, θ FI1 p-value R0 p-value

m −0.51 < 10−3 −0.24 < 10−3

β 0.74 < 10−3 1.00 < 10−3

CV(SPV) −0.61 < 10−3 −0.20 < 10−3

σ(SPV) 0.0004 0.99 0.53 < 10−3

Sk(SPV) −0.39 < 10−3 −0.14 < 10−3

https://doi.org/10.1371/journal.pcbi.1006069.t002
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with low βi remain largely uninfected, in both pairs 1 and 2. We will see in further sections

that β and σ(SPV) together, correlate well with epidemic size.

Case study 2—m. In Fig 5(d) there appears to be some negative correlation between m
and FI1, with larger values of m corresponding to smaller epidemic sizes; see Table 2. How-

ever, we note that this is more an artefact of the data than a predictive trend, and it is possible

to have epidemic pairs with a large value of m but very different final epidemic sizes and epi-

demic time-course dynamics. This can be seen for example in Fig 7 for epidemic pairs 3 and 4

from Table 4. Once again, the pair with higher average susceptibility has both a larger epidemic

size, and also a faster time course for the spread of the disease.

Table 3. Case study 1—Studying the predictive power of σ(SPV).

Pair Ethnicity (E) Strain (V) m β (×10−4) σ(SPV) (×10−4) CV(SPV) Sk(SPV) FI1 R0

1 China North Han A/Fukuoka-C/3/2009 5 1.42 1.59 1.12 0.36 0.48 4.27

2 China Yunnan Province Hani pop 2 A/Auckland/ 1/2009 6 2.33 1.55 0.67 −0.75 0.74 6.99

β and σ(SPV) have units person−1day−1. Histograms of each susceptibility profile SPV(E, V), together with the dynamics of each epidemic, are shown in Fig 6.

https://doi.org/10.1371/journal.pcbi.1006069.t003

Fig 6. Case study 1—σ(SPV). Simulation results for epidemic pairs 1 (a)-(b) and 2 (c)-(d) in Table 3. Distribution of βi values in the population

(left): the x-axis represents values of ln(βi), and the y-axis shows values of Ni. The red vertical line corresponds to the average susceptibility β.

Time course of the epidemic (right) in terms of variables Si(t) (solid) for each sub-population, and I(t) (dashed).

https://doi.org/10.1371/journal.pcbi.1006069.g006
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Dependence of R0 on SPV characteristics

We address the question of whether R0 can be estimated from the SPV characteristics θ 2 {m,

CV(SPV), σ(SPV), Sk(SPV)}; see Fig 8. The linear relationship between β and R0 follows from

Eq (16). In Fig 8(d), we once again observe that (E, V) pairs with m> 10 have low R0. As

observed in case study 2, this is more an artefact of biases in the real data than a general trend.

In Fig 8(b), we plot σ(SPV) against R0. Although σ(SPV) does not directly affect R0, we see this

shape due to the relationship in the data between β and σ(SPV).

Fig 7. Case study 2—m. Simulation results for epidemic pairs 3 (a)-(b) and 4 (c)-(d) in Table 4. Distribution of βi values in the population (left):
the x-axis represents values of ln(βi), and the y-axis shows values of Ni. The red vertical line corresponds to the average susceptibility β. Time

course of the epidemic (right) in terms of variables Si(t) (solid) for each sub-population, and I(t) (dashed).

https://doi.org/10.1371/journal.pcbi.1006069.g007

Table 4. Case study 2—Studying the predictive power of m.

Pair Ethnicity (E) Strain (V) m β (×10−4) σ(SPV) (×10−4) CV(SPV) Sk(SPV) FI1 R0

3 Uganda Kampala pop 2 A/Canada-NFL/RV3019/ 2009 11 0.4 0.63 1.58 1.25 0.10 1.21

4 USA Alaska Yupik A/California/ 07/2009 11 0.87 0.55 0.63 −0.71 0.66 2.60

β and σ(SPV) have units person−1day−1. Histograms of each susceptibility profile SPV(E, V), together with the dynamics of each epidemic, are shown in Fig 7.

https://doi.org/10.1371/journal.pcbi.1006069.t004
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Epidemic size largely correlates with select pairs of parameters

Earlier, we examined the correlation between FI1 and the SPV characteristics θ 2 {m, β, CV
(SPV), σ(SPV), Sk(SPV)} independently. This raises the question of whether accounting for

pairs of such parameters might provide a more accurate prediction of FI1. We study here how

pairs of parameters are related to epidemic size in all (E, V) pairs with 1< R0 < 7 and m> 1.

We find that pairs involving the average susceptibility β, as well as the heterogeneity parame-

ters Sk(SPV), CV(SPV) and σ(SPV) are better predictors of the final epidemic size than these

quantities individually. Plots involving these parameters are shown in Fig 9, while multiple

correlation coefficients are shown in Table 5. All other parameter pairs are plotted in support-

ing information; see S2 Fig. In particular, note that:

• Epidemic pairs containing a susceptibility profile vector leading to large values of CV(SPV),

small values of β, and positive Sk(SPV) experience smaller final epidemic sizes.

• Epidemic pairs with positive Sk(SPV) are also the ones with small average susceptibility, and

they lead to small final epidemic sizes.

From Fig 9, we see that for a given β, FI1 decreases with increasing σ(SPV). It also decreases

as Sk(SPV) is made more positive, or as CV(SPV) is increased. This shows that for intermediate

Fig 8. R0 as a function of SPV characteristics. The dependence of the basic reproduction number R0 on several characteristics of the

susceptibility profile vector of each (E, V) pair considering H1N1 strains isolated in 2009: (a) skewness of the SPV; (b) standard deviation of the

SPV; (c) coefficient of variation of the SPV; (d) number of susceptibility sub-populations, m. Only epidemic pairs (E, V) with 1< R0 < 7 and

m> 1 are plotted.

https://doi.org/10.1371/journal.pcbi.1006069.g008
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values of β such as the ones shown in Fig 9, a higher spread in βi values helps to protect the

population against the epidemic spread. In other words, a population with higher genetic het-

erogeneity in susceptibility to a virus, leading to susceptibility sub-populations with a large

spread in susceptibilities, can be expected to have a smaller epidemic than a population where

Fig 9. FI1 as a function of pairs of SPV characteristics. (a) (Sk(SPV), σ(SPV)); (b) (CV(SPV), σ(SPV)); (c) (CV(SPV), β); (d) (Sk(SPV), β); (e) (σ
(SPV), β); (f) (CV(SPV), Sk(SPV)). FI1 is shown as a colourbar.

https://doi.org/10.1371/journal.pcbi.1006069.g009
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most of the people have similar susceptibility, despite both populations being non-homoge-

neous in susceptibility.

We also observe that for a given value of β, an (E, V) pair with Sk(SPV)> 0 or only slightly

negative corresponds to a smaller FI1 than one for which Sk(SPV) is a large negative value.

We interpret this in the following way: populations containing a small sub-set of individuals

with heightened susceptibility, but in which most of the individuals are less susceptible, are

better protected against the disease than populations where the susceptibility is more uni-

formly distributed, even if the mean susceptibility is the same.

We provide in Table 5 multiple correlation coefficients

rððy1; y2Þ; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðy1; tÞ
2
þ rðy2; tÞ

2
� 2rðy1; tÞrðy2; tÞrðy1; y2Þ

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � rðy1; y2Þ
2

q 2 ð0; 1Þ

between our summary statistics τ 2 {FI1, R0} and SPV characteristics pairs (θ1, θ2) 2 {m, β, CV
(SPV), σ(SPV), Sk(SPV)}2.

Predictions broadly track trends in pH1N1 (2009) burden

The 2009 pandemic of H1N1 was closely tracked by many organisations in the world, includ-

ing the World Health Organization (WHO). For example, [62, Fig 3] indicates that certain

areas of the world experienced a larger number of cases than others. In particular, we see that

China and Japan experienced worse epidemics than Russia, which tends to have relatively

smaller epidemics.

To compare the predictions of our model with these observations, we select viral strains iso-

lated in these regions during the 2009 pandemic, and ethnicities corresponding to these coun-

tries. We would like to mention here that our model works with individual ethnicities, while

the data available is for countries, which are comprised of multiple ethnicities. We find that

different ethnicities from the same country experience widely differing epidemic sizes for the

same viral strain; see S1 File. For this comparison, we select ethnicities available in our data set

from each of these countries, for which the predictions most closely resemble the observations

in [62, Fig 3]; see Fig 10. As can be seen in Fig 10, our method predicts that most Chinese eth-

nicities will experience severe epidemics regardless of the viral strain. On the other hand, Rus-

sia and Japan are predicted to experience smaller epidemics for most viral strains. However,

Table 5. Correlation coefficients r((θ1, θ2), τ) between summary statistics of the epidemic and SPV characteristics

pairs.

SPV Characteristic Pair (θ1, θ2) FI1 R0

(β, m) 0.81 1.0

(β, CV(SPV)) 0.88 1.0

(β, σ(SPV)) 0.87 1.0

(β, Sk(SPV)) 0.80 1.0

(m, CV(SPV)) 0.62 0.24

(m, σ(SPV)) 0.55 0.72

(m, Sk(SPV)) 0.53 0.24

(CV(SPV), σ(SPV)) 0.78 0.86

(CV(SPV), Sk(SPV)) 0.62 0.20

(σ(SPV), Sk(SPV)) 0.48 0.75

https://doi.org/10.1371/journal.pcbi.1006069.t005
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we note that for most of the Japanese strains, the Japanese ethnicity will suffer larger epidemic

sizes than the Russian one, thus qualitatively agreeing with what can be observed in [62, Fig 3].

An interesting case is the strain A/Japan/921/2009 (H1N1), which was one of the strains cir-

culating in Japan during the 2009 pandemic. This strain is predicted to cause severe epidemics

in most ethnicities, and this holds true across all the 61 ethnicities considered in the data set.

The ethnicity Russia Tuva Pop 2 is predicted to experience moderate epidemics for viral

strains isolated in Russia, but a slightly worse epidemic for the strain A/Hyogo/2/2009

(H1N1), isolated in Japan. Thus, our methods bear out the idea that the severity of an influenza

epidemic in a given country should not be dictated entirely by the genetic makeup of the hosts,

but should also depend on the particular strain of the pathogen circulating in this country.

Our predictions suggest that the ability of HLA class-I alleles in the ethnicity Russia Tuva pop

2 to present epitopes from the influenza A (H1N1) virus changes significantly across different

viral strains.

The results described above show that even with a model that only incorporates susceptibil-

ity heterogeneities in terms of epitope presentation through HLA class-I alleles, we can quali-

tatively explain some essential trends observed across the world during the 2009 H1N1

pandemic. This serves as a qualitative validation of our methodology. Moreover, our results

suggest that while some trends in influenza spread worldwide can be explained by the average

susceptibility of each ethnicity to each strain, others might have an explanation related to the

particular genetic diversity within each ethnicity for a given strain. For example, when analys-

ing pairs 5 and 6 in Table 6, we can see that the same value of β can lead to different epidemic

sizes for the same strain when considering the China Yunnan Province Lisu and the Japan

pop 5 ethnicities. This is likely related to the fact that Sk(SPV) is significantly more negative

for the Chinese ethnicity, and the coefficient of variation is smaller, leading to a larger epi-

demic size. A similar behaviour can be seen when considering pairs 7-9 in Table 6. Larger

reproduction numbers can still arise from smaller epidemic sizes if Sk(SPV) is closer to 0 (or

positive), and for more heterogeneous populations (larger values of CV(SPV)), which might

explain smaller epidemic sizes in, for example, the Kenya Luo ethnicity compared to the Chi-

nese ones [62, Fig 3].

Fig 10. Qualitative trends captured by our model. Epidemic sizes predicted by our model for different ethnicities and strains corresponding to

China, Russia, and Japan, during the 2009 influenza A/H1N1 pandemic. Qualitatively, the predictions broadly track trends observed worldwide.

https://doi.org/10.1371/journal.pcbi.1006069.g010
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Similar trends are observed in H1N1 strains isolated in years other than

2009

We carry out parameter estimation and simulations as described in previous sections, for 85

strains of H1N1 influenza isolated in years other than 2009. This includes 15 strains isolated

before 2000, 21 strains isolated between 2000 and 2008 (inclusive), and 49 strains isolated after

2009. We find that the trends identified in Fig 9 apply even for these strains; see supporting

information S3 Fig.

Response of some indigenous ethnicities to H1N1

Several studies have reported that during the 2009 pandemic, indigenous ethnicities experi-

enced more severe epidemics than their non-indigenous counterparts [63–65]. The indigenous

ethnicities in our data set are USA Alaska Yupik, Australia Yuendumu Aborigine, and Austra-

lia Cape York Peninsula Aborigine. We find that the ethnicity USA Alaska Yupik is always pre-

dicted to have a worse epidemic than non-indigenous ethnicities from the USA, irrespective of

the strain being considered. Since our data set does not include any non-indigenous ethnicities

from Australia, we are unable to verify whether or not a similar statement holds true for the

Australian aboriginal ethnicities.

In general, we find the ethnicity Australia Cape York Aborigine, with average FI1 = 0.14

when considering all 166 viral strains, is predicted to experience a marginally worse epidemic

than Australia Yuendumu Aborigine whose average FI1 = 0.08. Interestingly, this trend is

reversed when we focus on the strains A/Auckland/1/2009 and A/Auckland/597/2000 isolated

in Australia. For these strains, Australia Cape York Aborigine has R0 < 1 for both these strains,

but Australia Yuendumu Aborigine has R0 = 1.49 for the strain A/Auckland/1/2009; see

Table 7.

Based on the observations during the 2009 pandemic, it has been suggested that aboriginal

communities should be prioritised during vaccination [63, 64]. However the predictions in

Table 6. Select case studies to study the observed behaviour in Fig 10.

Pair Ethnicity (E) Strain (V) m β(×10−4) σ(SPV) (×10−4) CV(SPV) Sk(SPV) FI1 R0

5 China Yunnan Province Lisu A/Kyoto/ 08K056/2009 2 0.42 0.03 0.07 −14.64 0.37 1.25

6 Japan pop 5 A/Kyoto/ 08K056/2009 4 0.42 0.24 0.57 −0.77 0.30 1.27

7 China Guizhou Province Shui A/Fukuoka-C/3/2009 2 0.84 0.13 0.15 −5.87 0.88 2.51

8 China Yunnan Province Lisu A/Fukuoka-C/3/2009 5 1.15 0.47 0.41 −1.77 0.84 3.45

9 Kenya Luo A/Japan/ 921/2009 4 1.23 1.01 0.82 −0.02 0.67 3.68

Epidemic pairs with similar R0 have different epidemic sizes, governed by their genetic heterogeneity. β and σ(SPV) have units person−1day−1.

https://doi.org/10.1371/journal.pcbi.1006069.t006

Table 7. Case study 3—Studying Australian aboriginal ethnicities.

Pair Ethnicity (E) Strain (V) m β (×10−4) σ(SPV) (×10−4) CV(SPV) Sk(SPV) FI1 R0

10 Australia Yuendumu Aborigine A/Auckland /1/2009 1 0.5 0 0 NA 0.57 1.49

11 Australia Yuendumu Aborigine A/Auckland /597/2000 1 0.28 0 0 NA 0.0006 0.82

12 Australia Cape York Peninsula Aborigine A/Auckland /1/2009 3 0.33 0.1 0.3 −1.8 0.006 0.98

13 Australia Cape York Peninsula Aborigine A/Auckland /597/2000 3 0.19 0.05 0.26 −1.93 0.0002 0.58

β and σ(SPV) have units person−1day−1. Since Sk(SPV) can only be calculated when there are m> 1 sub-populations, Sk(SPV) = NA (Not Applicable) for epidemic pairs

10 and 11.

https://doi.org/10.1371/journal.pcbi.1006069.t007
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Table 7 suggest that at least from the perspective of HLA alleles and downstream CTL

response, each influenza strain and each aboriginal community needs to be assessed indepen-

dently. Using our model, it is possible to predict whether or not a new strain will cause a worse

epidemic than a strain in the data set, within the constraints of the assumptions made. Predic-

tions such as these could help optimise the deployment of resources when combating a new

strain of influenza.

High risk alleles for one strain do not always correlate with severe

epidemics in general

The frequency of the HLA class-I allele HLA-A�24 has been found to correlate with mortality

rate due to the pandemic H1N1 (2009) influenza virus [36]. We rank ethnicities in our data set

in descending order of their average FI1 across all 166 strains of influenza, and find that the

ethnicity USA Alaska Yupik has the highest prevalence of allele HLA-A�24:02, and also has the

worst average epidemic size; see Table 8. The ethnicity with the next highest frequency of allele

HLA-A�24:02, Japan Central, has very low average epidemic size, and ranks 52nd among 61

ethnicities. The ethnicity Japan pop 3 has comparable frequency of the allele HLA-A�24:02 as

Japan Central, but is ranked 28th based on its average epidemic size. These results show that an

allele whose frequent occurrence correlates with a high risk for one influenza strain, does not

always correlate with a severe epidemic when considering influenza strains in general. Rather,

we need to estimate the full profile of the SPV, or at least the summary characteristics with

strong correlation as described in previous sections.

Synthetic data supports the observed behaviour

Does the behaviour discussed in the preceding sections rely on correlations between SPV char-

acteristics that are specific to the epidemic pairs we analyse? These correlations arise directly

from genetic heterogeneities at the HLA genotype level corresponding to the 61 ethnicities and

166 viral strains considered here. However, we could frame our questions more generally. For

example, we could ask if a positive skewness of the SPV would always be a protective character-

istic for the population, given a fixed average β?

To address these and similar questions, we construct a synthetic data set of 104 epidemic

pairs created within the following parameter ranges:

m � Uintðf2; . . . ; 15gÞ;

ei ¼ 2� u� 10pi ; 1 � i � m;

u � Uð0; 1Þ; pi � Uðlog10ðeminÞ; log10ðemaxÞÞ; 1 � i � m;

Ni � Uintðf1; . . . ;NgÞ; 1 � i � m s:t:
Xm

i¼1

Ni ¼ N;

where emin and emax are the minimum and maximum values of ei in the real data set analysed

Table 8. Top 3 ethnicities with high risk allele HLA-A�24:02.

Ethnicity (E) Allele frequency rank Frequency Average FI1 Average FI1 rank

USA Alaska Yupik 1 58% 0.68 3

Japan Central 2 38% 0.009 52

Japan pop 3 3 36% 0.02 28

Higher average FI1 rank implies more severe predicted epidemic. Ranks are out of the 61 ethnicities considered in this data set.

https://doi.org/10.1371/journal.pcbi.1006069.t008
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in previous sections. These distributions have been chosen so that we obtain 104 epidemic

pairs with values in the interval 1< R0 < 7, m> 1, with Ni and βi distributed within ranges

that are comparable to those of the original data set.

For this synthetic data set, we plot in Fig 11 the predicted final epidemic size as a function

of the different SPV characteristics. In Tables 9 and 10, correlation coefficients for single and

paired SPV characteristics, and summary statistics FI1 and R0, are provided for the epidemic

Fig 11. FI1 as a function of SPV characteristics—Synthetic data set. Dependence of epidemic size on several characteristics of the SPV is

analysed for the synthetic data set described in the text. (a) β; (b) Sk(SPV); (c) σ(SPV); (d) CV(SPV); (e) m.

https://doi.org/10.1371/journal.pcbi.1006069.g011
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pairs in this synthetic data set. A direct inspection of results in Fig 11 and Tables 9 and 10 lead

to the following conclusions:

• Large values of β lead to larger epidemic sizes. However, β alone can not explain FI1, and

other characteristics of the SPV need to be taken into account, as for the original data set; see

Fig 11(a).

• Positive skewness leads to smaller epidemic sizes than negative skewness scenarios, as

observed for the original data set; see Fig 11(b).

• The larger the heterogeneity (in terms of σ(SPV) or CV(SPV)), the more protected the popu-

lation is against epidemic spread. This is not a consequence of the value of m. Rather, it is the

particular combination of βi and Ni values which has an impact on the epidemic dynamics;

see Fig 11(c)–11(e).

Discussion

Theoretical studies on epidemiological spread of disease in the presence of susceptibility het-

erogeneities have shown that final epidemic size is typically lower when susceptibility sub-pop-

ulations are factored in, as compared to the case of homogeneous susceptibility [21, 44, 61].

We find that this result holds true when the sub-population sizes and disease transmission

rates are informed by real-world data about immunological factors. The novelty in our

approach is to propose how the susceptibility profile vector can be estimated from genetic

sequence data, so that we can then deal with particular SPVs that might exist in reality for dif-

ferent ethnicities and viral strains. We also show that some summary statistics of the SPV
(such as the skewness or the coefficient of variation) can help to better understand the pre-

dicted final size of the epidemic.

Table 9. Correlation coefficients r(θ, τ) between summary statistics of the epidemic and SPV characteristics for

the synthetic data set.

SPV Characteristic θ FI1 p-value R0 p-value

m −0.2 < 10−3 0.02 0.03

β 0.62 < 10−3 1.00 < 10−3

CV(SPV) −0.58 < 10−3 −0.06 < 10−3

σ(SPV) −0.06 < 10−3 0.61 < 10−3

Sk(SPV) −0.40 < 10−3 −0.12 < 10−3

https://doi.org/10.1371/journal.pcbi.1006069.t009

Table 10. Correlation coefficients r((θ1, θ2), τ) between summary statistics of the epidemic and SPV characteristics

pairs, for the synthetic data set.

SPV Characteristic Pair (θ1, θ2) FI1 R0

(β, m) 0.66 1.0

(β, σ(SPV)) 0.83 1.0

(β, Sk(SPV)) 0.70 1.0

(β, CV(SPV)) 0.83 1.0

(m, σ(SPV)) 0.21 0.62

(m, Sk(SPV)) 0.34 0.14

(m, CV(SPV)) 0.58 0.07

(CV(SPV), σ(SPV)) 0.73 0.88

(CV(SPV), Sk(SPV)) 0.58 0.13

(σ(SPV), Sk(SPV)) 0.42 0.75

https://doi.org/10.1371/journal.pcbi.1006069.t010
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A limitation of our model is that factors such as age, prior infection history and vaccination

are not included. While there have been studies which collect and analyse such data for small

cohorts [47, 48, 65], gathering such information on the global scale required for this analysis

requires the formation of consortia such as those existing for diseases such as cancer [37].

Also, we make the strong simplifying assumption that all aspects of the innate and adaptive

immune system not affected by HLA class-I presentation can be pooled into a single propor-

tionality constant, and are considered uniform among individuals within an ethnicity, and

across ethnicities. While this helped focus the analysis on the role of HLA alleles in disease

spread, incorporating other aspects of the immune system into epidemiological models is an

important problem that must be addressed. Due to these limitations, predictions made by our

model can only be used to draw comparisons between different epidemic pairs, particularly

epidemic pairs consisting of the same ethnicity and different viral strains, and not for making

absolute quantitative predictions.

A number of extensions of the line of work presented in this manuscript are possible. Pre-

sentation of epitopes by HLA class-I alleles is preceded by a number of steps including interna-

lisation of the virus, proteasomal cleavage of viral proteins into shorter peptides, and transport

of peptides through the TAP transport system [31]. The epitope prediction tools used in this

work do not explicitly consider all these pre-processing steps in any single tool. Also, the pre-

diction algorithms have lower accuracy for rare alleles. The model can be improved by plug-

ging in different epitope prediction methods which overcome these limitations. Also, it would

be useful to establish a more accurate, quantitative connection between si and ei than the sim-

ple inverse relation we have assumed. Two other possible mathematical forms, si/ 1/ln(ei + 1)

and si/ 1/(ei + 1)2, are explored in the supporting information; see S4 Fig.

Spatial heterogeneities are known to allow for disease persistence, since asynchrony in the

epidemic spread among different sub-populations located in different geographical locations

can allow for global persistence, even if the epidemic locally dies out [19]. Since HLA alleles

are inherited, it can be expected that families and households will have similar HLA genotypes,

potentially introducing spatial inhomogeneity in the distribution of HLA alleles in a popula-

tion. If such spatial information regarding HLA genotypes were gathered, it would be interest-

ing to study how this affects epidemic dynamics and persistence. An agent based model

incorporating variations in agent susceptibility along the lines indicated here, along with spa-

tial information regarding each susceptible agent, would provide an idea of how such factors

might modify the general conclusions described in this paper. A network model incorporating

the social structure of individual contacts would indicate if the combination of varied suscepti-

bility with a specified contact network structure between individuals might accelerate epi-

demic progress or retard it.

Conclusions

The incorporation of within-host immunological information into population-level epidemic

models is a major challenge for epidemiological modeling [30]. In this paper, we address this

question in a specific case, by modeling the impact of genetic diversity in terms of the HLA

class-I genotype on the predicted epidemic dynamics of H1N1 influenza. To do this, we made

use of HLA allele frequencies measured across different ethnicities, focusing on the number of

high affinity epitopes presented by individuals within 61 ethnicities and for 81 H1N1 influenza

A viral strains isolated in 2009 as well as 85 H1N1 influenza A viral strains isolated in other

years. Our main hypothesis was that the susceptibility of individuals in a given ethnicity, for a

given viral strain, is inversely proportional to the number of high affinity epitopes that these

individuals can present. We then used a multi-compartment SIR model to study the spread
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dynamics of influenza for each (ethnicity, viral strain) epidemic pair, where the final epidemic

size FI1 and the basic reproduction number R0 are used as the summary statistics for the pur-

pose of comparison.

While the average susceptibility β is a central parameter, the susceptibility profile corre-

sponding to each epidemic pair also plays an important role governing epidemic spread. In

particular, when analysing epidemics with intermediate values of β (i.e., intermediate values of

R0), more heterogeneous susceptibility profiles, as well as profiles showing positive skewness

Sk(SPV), are more protective for the population as a whole against H1N1 influenza. Our

model only considers heterogeneity from the perspective of the ability of a person’s HLA geno-

type to present epitopes from a given virus. However, even if at a qualitative level, our results

support the idea that having a wide variety of HLA alleles represented among its individuals,

resulting in a wide range of susceptibilities, benefits a population as a whole in terms of

restricting the spread of an infectious disease.

Although our model does not incorporate other factors such as social and economic char-

acteristics of each particular population or potential different infectivities for each viral

strain, our results qualitatively capture several central trends of influenza spread worldwide.

Thus, we can conclude that susceptibility of individuals in terms of the HLA genotype is

an important factor that could explain the spread potential of different influenza viral

strains among different ethnicities and populations. While some of these trends can just be

explained due to larger or smaller values of R0 (i.e., the average susceptibility β), the reason

for small epidemic sizes occurring for some particular ethnicities and viral strains might be

related to the existence of high genetic diversity resulting in a wide range of susceptibilities

in these populations, for these viral strains, with a positively skewed susceptibility profile

vector.

Supporting information

S1 Fig. Variations in SPV characteristics, non-2009 strains. Histograms for the values of the

different susceptibility profile vector characteristics for the 5, 185 epidemic pairs involving

H1N1 strains isolated in years other than 2009: (a) σ(SPV); (b) Sk(SPV); (c) CV(SPV); (d) m;

and (e) β.

(TIF)

S2 Fig. FI1 as a function of other pairs of SPV characteristics, 2009 strains. (a) (CV(SPV),

m); (b) (Sk(SPV), m); (c) (σ(SPV), m) and (d) (β, m).

(TIF)

S3 Fig. FI1 trends hold for H1N1 strains isolated before and after 2009. FI1 as a function

of pairs of SPV characteristics. (a) (Sk(SPV), σ(SPV)); (b) (CV(SPV), σ(SPV)); (c) (CV(SPV), β);

(d) (Sk(SPV), β); (e) (σ(SPV), β); (f) (CV(SPV), Sk(SPV)). FI1 is shown as a colourbar.

(TIF)

S4 Fig. Other mathematical forms for si /
1

ei
. The results presented in the paper use the form

si / 1

ei
(column 1). Two other mathematical forms, si / 1

lnðeiþ1Þ
(column 2) and si / 1

ðeiþ1Þ2
(col-

umn 3) are explored here, for all 61 ethnicities and 166 viral strains. Only the pairs of SPV
characteristics found to have high correlation with FI1 are shown. (a, b, c) (σ(SPV), β); (d, e, f)

(CV(SPV), β); (g, h, i) (Sk(SPV), β). FI1 is shown as a colourbar. Trends in epidemic size hold

across all considered mathematical forms.

(TIF)
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S1 File. All calculated parameters. Parameters m, β, βi, xi, σ(SPV), CV(SPV), Sk(SPV), FI1
and R0 for all epidemic pairs in the data set.
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