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Epilepsy affects approximately 50 million people worldwide, with 60% of adult epilepsies
presenting an onset of focal origin. The most common focal epilepsy is temporal lobe
epilepsy (TLE). The role of astrocytes in the presentation and development of TLE
has been increasingly studied and discussed within the literature. The most common
histopathological diagnosis of TLE is hippocampal sclerosis. Hippocampal sclerosis is
characterized by neuronal cell loss within the Cornu ammonis and reactive astrogliosis.
In some cases, mossy fiber sprouting may be observed. Mossy fiber sprouting has been
controversial in its contribution to epileptogenesis in TLE patients, and the mechanisms
surrounding the phenomenon have yet to be elucidated. Several studies have reported
that mossy fiber sprouting has an almost certain co-existence with reactive astrogliosis
within the hippocampus under epileptic conditions. Astrocytes are known to play an
important role in the survival and axonal outgrowth of central and peripheral nervous
system neurons, pointing to a potential role of astrocytes in TLE and associated
cellular alterations. Herein, we review the recent developments surrounding the role of
astrocytes in the pathogenic process of TLE and mossy fiber sprouting, with a focus on
proposed signaling pathways and cellular mechanisms, histological observations, and
clinical correlations in human patients.
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INTRODUCTION

The definition of temporal lobe epilepsy (TLE) has not experienced significant revision since it was
defined in 1985 by the International League Against Epilepsy (ILAE) as a condition characterized by
recurrent, unprovoked seizures originating from the medial or lateral temporal lobe (ILAE, 1985).
Focal-onset epilepsy, previously referred to as partial-onset, makes up approximately 60% of adult
epilepsies, with TLE being the most common form of focal-onset epilepsy to be referred for surgical
intervention due to being refractory to antiepileptic drugs (AEDs; Tellez-Zenteno and Hernandez-
Ronquillo, 2011). TLE is further divided into mesial TLE (mTLE) and lateral TLE also known
as neocortical TLE (nTLE), dependent on the structure in which epileptogenesis occurs (Tellez-
Zenteno and Hernandez-Ronquillo, 2011). The temporal lobe is considered the most epileptogenic
region within the brain and mTLE represents approximately 40% of adult epilepsies (Ladino et al.,
2014). TLE lesions are most often a result of hippocampal sclerosis (HS), cortical development
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malformations, benign tumors, vascular formations, and post-
infectious or post-traumatic gliosis (Cendes, 2005). Risk factors
for TLE consist of febrile seizures, CNS infections, head trauma,
and perinatal injuries (Ladino et al., 2014). TLE can be sporadic
or familial and typical presentation of a seizure episode begins
with lack of responsiveness and staring, often with hand or
mouth automatisms (Ladino et al., 2014). To diagnose TLE,
a series of medical tests and imaging are performed. Clinical
semiology, or seizure signs and symptoms, is often the first
step in epilepsy diagnosis and seizure localization followed by
electroencephalogram (EEG) and/or various imaging techniques
including magnetic resonance imaging (MRI), positron emission
tomography (PET), and ictal perfusion single photon emission
computed tomography (SPECT) (Ladino et al., 2014). Further
evaluation through language and memory tests including
neuropsychological evaluations, Wada test, and functional MRI
(fMRI) can help to further localize and lateralize seizure
activity (Sheth, 2002; Ladino et al., 2014). In 60% of TLE
patients, appropriate seizure control can be achieved with
AED treatment, while the remaining 40% of TLE patients
are considered to have drug resistant epilepsy (DRE) (Kwan
and Sander, 2004). TLE patients who are refractory to AED
treatment may be candidates for surgical or neuromodulation
treatments (Ladino et al., 2014). mTLE is one of the most
common forms of epilepsy referred for surgical treatment
(Tellez-Zenteno and Hernandez-Ronquillo, 2011).

The most common finding upon histological examination
of tissues from drug-resistant TLE patients is HS (Blumcke
et al., 2012). HS is characterized by pyramidal cell loss
within any of the 3 Cornu ammonis (CA) fields as well
as hilus, which can also be referred to as CA4, and is
categorized into HS Types 1–3 (Blumcke et al., 2013). This
neuronal cell loss is often accompanied by astrogliosis, which
is revealed by a network of intense glial fibrillary acidic
protein (GFAP) positive immunostaining (Blumcke et al., 2013).
A fourth HS type, termed no-HS, shows reactive gliosis
only, with no pyramidal cell loss observed (Blumcke et al.,
2013). Additionally, dentate gyrus malformations, including
granule cell layer duplication or dispersion as well as mossy
fiber sprouting may be observed in HS tissue samples
(Schmeiser et al., 2017).

The term mossy fiber was coined by Cajal (1893, 1911)
due to the fibers’ similarity in appearance to Cajal’s previously
discovered cerebellar mossy fibers. These fibers are the non-
myelinated axons of granule cells, and make up the second
connection of the trisynaptic model (Blaabjerg and Zimmer,
2007). Mossy fibers possess multiple large presynaptic boutons,
which surround the postsynaptic thorny excrescences protruding
from the CA3 pyramidal cell apical dendrites (Evstratova and
Toth, 2014). The phenomenon observed in HS termed mossy
fiber sprouting is characterized by the granule cell axons
projecting back into the molecular layer of the dentate gyrus
(Cavarsan et al., 2018).

Traditionally, astrocytes have been described as neuron-
supporting cells. It has become abundantly clear that astrocytes
provide a much wider range of roles within the CNS, including
the regulation of neuronal synaptogenesis (Allen et al., 2012;

Tsai et al., 2012; Chung et al., 2013). Astrocytes provide a
complex range of functions for both the healthy and injured CNS.
In the following sections, we will briefly review the anatomy and
histology of the human mesial temporal lobe (MTL) structures,
with a focus on hippocampus. This will be followed by discussion
of common pathological findings of TLE, the current research
related to the astrocytes role in TLE, mossy fiber sprouting, and
clinical correlations.

HUMAN MESIAL TEMPORAL LOBE
STRUCTURES AND TEMPORAL LOBE
EPILEPSY

The MTL is comprised of several distinct structures including
the hippocampal formation, amygdaloid complex, perirhinal
cortex, and parahippocampal cortex (Suzuki and Amaral, 2003,
2004). The hippocampal formation can be further divided into
the entorhinal cortex, dentate gyrus, hippocampus proper, and
subiculum (Kensinger and Corkin, 2008). The most anterior
structure within the MTL is the amygdala, with the hippocampus
sitting posterior to the structure (Stefanacci et al., 1996; Kensinger
and Corkin, 2008). The entorhinal cortex is located within the
anterior and medial area of the temporal lobe and receives
strong projections from other MTL structures: the perirhinal and
parahippocampal cortices (Amaral et al., 1984; Kensinger and
Corkin, 2008).

The MTL is integral to the transfer of short-term memory to
long-term memory, and is predominantly involved in episodic
and declarative memory in spatial navigation and experienced
events (Engel, 2003; Kensinger and Corkin, 2008). Based on the
known role of the MTL, it is not surprising that substantial
damage to the MTLs can result in amnesia and an inability to
create and preserve new memories (Squire, 2009).

Hippocampus
Lorente de No (1934) divided the hippocampus proper into
subregions termed CA1, CA2, CA3, and CA4. The CA subregions
contain pyramidal neurons as primary projection neurons,
and each subregion is distinguishable by its pyramidal neuron
morphology and morphometry (Figure 1; Knowles, 1992).
Surrounding the CA4, also referred to as the dentate hilus,
in a horseshoe shaped fashion is the dentate gyrus which
acts as a gateway to the perforant pathway of the trisynaptic
circuit (Figure 1; Knowles, 1992). Within the dentate gyrus,
the typically compact granule cell layer is densely populated
with mainly granule cells, the axons of which (termed mossy
fibers) then project through the dentate hilus toward the
dendrites of pyramidal cells in the CA3 subfield (Figure 2A;
Blaabjerg and Zimmer, 2007). Recently, these mossy fiber
collaterals have also been observed to make synaptic contact
with dentate hilus and CA3 interneurons (Frotscher et al.,
1994, 2006; Acsady et al., 1998; Henze et al., 2000). Within
the CA3, mossy fibers innervate excitatory pyramidal cells,
as well as inhibitory GABAergic cells (Acsady et al., 1998).
Interestingly, a single mossy fiber contacts more GABAergic
target cells than CA3 pyramidal cells, 30–50 and 10–20
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FIGURE 1 | Macro- and microscopic images of human temporal lobe and hippocampus. (A) Coronal section of the cerebral hemispheres at level of lateral geniculate
nuclei. The boxed area shows hippocampus and the parahippocampal gyrus. (B) Hematoxylin, eosin, and Luxol fast blue prepared histology section of the boxed
area in A. (C) A higher magnification view of the hippocampal proper. Dashed lines represent boundaries of CA sectors. (DG, dentate gyrus; CA1–CA4, sectors of
Cornu ammonis.) Scale bar in B: 3 mm, C: 800 µm. (Department of Pathology and Laboratory Medicine, London Health Sciences Centre, University Hospital,
London, ON, Canada).

FIGURE 2 | Illustration of major hippocampal connections. (A) A simplified diagram of the tri-synaptic circuit of the hippocampus. The entorhinal cortex provides
synaptic input to the granule cells of the dentate gyrus via the perforant path (green). The granule cells project to CA3 pyramidal neurons via mossy fibers (purple).
CA3 pyramidal neurons project to CA1 pyramidal neurons via Schaffer collaterals (light blue). CA1 pyramidal neuron axons carry hippocampal output (dark blue).
(B) A diagram depicting mossy fiber sprouting. In hippocampal sclerosis associated mossy fiber sprouting, mossy fibers display aberrant growth and project back to
the molecular layer of the dentate gyrus containing the apical dendrites of the granule cells (red). (DG, dentate gyrus: CA, Cornu ammonis) (Created with
BioRender.com).

respectively (Acsady et al., 1998). The higher level of contact
with GABAergic cells indicates that there may be a role for
granule cells in the regulation of CA3 pyramidal cell output
(Szabadics and Soltesz, 2009). Aside from the granule cell layer,
the mammalian dentate gyrus also contains the subgranular
zone/polymorphic layer, located between CA4 and the granule
cell layer, and the molecular layer, the “outer” layer of the
dentate gyrus located toward the hippocampal sulcus (Cavarsan
et al., 2018). In healthy brain tissue, the molecular layer is
typically cell-free, containing apical dendrites from the adjacent
granule cell layer which conduct signals from the entorhinal
cortex and commissural projections through excitatory terminals
(Cavarsan et al., 2018).

Amygdala
The amygdala is located deep within the temporal lobe, in close
proximity to the hippocampus. The amygdala is composed on
several nuclei divided into the basolateral amygdala groups,
cortical like groups, and centromedial groups (Sah et al., 2003).
The amygdala has been shown to have a strong connection
with the parahippocampal gyrus (including the hippocampus)
in animal (McGaugh, 2000; McGaugh and Roozendaal, 2002)
and human studies (Dolcos et al., 2004; Phelps, 2004; Smith
et al., 2006) when processing emotional memory. Specifically,
the basolateral amygdala groups have been shown to innervate
primarily the CA1 sector of the hippocampus, with some
projections identified in CA3 (Pikkarainen et al., 1999). The
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basolateral amygdala projections to CA1 have been suggested to
be excitatory in nature (Felix-Ortiz et al., 2013; Yang et al., 2016).

Temporal Lobe Epilepsy
Temporal lobe epilepsy is the most common form of focal-onset
epilepsy to be referred for surgical intervention due to being
refractory to AEDs, with the most frequent finding being HS
(Tellez-Zenteno and Hernandez-Ronquillo, 2011; Blumcke et al.,
2012). HS has been divided into four subtypes with varying
degrees of sector-specific neuronal loss. This hallmark neuronal
loss is always associated with severe astrogliosis, visualized by
a GFAP-positive meshwork of processes (Blumcke et al., 2013).
HS Type 1 is the most common form among HS surgical cases,
making up approximately 60–80% in reported series (Bruton,
1988; Davies et al., 1996; Blumcke et al., 2002, 2007; de Lanerolle
et al., 2003; Thom et al., 2010; Blumcke et al., 2013). In HS
Type 1, pyramidal neuron loss is most severe in the CA1
sector with over 80% cell loss (Blumcke et al., 2012). Other
sectors also show significant neuronal loss, specifically CA3
and CA4 with 30–90 and 40–90% neuronal loss, respectively
(Blumcke et al., 2013). Outside of the CA sectors, neuronal
loss can also affect the dentate gyrus with 50–60% granule cell
loss in HS Type 1, which may be accompanied by varying
types of granule cell pathology including granule cell dispersion
and ectopic or bilayered granule cells (Figures 3A,B; Wieser,
2004; Blumcke et al., 2013). HS Type 2 is much less common,
making up only 5–10% of surgical HS cases (Blumcke et al.,
2013). In HS Type 2, pyramidal neuronal loss is predominantly
found in CA1 affecting almost 80% of pyramidal cells while
other CA sectors show mild neuronal loss (Blumcke et al.,
2013). The dentate gyrus can also be affected in HS Type 2,
however granule cell dispersion is the more common granule
cell pathology while significant granule cell loss is uncommon
(Blumcke et al., 2007). HS Type 3 is the rarest subtype, making
up only 4–7.4% of surgical cases (Bruton, 1988; Blumcke et al.,
2007; Thom et al., 2010). HS Type 3 is characterized by
pyramidal cell loss predominantly in CA4 (approximately 50%
cell loss) as well as the dentate gyrus (approximately 35% cell
loss), while other CA sectors are only moderately affected with
approximately 20–30% cell loss dependent on the CA sector
(Blumcke et al., 2012). The fourth HS subtype, termed No-HS is
arguably the most atypical due to the virtually intact pyramidal
cell population in all of the CA sectors, with reactive gliosis
only (Figures 3C,D; Blumcke et al., 2007). In non-epileptic
hippocampus, the CA sectors are well populated with neurons
and the positive GFAP immunolabelling is primarily localized in
the white matter (Figures 3E,F). Approximately 20% of surgical
TLE cases encounter this diagnosis, making it the second most
common subtype of HS, yet relatively little is known surrounding
the pathological mechanisms of this unique subtype. No-HS is
of keen interest in terms of potential for glia-mediated seizure
activity in TLE due to the gliosis-only histopathological diagnosis.
HS surgical resection tissue may also present with sprouting
of the granule cell axons, termed mossy fiber sprouting. Mossy
fiber sprouting is thought to be triggered by the “injury per
se,” which promotes neuronal activity and growth factor release,
leading to the aberrant growth of the mossy fiber back into

the molecular layer of the dentate gyrus (Figure 2B; Ikegaya,
1999; Binder et al., 2001; Koyama et al., 2004; Bekirov et al.,
2008; Shibata et al., 2013; Song et al., 2015). The contribution
of mossy fiber sprouting to epileptogenesis and chronic epilepsy
has been debated within the literature, with some arguing for a
compensatory role (Sloviter, 1992; Sloviter et al., 2006) and others
a more epileptogenic role (Tauck and Nadler, 1985; Feng et al.,
2003). Mossy fiber sprouting has also been argued to simply be an
epiphenomenon of temporal lobe epilepsy (Gloor, 1997). Aside
from HS, other findings upon histological examination of TLE
surgical resection tissue include focal cortical dysplasia (FCD),
vascular malformation, tumors and trauma (Al Sufiani and Ang,
2012; Blumcke et al., 2017).

ASTROCYTIC FUNCTIONS IN NORMAL
AND DISEASED CENTRAL NERVOUS
SYSTEM

In the healthy CNS, an astrocyte network is present in
virtually all regions and is organized in a neat, continuous,
and non-overlapping manner (Sofroniew and Vinters, 2010).
In gray matter, astrocyte-astrocyte contact is made through
gap junctions (GJs) at the tips of astrocytic processes, and a
similar form of contact is thought to exist in white matter
(Bushong et al., 2002; Ogata and Kosaka, 2002; Nedergaard
et al., 2003; Halassa et al., 2007b; Sofroniew and Vinters,
2010). Within the hippocampus, a single astrocyte’s processes
are approximated to make contact with multiple neurons,
enveloping over 100,000 synapses (Bushong et al., 2002; Ogata
and Kosaka, 2002; Halassa et al., 2007b). Astrocytes exhibit
sodium and potassium channels and display regulated increases
in intracellular calcium concentrations (Cornell-Bell et al.,
1990; Charles et al., 1991). Astrocytes’ regulated increases of
intracellular calcium is suggested to have a functional role
in communication between astrocytes and in astrocyte-neuron
communication, including calcium elevations being triggered
by transmitters released during neuronal activity and calcium
elevations triggering release of transmitters from astrocytes into
the extracellular space to elicit currents in neurons (Nedergaard
et al., 2003; Volterra and Meldolesi, 2005; Halassa et al., 2007a;
Shigetomi et al., 2008; Perea et al., 2009). Astrocytes have
also been suggested to play a role in regulation of blood
flow, synapse function, energy and metabolism, blood brain
barrier (BBB), and fluid, ion, pH, and transmitter homeostasis
(Sofroniew and Vinters, 2010). Early investigations suggest
that structural, molecular, and possibly functional diversity in
astrocytes exist, and longstanding evidence shows that the ratio
of astrocytes to neurons approaches equality in organisms with
more sophisticated neural tissues (i.e., worms 1:6 and humans
1.4:1), eluding to an increasingly important role for astrocytes
(Nedergaard et al., 2003; Bachoo et al., 2004; Hewett, 2009).

In response to injury a diverse population of reactive
astrocytes can be observed, varying between and within regions
of the CNS (Giovannoni and Quintana, 2020). In vivo, Type
A1 and A2 reactive astrocytes have been described, with A1
astrocytes displaying neurotoxic effects in response to injury
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FIGURE 3 | Immunohistochemistry stained histological sections of hippocampus tissue resected from patients with temporal lobe epilepsy. (A,B) An example of
hippocampal sclerosis Type 1. There is significant pyramidal neuronal loss in CA1 and CA4. CA3 and dentate gyrus also show moderate to severe neuronal loss.
Dentate granule cell dispersion and bilamination (“tram-tracking”) are also present (A). There is diffuse reactive gliosis (B). (C,D) Hippocampal sclerosis Type 4
(no-HS). There is no significant neuronal loss in the CA sectors (C). Gliosis, more prominent in the CA4, is present (D). (E,F) Non-epileptic hippocampus from an
autopsy case. The CA sectors are well populated with neurons. Strong positive GFAP staining is localized in the white matter (alveus, fimbria, and striatum
lacunosum). Non-specific staining is also noted in CA4 and CA3. Immunohistochemistry with antibodies to NeuN in (A,C,E) and GFAP in (B,D,F). Scale bar 500 µm.
(CA, Cornu ammonis; DG, dentate gyrus; a, alveus; f, fimbria; sl, striatum lacunosum. Department of Pathology and Laboratory Medicine, London Health Sciences
Centre, University Hospital, London, ON, Canada).

while A2 astrocytes provide a neuroprotective role, however, it
is suggested that additional subtypes of reactive astrocytes are
present within the CNS (Giovannoni and Quintana, 2020). Local
biochemical alterations promote astrogliosis surrounding a lesion
following CNS injury (Sharma et al., 2015). Astrogliosis is a CNS

defense response, which in its initial stages minimizes and repairs
damage, but can subsequently result in harmful effects. Reactive
astrogliosis, also termed astrocytosis, displays proliferation of
astrocytes, characterized by hypertrophied processes and soma,
and high expression of GFAP, nestin, and vimentin. The

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 September 2021 | Volume 15 | Article 725693

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-725693 September 24, 2021 Time: 18:15 # 6

Twible et al. Astrocytes and Temporal Lobe Epilepsy

FIGURE 4 | Proposed mechanisms of astrocyte involvement in TLE. (1.) Hyperactivation of mTOR within reactive astrocytes decreases Glt1 stability, resulting in
reduced extracellular glutamate clearance and enhanced neuronal excitability. (2.) Increased expression of astrocytic TNFα results in excess release of glutamate
from astrocytes in a Ca2+ dependent manner, affecting neuronal excitability. (3.) Reactive astrocytes over-produce and release inhibitory GABA through the Best1
channel as a compensatory mechanism to offset the excitatory shift of neurons in epilepsy. (4.) Reduced expression of alpha-syntrophin, responsible for anchoring
adluminal Aqp4, results in mislocalization of adluminal Aqp4 to abluminal astrocytic endfeet. This mislocalization results in disrupted water homeostasis and is
associated with delayed K+ clearance. (5.) Neuronal GluR expression is increased in TLE. Astrocytic Cx43 hemichannels release glutamate and D-serine resulting in
pro-epileptic connexin activity. (6.) Loss of astrocytic Kir4.1 potassium channel results in disturbed K+ buffering and more positive neuron resting potential,
enhancing neuronal excitability. (Created with BioRender.com).

degree of astrogliosis can vary from mild to severe, with slight
alterations in molecular profile and astrocytic hypertrophy or
glial scar formation, respectively (Sharma et al., 2015). As
the severity of astrogliosis increases, individual territories of
astrocytes are lost with significant overlap of astrocyte domains,
resulting in tissue distortion (Karimi-Abdolrezaee and Billakanti,
2012). Due to the many roles astrocytes play in the CNS,
reactive astrocytes have the potential to impact a wide array
neural activity through loss of essential functions and gain of
detrimental effects. Reactive astrocytes can have detrimental
effects such as aggravating inflammation, releasing possibly
excitotoxic glutamate, compromising BBB function, and possibly
contributing to seizure genesis (Brambilla et al., 2005; Jansen
et al., 2005; Takano et al., 2005; Sanchez-Del-Rio et al., 2006;
Argaw et al., 2009; Brambilla et al., 2009). However, reactive
astrocytes have also been shown to repair the BBB, provide neural
protection, and contain the spread of infection and inflammatory
cells (Sofroniew and Vinters, 2010). Animal models suggest that
disruption of reactive astrocyte function can attenuate glutamate
uptake resulting in excitotoxic neurodegeneration or increased
inflammation (Rothstein et al., 1996; Bush et al., 1999; Swanson
et al., 2004; Voskuhl et al., 2009).

In regards to TLE, reactive astrogliosis is often prominent
and has a virtually certain co-existence with HS, the most
common histopathological finding upon examination of TLE
surgical resection tissue (EngelJr., 1996). Within HS, astrocyte
proliferation is most evident in regions of pyramidal neuron

loss. Supporting the notion of astrocytic involvement in TLE is
the use of AEDs that act on calcium signaling within astrocytes
(Tian et al., 2005).

SELECTED CELLULAR MECHANISMS
PERTINENT TO TEMPORAL LOBE
EPILEPSY

Studies from TLE patients and related animal models have
demonstrated alterations in expression and function of
several cellular pathways expressed within astrocytes. These
findings have implicated astrocyte dysfunction in neuronal
hyperexcitation, neurotoxicity, and epileptogenesis or seizure
spread (Steinhauser et al., 2012). Current knowledge and
advances regarding mammalian target of rapamycin (mTOR)
pathway, gliotransmission, astrocytic GABA, aquaporin 4
(Aqp4), GJs, and potassium regulation in relation to their
potential contribution to TLE will be summarized.

Mammalian Target of Rapamycin
Pathway
The mTOR pathway is known to be a critical regulator of
neuronal function, growth, and survival, and has been linked
to numerous neurological diseases (Griffith and Wong, 2018).
Within the CNS mTOR is expressed in brain endothelial
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cells, neurons, microglia, and astrocytes (Chong et al., 2012).
Expression of mTOR within the cells of the CNS is kept at
a relatively low level under normal physiological conditions,
including within the astrocyte population (Codeluppi et al., 2009;
Xu et al., 2010). The activity of the mTOR protein is influenced by
various factors including: growth factors and insulin, mitogens,
hormones, amino acids, and metabolism, and its expression can
become highly upregulated when the CNS is experiencing injury
(Chong et al., 2012).

The mTOR belongs to the family of phosphoinositide 3-kinase
(PI3-K) related kinases (Latacz et al., 2015). This serine-
threonine kinase is a 289 kDa multi-domain protein that is also
referred to as FK506-binding protein 12-rapamycin complex-
associated protein 1 (FRAP1) (Latacz et al., 2015). A single gene,
termed FRAP1, is responsible for encoding mTOR in mammals
(Brown et al., 1994; Chong et al., 2010). The function of this
kinase protein relies on a catalytic subunit in mTORC1 and
mTORC2 protein complexes (Chong et al., 2010; Benjamin et al.,
2011). mTORC1 and mTORC2 are responsible for control of
protein translation and control of cytoskeleton reorganization,
respectively (Gingras et al., 1998; Sarbassov et al., 2004).

Increased mTOR activity has been suggested to play a
role in the epileptogenesis of temporal lobe epilepsy, with
inhibition of mTOR via rapamycin decreasing neuronal cell
death, neurogenesis, mossy fiber sprouting, and the development
of spontaneous epilepsy in a rat model (Zeng et al., 2009).
Additionally, rapid and transient mTOR activation was observed
in the hippocampus and neocortical tissue after status epilepticus
was induced and was followed by a subsequent increase in mTOR
during epileptogenesis and continued post-epilepsy onset within
several rodent models (Buckmaster et al., 2009; Zeng et al.,
2009; Huang et al., 2010). This suggests that epileptogenesis and
chronic seizures are influenced by mTOR activity. Following
these findings, Sha et al. (2012) found that expression of
phosphorylated ribosomal protein S6 (pS6), an mTOR target,
was increased within hippocampal granule cells and reactive
astrocytes during the chronic phase of epileptogenesis using the
intrahippocampal kainic acid model of TLE.

Interestingly, in human sclerotic hippocampi the mTOR
signaling was found predominantly in reactive astrocytes, with
only few cases presenting with mTOR induction in the small
granule cell neurons (Sha et al., 2012; Sosunov et al., 2012).
Using a transgenic mTOR knockout mouse model, deletion of
mTOR from reactive astrocytes combatted the typical progressive
increase in seizure frequency observed in epileptogenesis and
reduced astrogliosis within the sclerotic hippocampus. However,
no effect on aberrant mossy fiber reorganization was observed
(Wang et al., 2017). The inhibition of mTOR resulted in the
promotion of Glt1 stability in vitro, and in-turn, increased
astrocyte removal of extracellular glutamate, suggesting a role
for mTOR in regulating Glt1 stability in astrocytes through
prevention of Glt1 degradation (Wang et al., 2017). Glt1 assists
in maintaining extracellular glutamate levels below a neurotoxic
threshold, and down-regulation of Glt1 in reactive astrocytes
promotes a decrease in inhibitory synaptic transmission during
epileptogenesis, suggesting enhanced excitability (Danbolt, 2001;
Huang and Bergles, 2004; Regan et al., 2007; Petr et al., 2015).

Therefore, it is possible that hyperactivation of mTOR within
reactive astrocytes reduces extracellular glutamate clearance,
potentially resulting in enhanced excitability and temporal lobe
epilepsy progression.

The vascular growth factor (VEGF) receptor, VEGFR-3, has
been observed as highly expressed within reactive astrocytes
of patients with tuberous sclerosis and mTLE (Zhang et al.,
2012; Sun et al., 2016; Castaneda-Cabral et al., 2019). This
increased expression of VEGFR-3 within reactive astrocytes is
mirrored in the pilocarpine-induced status epilepticus rodent
models (Cho et al., 2019). Activation of VEGFR-3 has been
recently reported to possibly induce PI3-K and serine-threonine
kinase Akt pathways which are upstream activators of the
mTOR pathway (Ruiz de Almodovar et al., 2009; Claesson-
Welsh, 2016). VEGFR-3 immunoreactivity and mTOR activation
demonstrate a positively correlated increase in pilocarpine-
induced SE rodent model reactive astrocytes, and inhibition of
both mTOR and VEGFR-3 resulted in attenuated Glt1 expression
in hippocampal reactive astrocytes after SE (Jeong et al., 2021).
This suggests VEGFR-3 upregulation-mediated mTOR induction
within reactive astrocytes may be involved in GLT-1 expression
in the hippocampus post-SE, leading to a reduction in neuronal
hyperexcitability (Jeong et al., 2021).

The relationship between mTOR inhibition and Glt1 appears
to be controversial, with some studies depicting a positive
relationship in terms of extracellular glutamate clearance (Zeng
et al., 2008; Wang et al., 2017), and others inferring a negative
relationship (Jeong et al., 2021). This controversy could in part
be due to the phase of epilepsy being investigated, as the negative
relationship between mTOR inhibition and Glt1 expression was
evident in a subacute phase of epilepsy (Jeong et al., 2021),
while the positive relationship between mTOR inhibition and
Glt1 stability was reported in a chronic phase of epilepsy (Wang
et al., 2017). The mTOR pathway is now widely accepted to be
involved in TLE, however, more research is needed to elucidate
the relationship between mTOR activity within astrocytes and
Glt1 expression.

Mammalian target of rapamycin hyperactivation has also been
widely associated with mossy fiber sprouting in TLE. Rapamycin’s
inhibitory effect on mTOR activity and subsequently mossy fiber
sprouting has been demonstrated numerous times using various
models of epilepsy (Zeng et al., 2009; Huang et al., 2010; Tang
et al., 2012; van Vliet et al., 2012; Guo et al., 2013; Yamawaki et al.,
2015; Hester et al., 2016). What has not been well established is
the consequence of mossy fiber reorganization on seizure activity.
Some studies have correlated mossy fiber reorganization with
increased excitability (LaSarge et al., 2015), while others have
suggested that aberrant growth of mossy fibers have no effect on
seizure activity (Buckmaster and Lew, 2011; Heng et al., 2013).

Gliotransmission
One of the major functions of an astrocyte is gliotransmission,
or, the release of gliotransmitters (Riquelme et al., 2020).
The neurotransmitters released by astrocytes regulate synaptic
transmission and neuronal excitability through the functional
unit formed by the astrocyte and neuron, termed the “tripartite
synapsis” (Perea and Araque, 2007; Riquelme et al., 2020).
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Therefore, dysfunction in gliotransmission could have an
effect on neuronal activity and a role in TLE via alterations
in astrocytic neurotransmitters. Within the astrocyte-neuron
functional unit, the astrocyte processes envelope the neuronal
synapses, where gliotransmitters can be released dependent on
Ca2+ concentrations (Riquelme et al., 2020). In non-pathologic
CNS conditions, neuronal and glial release of adenosine
triphosphate (ATP), glutamate, GABA and acetylcholine can
subsequently cause an intracellular rise in Ca2+ within proximal
astrocytes through activation of metabotropic receptors (Perea
and Araque, 2007; Navarrete et al., 2012; Pascual et al., 2012).
This Ca2+ rise within the astrocyte triggers the further release
of gliotransmitters, including glutamate, ATP and D-serine, from
the astrocyte processes within the tripartite synapsis (Perea and
Araque, 2007; Mariotti et al., 2016). Heuser et al. (2018) found
that within an epileptic mouse model, an increase in astrocytic
Ca2+ waves correlated with an increase in glutamate release
from astrocytes.

Within the tripartite synapse, glutamate can have both
presynaptic and postsynaptic effects within excitatory and
inhibitory neuronal networks (Fellin et al., 2004; Perea et al.,
2016). Glutamate that is spontaneously released from astrocytes
can trigger slow inward currents (SICs) postsynaptically, through
NMDA receptors containing GluN2B on nearby neurons
(Riquelme et al., 2020). In a rat model of chronic TLE, it was
found that astrocytes within hippocampal slices presenting with
astrogliosis displayed an increased occurrence of spontaneous
slow Ca2+ transients (Alvarez-Ferradas et al., 2015). This Ca2+

transient pattern is suggestive of hyperexcitable astrocytes
(Alvarez-Ferradas et al., 2015). A rise in SICs was also observed,
indicating increased glutamate-mediated gliotransmission which
up-regulates the basal probability of neurotransmitter release
from CA3-CA1 synapses within the epileptic hippocampus
(Alvarez-Ferradas et al., 2015). Therefore, in a Ca2+ dependent
manner, astrogliosis-associated hyperexcitable astrocytes
display an increased release of gliotransmitters that can affect
neuronal excitability.

TNF-alpha (TNFα) is a proinflammatory cytokine that has
been shown to regulate synaptic activity in the hippocampus
through control of astrocyte glutamate release, and is also
upregulated in epilepsy (de Bock et al., 1996; Avignone et al.,
2008; Santello et al., 2011; Habbas et al., 2015; Patel et al.,
2017). It has been observed that an increase in TNFα results
in a rise in Ca2+ within the astrocyte (Nikolic et al., 2018).
The effects of TNFα on Ca2+ levels are inhibited when a Ca2+

chelator is used to dialyze the astrocytes, indicating that TNFα

triggers astrocyte glutamate release through a Ca2+ dependent
mechanism (Nikolic et al., 2018). Previous work has implicated
the purinergic receptor P2Y1 in the release of glutamate from
astrocytes within CA1 (Shen et al., 2017). Blocking P2Y1 has been
shown to inhibit Ca2+ astrocyte response triggered by TNFα,
indicating a key role for P2Y1 in the activation of astrocytes by
TNFα (Nikolic et al., 2018).

Astrocytic GABA
The major cause of epilepsy has been suggested to be a shift
in the neural network of the brain toward excitation, straying

away from the normally balanced excitatory-inhibitory state
(Sloviter, 1994; Maglóczky and Freund, 2005; Fritschy, 2008;
Tóth et al., 2010; Huusko et al., 2015). This hypothesis however
has previously struggled to explain the intermittent nature of
epileptic seizures, that is, those experiencing epilepsy are not
in a constant state of excitatory seizing (Muller et al., 2020).
A possible explanation for the relatively rare seizure event is
a compensatory mechanism that is capable of restoring the
balance of excitation–inhibition within the brain for at least
a portion of time (Walker and Kullmann, 2012; Pavlov and
Walker, 2013; Staley, 2015). It has been hypothesized that
reactive astrocytes, associated with many forms of epilepsy,
aberrantly overproduce and release GABA which then activates
high affinity, slowly desensitizing extrasynaptic GABAA receptors
(GABAARs) (Walker and Kullmann, 2012). In accordance with
this hypothesis, recent work has implicated reactive astrocytes
in the compensatory–inhibitory mechanism through the release
of tonic GABA (Muller et al., 2020; Pandit et al., 2020).
Tonic inhibition occurs through the activation of extrasynaptic
GABAAR, in contrast to phasic inhibition occurring within the
synapse causing a short, spatially restricted inhibition (Mody and
Pearce, 2004; Semyanov et al., 2004; Farrant and Nusser, 2005;
Lee and Maguire, 2014). Tonic inhibition is a more prolonged
and continuous potent mode of inhibitory signaling, resulting in
this form of inhibition being a candidate in mediating neuronal
excitability (Mody and Pearce, 2004; Semyanov et al., 2004;
Farrant and Nusser, 2005; Lee and Maguire, 2014). Astrocytic
GABA has been reported as produced through monoamine
oxidase-B and subsequently released through the Best1 channel
to moderate tonic inhibition in multiple brain regions, including
the hippocampus (Mody and Pearce, 2004; Semyanov et al.,
2004; Farrant and Nusser, 2005; Lee and Maguire, 2014). This
astrocytic tonic GABA effects brain function through regulation
of the excitatory-inhibitory balance in both physiological and
pathological conditions (Jo et al., 2014; Kim Y. et al., 2017;
Woo et al., 2018). Interestingly, aberrant GABA has even been
suggested as a useful molecular marker of reactive astrocytes
(Chun and Lee, 2018). Using mouse models, it was found that
Best1-mediated tonic inhibition inhibits CA1 neuronal firing and
in turn suppresses seizure susceptibility (Pandit et al., 2020).
Further, astrocyte-specific overexpression of Best1 within a Best1
KO mouse restores tonic inhibition and seizure susceptibility,
strengthening the idea that astrocytic Best1 contributes to
tonic inhibition by GABA release which suppresses seizure
susceptibility (Pandit et al., 2020). Muller et al. showed a loss
of hippocampal interneurons, thought to be responsible for a
large portion of tonic inhibition, in a rodent model of TLE, yet
interestingly found tonic inhibition levels to be the same between
kainate-injected mice and control mice within the CA1 sector of
the hippocampus (Glykys and Mody, 2007; Muller et al., 2020).
However, within dentate granule cells, tonic currents were found
to be higher in kainate-injected mice than controls, indicating
preserved as well as increased GABA levels in the epileptic
hippocampus despite GABAergic interneuron loss (Muller et al.,
2020). In this study, astrocytes were found to display pronounced
GABA accumulation and, similar to Pandit et al.’s (2020) finding,
suggested GABA accumulation through synthesis rather than
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extracellular uptake (Muller et al., 2020). This data supports
the notion that a compensatory mechanism exists to remediate
the excitatory shift of the neural network in epilepsy, and that
the occurrence of a seizure is possibly a periodic failing of
this less stable compensatory mechanism (Pavlov and Walker,
2013; Muller et al., 2020). This possibly protective role of GABA
released by reactive astrocytes presents a possible drug therapy
target to explore.

Aquaporin 4
Excessive extracellular potassium is generally accepted to
enhance seizure susceptibility, and is a possible implication
of Aqp4 in epilepsy due to its critical role in potassium
clearance (Dudek and Rogawski, 2005). Aqp4, the most
abundant aquaporin in the CNS, is a perisynaptic water channel
predominantly expressed on astrocytic endfeet, anchored by the
dystrophin complex (Neely et al., 2001; Dudek and Rogawski,
2005). The function of astrocytic Aqp4 is to transport water
away from neuropil during periods of high neuronal activity,
resulting in shrinkage of the extracellular space (Dudek and
Rogawski, 2005). This water is fluxed toward the subarachnoidal
space where the water is temporarily stored (Dudek and
Rogawski, 2005). Neuronal firing also results in an increase
in extracellular potassium, which under normal conditions, is
cleared by astrocytes in a process coupled with the flux of water
through Aqp4 (Nagelhus et al., 1999; Ostby et al., 2009; Haj-
Yasein et al., 2012). Therefore, Aqp4 is thought to be integral in
brain ion and water homeostasis during periods of high neural
activity (Amiry-Moghaddam and Ottersen, 2003). Suboptimal
potassium clearance by astrocytes leads to increased levels of
potassium within the extracellular matrix (ECM), potentially
contributing to seizure susceptibility. In the human sclerotic
hippocampus, an increase in Aqp4 has been observed while
expression of the anchoring protein dystrophin is decreased (Lee
et al., 2004). This observation led to the hypothesis that the
decrease in dystrophin results in a mislocalization of astrocytic
Aqp4, resulting in disturbed water and ion homeostasis (Lee
et al., 2004; Eid et al., 2005). The increase in Aqp4 levels
could be due to TLE-associated gliosis, and therefore a result
of an increased number of astrocytes within the epileptic brain.
The hypothesized disturbed ability of Aqp4 to flux water away
from the neuropil toward the subarachnoid space is supported
by the increased edema observed in brain imaging of the
sclerotic hippocampus (Lee et al., 2004). In latent-phase kainic-
acid (KA) treated rats, Aqp4 density in astrocyte adluminal
(facing capillaries) endfoot membranes was decreased, while the
Aqp4 density in abluminal (facing neuropil) endfoot membranes
was stable or slightly increased (Alvestad et al., 2013). Loss of
perivascular Aqp4, via deletion of Aqp4 anchoring protein alpha-
syntrophin, results in delayed extracellular potassium clearance,
swelling of perivascular astrocyte endfeet, and enhanced seizure
intensity (Amiry-Moghaddam et al., 2003). Alpha-syntrophin
(a dystrophin associated anchoring protein) was observed to
be reduced in the KA treated rats in the latent phase of
epilepsy (Alvestad et al., 2013). Alpha-syntrophin deletion has
been specifically observed to affect adluminal Aqp4 levels, while
abluminal Aqp4 remains relatively stable (Amiry-Moghaddam

and Ottersen, 2003). The association between adluminal Aqp4
and alpha-syntrophin likely explains the Aqp4 redistribution
rather than loss. A decrease in Aqp4 has been observed during the
latent phase of epilepsy, followed by a significant increase in Aqp4
protein levels 30 days pose SE (Hubbard et al., 2016). A previous
study observed a similar reduction in Aqp4 immunoreactivity in
the early phase of epilepsy (Lee et al., 2012). Another interesting
observation is that Aqp4 expression was regulated by seizure
activity in the contralateral hippocampus as well, where no
sclerotic changes occurred (Hubbard et al., 2016). This indicates
that regulation of Aqp4 by seizure activity does not appear
to require cell death or sclerosis to be present in the tissue
(Hubbard et al., 2016). Taken together, this evidence indicates
that Aqp4 dysregulation may take place early in the epileptogenic
process, disrupting ion and water homeostasis, and potentially
contributing to epileptogenesis (Dudek and Rogawski, 2005; Lee
et al., 2012; Alvestad et al., 2013; Hubbard et al., 2016). The
dysregulation of Aqp4 carries over to the chronic phase of
epilepsy, however, the pathological mechanisms in both phases
of epilepsy remain to be further elucidated.

Gap Junctions
Coordination in the neuronal network plays a crucial role in
epileptic electrical activities, mainly through GJ channels that
are the backbone for intercellular electrical coupling in the
central nervous system (Hamidi et al., 2014). Astrocytes express
many ion channels and transmitter receptors (Verkhratsky and
Steinhäuser, 2000) and are functionally conjugated to other
astrocytes and to oligodendrocytes by GJs (Kettenmann and
Ransom, 1988; Butt and Ransom, 1989; Robinson et al., 1993; von
Blankenfeld et al., 1993; Venance et al., 1995; Pastor et al., 1998).
The intercellular permeability between astrocytes facilitates the
diffusion of metabolites throughout the CNS tissues (Valiunas
et al., 2005). The diameter of a GJ channel is large, allowing the
diffusion of ions and molecules up to 1,000 Da. This permits
the penetration of many molecules that function as second
messengers, such as Ca2+, inositol trisphosphate (IP 3), cyclic
adenosine monophosphate (cAMP), and important metabolites
such as glucose, ATP, and their degraded products (Neijssen
et al., 2005). The primary GJ proteins in astrocytes are connexin
43 (Cx43), which is the most abundant astrocytic connexin
throughout the brain, including hippocampus (Gosejacob et al.,
2011). Cx30, Cx26, Cx40, Cx45, Cx46, and Cx47 have also been
shown to be expressed in these cells (Dermietzel et al., 1989;
Yamamoto et al., 1990; Rash et al., 2001; Zahs et al., 2003; Altevogt
and Paul, 2004). Neurons, particularly GABAergic interneurons,
have GJs predominantly consisting of Cx36 in various brain
regions (Rash et al., 2001). Connexins are glycoproteins that have
four transmembrane domains, two extracellular loops (ELs), one
cytoplasmic loop (CL), and a C- and N-terminal tail (CT and NT);
six connexins oligomerize into a hemichannel (or connexon),
and two hemichannels on opposing cell membranes form the
intercellular channel, or GJ (Delvaeye et al., 2018). They are
represented by 21 different isotypes in the human genome and
20 isotypes in the mouse genome (Willecke et al., 2002; Söhl and
Willecke, 2003).
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Gap junctions have a complex and controversial role in
epilepsy and two possibilities have emerged. Studies of cerebral
tissue from patients with epilepsy show upregulation of glial, but
not neuronal connexins, strengthening the hypothesis that glial
connexins are involved in seizures (Mylvaganam et al., 2010).
It has been shown that increased Cx43 mRNA expression in
temporal lobe neocortex from patients with refractory seizures
and in neocortex from brain tumors that trigger seizures (Naus
et al., 1991). Elevated Cx43 protein levels were identified in
mesial-temporal lobe epilepsy (MTLE) patients (Fonseca et al.,
2002; Collignon et al., 2006; Yao et al., 2009; Das et al., 2012).
In contrast, decreased Cx43 mRNA was revealed in hippocampal
tissue from patients with a complex partial seizure disorder
(Elisevich et al., 1997). In KA-induced mouse model, there
was a decrease in Cx30 expression within 12 and 24 h in the
hippocampus while it is associated with an upsurge of Cx30
expression in cerebral cortex within 6 h of injection (Condorelli
et al., 2002). When the junction blockers (octanol, carbenoxolone,
and propionic acid) were administered in rat hippocampal slices,
they reduce the duration of seizure that is induced by tetanic
stimulation of Schaffer collaterals; nonetheless, ammonium
chloride, which opens junctional coupling, elicits spontaneous
secondary after-discharges (Jahromi et al., 2002). Nonetheless,
Cx43 mostly has a role in pro-epileptic activity by releasing
Glu and the NMDA receptor co-agonist D-serine (Abudara
et al., 2018). When hemichannels open, they release multiple
substances, including Glu, D-serine, and ATP (Xing et al., 2019).
Glu receptor expression has been shown to express higher in
TLE patients than in non-epileptic control (Mathern et al., 1997).
Therefore, Glu and D-serine efflux cause significantly higher
excitatory impulses in TLE.

Astrocytes also express pannexins which show significant
homology with innexins, the proteins that form GJs in
invertebrates (Panchin et al., 2000). Unlike connexins, pannexins
are glycosylated (Penuela et al., 2007). Of the three mammalian
pannexins, pannexin1 and pannexin2 are expressed in the
CNS. Pannexin1 is unlikely to form functional channels but
may form functional hemichannels (Locovei et al., 2006;
Penuela et al., 2007). Some studies have demonstrated that
Panx1 plays important role in regulating epilepsy. It has been
documented that depletion of astrocytic Panx1 enhances while
the absence of neuronal Panx1 constricts seizure manifestations
in mice, suggesting different roles of astrocytic and neuronal
Panx1 in epileptogenesis (Wang et al., 2018). Dossi and
Blauwblomme (2018) found that the Panx1 channel promotes the
origination and preservation of epilepsy through ATP signaling
via purinergic 2 receptors. In addition, Panx1 expression was
detected to be positively correlated with the seizure frequency
in patients with FCD (Li et al., 2017). In comparison to Panx2,
the expression of Panx1 protein is significantly increased in
the temporal cortex of TLE patients than the normal group,
indicating that the Panx1 channel may be involved in the
pathogenesis of TLE (Jiang et al., 2013).

K+ ion Regulation
During periods of neuronal activity, fluctuations in extracellular
potassium (K+) concentration occur (Steinhauser et al., 2012).

Increases in extracellular K+ concentration can result in a
more positive resting potential and alterations in transmembrane
ion channels, receptors, and transporters (Steinhauser et al.,
2012). In vivo, extracellular K+ concentration shows substantial
increase during neuronal hyperactivity, similar to that observed
during epileptic activity (Steinhauser et al., 2012). This
observation eludes to a role for increased extracellular K+

concentration in the pathogenesis of epilepsy. Astrocytes express
a K+ channel, Kir4.1, that acts to influx K+ and has been shown
to have a substantial role in glial K+ buffering (Kofuji et al., 2000;
Djukic et al., 2007; Hibino et al., 2010). Kir4.1 knockout mouse
models show deficits in size, weight, movement, and an epileptic
phenotype (Kofuji et al., 2000; Djukic et al., 2007).

Kir4.1 and Aqp4 are both localized to the astroglial endfeet,
indicating a spatial and potentially functional relationship
between the transmembrane channels (Higashi et al., 2001).
Mouse models with a decreased number of Aqp4 channels
show impaired extracellular K+ clearance, and complete Aqp4
knockout show similar impairment and a prolonged seizure
duration (Amiry-Moghaddam et al., 2003; Binder et al., 2006).
A more recent study has shown functional independence of the
Kir4.1 channel and Aqp4, with Aqp4 null mice showing no
significant differences in membrane potential, Kir4.1 current,
Kir4.1 protein expression, or Kir4.1 unitary conductance (Zhang
and Verkman, 2008). The functional relationship between Kir4.1
and Aqp4 has yet to be fully elucidated.

Within TLE associated HS, studies have proposed that altered
Kir channel expression has resulted in the observed K+ buffering
impairment (Steinhauser et al., 2012). In human cases of HS, loss
of astrocytic Kir4.1 immunoreactivity was observed and most
significant surrounding vessels (Heuser et al., 2012). This loss
in Kir4.1 immunoreactivity was restricted to gliotic areas of the
hippocampus and associated with loss of alpha-syntrophin and
dystrophin (Heuser et al., 2012). Patch-clamp recordings have
also shown a reduction in Kir currents within the hippocampus
of mTLE patients (Hinterkeuser et al., 2000). In contrast, some
studies have shown an increased expression of Kir4.1 in human
HS lesions (Aoki et al., 2019). Due to the known role of astrocytic
Kir4.1 in extracellular K+ clearance, these changes likely result
in disrupted K+ buffering and possibly contribute to seizures
experienced by HS patients.

ROLE OF ASTROCYTE IN MOSSY FIBER
SPROUTING

Recently, astrocytes have been revealed to play a role in
regulating synaptic connections in the CNS (Kim S. et al.,
2017). Astrocytes contribute to synapse formation, elimination,
and maturation, in the CNS developmental period as well
as under pathologic conditions (Kim et al., 2016; Stogsdill
and Eroglu, 2016). Specifically, thrombospondin (TSP)-1, an
ECM protein derived from astrocytes, has been found to
promote excitatory synapse formation during nervous system
development and is subsequently severely downregulated in the
mature brain (Christopherson et al., 2005; Eroglu et al., 2009). An
exception to the observed downregulation of astroglial-derived
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TSP-1 in the adult brain is within regions of neurogenesis,
including the subgranular zone of the dentate gyrus (Jones
and Bouvier, 2014). Upregulation of TSP-1 reappears in the
mature brain upon CNS pathologic insult, as astrocytes revert
back toward immature signaling (Risher and Eroglu, 2012; Kim
S. et al., 2017). TSP-1 is upregulated in astrocytes following
seizure activity, as observed in a rat model of electroconvulsive
seizure, where the total number of synapses in the mature rat
hippocampus also increased (Chen et al., 2009; Okada-Tsuchioka
et al., 2014). Studies have shown that the synapses formed
by aberrant mossy fiber sprouting back toward the dendritic
spines of other granule cells are excitatory (Represa et al.,
1993; Hendricks et al., 2017; Cavarsan et al., 2018). Although
these adult-generated synapses have since been deemed as
likely non-functional (Hendricks et al., 2017), and more so
an epiphenomenon of epilepsy related HS (Cavarsan et al.,
2018), seizure induced upregulation of this ECM protein and
the observed excitatory synapse formation by aberrant mossy
fibers post-seizure activity perhaps presents a possible role for
TSP-1 in the largely unknown cellular mechanism of mossy
fiber sprouting. Another intriguing protein is tenascin (TN)-
C, involved in cell migration, proliferation, axonal guidance
and synaptic plasticity, and expressed by subpopulations of
astrocytes (Jones and Bouvier, 2014). A similar link between
TN-C expression and TLE has been previously described, and
associated with reactive gliosis, synaptic reorganization, and
axonal sprouting (Scheffler et al., 1998). TN-C follows a similar
expression trajectory as TSP-1, being highly expressed during
CNS development and subsequently downregulated in the adult
brain, to again have expression reappear upon CNS injury
(Jones and Bouvier, 2014). These observations present a possible
implication of reactive astrocytes in the pathogenesis of HS-
associated mossy fiber sprouting.

CLINICAL CORRELATIONS

The kainic acid and pilocarpine animal models are commonly
used in research due to similarities the models share with
human TLE. These models use systemic administration of
chemoconvulsants that result in an initial precipitating injury
followed by a latent period and development of recurrent
seizures with temporal origin, imitating the progression of
human TLE (Levesque et al., 2016). These predominating animals
models reproduce the clustering of seizures and histopathological
findings, including loss of pyramidal neurons within the CA
sectors of the hippocampus, granule cell layer dispersion, and
mossy fiber sprouting in the dentate gyrus, observed in TLE
patients (Mello et al., 1993; Cavalheiro, 1995; Arida et al., 1999;
Grabenstatter et al., 2005; Haut, 2006; Goffin et al., 2007; Sharma
et al., 2007; Williams et al., 2009; Bortel et al., 2010; Levesque
et al., 2011; Drexel et al., 2012; Levesque et al., 2016). Of note,
in some animal model studies of TLE neuronal degeneration
occurs primarily in CA3, while in human disease CA1 is more
commonly affected (Levesque et al., 2016). The kanic acid
and pilocarpine models also reproduce the overall result of
pharmacological treatment observed in human TLE with AEDs

having a similar anti-seizure effect, recurrence of seizures upon
AED cessation, as well as AED resistance in some animals
(Levesque et al., 2016). Despite the overall similarities between
the kanic acid and pilocarpine animal models and human TLE,
limitations of these models do exist. The response to kainic
acid and pilocarpine injection differs with injection placement,
gender, age, and strain of animals used (Bragin et al., 1999, 2005;
Curia et al., 2008; Zhang et al., 2008; Levesque and Avoli, 2013).
This inter-laboratory difference may create difficulty interpreting
overall findings within animal models of TLE. Prevalence of
seizure type is also altered in animal models of TLE. Human
TLE patients display seizure onset patterns that are either a
LVF (diffuse onset zone) or HYP (focal onset zone) pattern,
while animal models alternate between seizure onset patterns
(Velasco et al., 2000; Bragin et al., 2005; Levesque et al., 2012).
Pilocarpine model studies have also suggested that in addition
to distinct onset zones, the mechanisms of generation between
the two onset patterns potentially differ, creating additional
complexity in applying animal model findings to human disease
(Levesque et al., 2016).

Given that astrocytes may be implicated in the epileptogenesis
of TLE, demonstrated by the previously discussed cellular
mechanisms, examining the relationship between gliosis and
clinical information is quite intriguing. Few studies have been
published investigating the relationships between extent of
gliosis in TLE and clinical information, such as post-surgical
outcome. In the limited studies that have been conducted,
contradictory results have been observed. GFAP expression has
been positively correlated to seizure frequency in a small study
of HS (n = 12) (Cohen-Gadol et al., 2004), and conversely,
no significant correlation between degree of astrogliosis and
clinical information was found in another similar study (Blanc
et al., 2011). The relationship between degree of gliosis and
post-surgical outcome of TLE patients has received even less
attention, as prior to a study done by Johnson et al. (2016),
only one study had examined the relationship, yet found no
correlations between the glial density of mTLE patients (n = 62)
and seizure freedom (Spencer et al., 1999). However, in the
study conducted by Johnson et al. (2016), HS patients that had
a poor post-surgical outcome (Engel III or IV evaluated at 1-
year post-operation) demonstrated a significantly higher number
of astrocytes in CA3 and lower numbers of astrocytes in the
lower cortex. Based on these findings, it was hypothesized that the
observed increase in CA3 astrocyte reactivity potentially reflects
an increase in reactivity of hippocampal projection pathways
(trisynaptic circuit) (Johnson et al., 2016). Johnson et al. also
re-demonstrated the previous findings of GFAP correlation with
seizure frequency (Cohen-Gadol et al., 2004; Johnson et al., 2016).
More specifically, reactive astrogliosis (defined by increased levels
of GFAP-IR density) in CA1 and increased astrocyte number in
CA2 were significantly associated with a high seizure frequency
(Johnson et al., 2016).

Among histopathologically examined TLE cases,
approximately 20% do not display any neuronal loss but do
display varying levels of reactive gliosis, the group termed
“no-HS” (Blumcke et al., 2002, 2007; Thom et al., 2005).
This group of TLE cases is particularly interesting in the
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context of astrocyte contribution to epileptogenesis, considering
gliosis is the only notable observation with standard diagnostic
practices. As for post-surgical seizure freedom within no-HS
patients, results are seemingly variable. Studies investigating this
relationship have observed seizure freedom rates between 20 and
58.6% (Bruton, 1988; Davies et al., 1996; de Lanerolle et al.,
2003; Blumcke et al., 2007; Thom et al., 2010). The studies with
the highest no-HS sample sizes, 38 and 34, also had the most
variable seizure freedom observations, 20 and 58.6%, respectively
(Bruton, 1988; Blumcke et al., 2007). Interestingly, a sizable
portion of no-HS patients (between 42.3 and 58.6% dependent
on study), were able to achieve seizure freedom following surgery
in majority of the clinical correlation studies conducted with no-
HS patients (Davies et al., 1996; de Lanerolle et al., 2003; Blumcke
et al., 2007; Thom et al., 2010). This observation possibly indicates
that a neuropathological explanation for the epileptogenic focus
is present within the resected tissue that is not able to be detected
through standard diagnostic practices, making further study of
these surgical tissues compelling.

Within mossy fiber sprouting research, two main studies
exist which systematically examine the histopathological and
clinical correlations of hippocampal mossy fiber sprouting in
TLE patients. Proper et al. (2001) conducted the first study in
16 pharmaco-resistant TLE patients. The main finding from this
relatively small study was the mossy fiber density in relation to HS
Wyler grade, with mossy fiber sprouting into the supragranular
layer becoming prominent in moderate to high-grade HS (Wyler
3 and Wyler 4), while mossy fiber density within CA4 decreased
in high-grade HS only (Wyler 4) (Proper et al., 2001). This pattern
of mossy fiber reorganization likely reflects the progressive loss
of mossy fiber target cells in CA3 and CA4, while the mostly
preserved granule cells may attract the aberrant axons (Schmeiser
et al., 2017). Over a decade later, a 10-fold larger systematic study
of mossy fiber sprouting was conducted by Schmeiser et al. (2017)
(n = 319). This study observed that mossy fiber sprouting pattern
did not have any predictive value for post-operative outcome in
terms of seizure freedom at years 1–5 post surgery. They were,
however, able to make a clinical correlation between mossy fiber
sprouting presence, as well as granule cell dispersion and loss of
mossy fibers within CA4, and higher age at surgery and increased
epilepsy duration prior to surgery (Schmeiser et al., 2017).
A correlation was also seen between a high frequency of complex
partial seizures and increased mossy fiber sprouting, however
this observation did not extend to other seizure types (Schmeiser

et al., 2017). Histopathologically, a positive correlation between
extent of mossy fiber sprouting and granule cell layer dispersion
was also observed (Schmeiser et al., 2017).

CONCLUSION

The almost certain co-existence of reactive gliosis with HS has
resulted in the complex relationship of these characteristics
and TLE to be increasingly investigated and discussed within
the literature. Astrocytes have traditionally been thought of
as neuron-supporting cells, however, astrocytes are now being
recognized to have a much more diverse role within the CNS.
Mounting evidence has shown that astrocytes may have a role in
HS associated TLE through several cellular pathways including
mTOR pathway, gliotransmission, GABA, Aqp4, and GJs. The
discussed cellular pathways are not an exhaustive list, but reflect
what has been recently pertinent and supported in the literature
surrounding astrocyte role in HS associated TLE. Astrocyte role
in TLE is especially intriguing in the context of the no-HS
subtype of HS associated TLE, as no other histopathological
diagnosis can be made aside from reactive gliosis. This lone
histological observation in no-HS, along with the tendency of no-
HS patients’ condition to improve after surgical resection of the
epileptogenic hippocampus points toward a neuropathological
explanation for the epileptogenic focus within the resected tissue.
Further investigation into HS subtypes and their relationship
with associated reactive gliosis is needed to continue to elucidate
astrocytes role in HS associated TLE.
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