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A B S T R A C T   

Background: Though governed by the same underlying biology, the differential physiology of children causes the 
temporal evolution from health to a septic/diseased state to follow trajectories that are distinct from adult cases. 
As pediatric sepsis data sets are less readily available than for adult sepsis, we aim to leverage this shared un
derlying biology by normalizing pediatric physiological data such that it would be directly comparable to adult 
data, and then develop machine-learning (ML) based classifiers to predict the onset of sepsis in the pediatric 
population. We then externally validated the classifiers in an independent adult dataset. 
Methods: Vital signs and laboratory observables were obtained from the Pediatric Intensive Care (PIC) database. 
These data elements were normalized for age and placed on a continuous scale, termed the Continuous Age- 
Normalized SOFA (CAN-SOFA) score. The XGBoost algorithm was used to classify pediatric patients that are 
septic. We tested the trained model using adult data from the MIMIC-IV database. 
Results: On the pediatric population, the sepsis classifier has an accuracy of 0.84 and an F1-Score of 0.867. On the 
adult population, the sepsis classifier has an accuracy of 0.80 and an F1-score of 0.88; when tested on the adult 
population, the model showed similar performance degradation (“data drift”) as in the pediatric population. 
Conclusions: In this work, we demonstrate that, using a straightforward age-normalization method, EHR's can be 
generalizable compared (at least in the context of sepsis) between the pediatric and adult populations.   

Introduction 

Sepsis is a pathological manifestation of the body's acute inflam
matory response to infection and injury, and, despite decades of 
research, continues to have a significant mortality [1–3]. Specifically, 
pediatric sepsis has a significant health impact world-wide [4], with 
well-defined differences in the clinical trajectories seen in these patients 
compared to adults [5,6]. In recent years, machine learning (ML) has 
been increasingly employed to improve risk prediction for sepsis, with 
variable success [4,5]. However, a persistent issue with ML-sepsis pre
diction is the problem of data drift, where the eventual application 
population has different statistical distributions than the training pop
ulation/data, and the inevitable performance of these systems over time. 
While retraining has been proposed as a maintenance strategy for these 
ML systems after deployment [6], the need to do retraining intrinsically 
limits the utility of such systems in a mission-critical intensive care 
setting. With respect to pediatric sepsis, the fact that there are fewer 
extensive data sets of these patients, compared to adult sepsis, accen
tuates the limitations of ML predictive algorithms, being more subject to 

brittleness, overfitting, and a failure to generalize. Our goal is to 
augment the performance of ML prediction of pediatric sepsis by 
increasing the amount of available ML training data by utilizing the 
totality of available sepsis datasets (e.g., pediatric and adult cases). We 
recognize that accomplishing this will require developing a normaliza
tion process to allow direct comparisons between the disease trajectories 
between these groups. While it may seem counter-intuitive to increase 
the variability and heterogeneity of a training set, we believe that a 
normalization process can uncover a shared fundamental biology be
tween adults and children, and in so doing actually improve the 
generalizability of a ML algorithm trained on such data. Therefore we 
aim to demonstrate this enhanced generalizability by cross-testing the 
trained ML algorithm in what are generally considered very distinct 
populations (i.e. pediatric versus adult sepsis). 

As we are interested in evaluating the clinical courses of disease, we 
look to the Sequential Organ Failure Assessment (SOFA) score as a 
means of categorizing the progressive organ dysfunction that is seen in 
sepsis. The SOFA score is a well-established and accepted metric that has 
been used to quantify the degree of organ dysfunction in sepsis and 
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provide prognostic information in these patients [7–9]. Though initially 
developed as a means of establishing in-hospital mortality, there has 
been a natural evolution towards examining trajectories of SOFA scores 
as a potential means of clinically phenotyping patients into different risk 
categories [10]. However, by its very nature and intent of being rela
tively simple to calculate, the SOFA score necessarily aggregates wide 
ranges of input variables that can represent different and progressive 
degrees of physiological derangement into a single value. The impact of 
the step-function nature of the SOFA score manifests in two ways: 1) 
small differences at the boundary between two SOFA categories would 
imply a greater physiological derangement than is actually present, and 
2) large differences that are encompassed within the range of a SOFA 
category are not detected at all. 

We adopt a strategy that utilizes fundamental properties of the SOFA 
score to address the limitations of ML prediction in sepsis. Our basic 
rationale is that the SOFA score quantifies the degree of physiological 
derangement in sepsis as a deviance from baseline health; however, the 
step-function/discretized nature of the SOFA score obscures differences 
in physiological derangement. Nevertheless, despite its aggregating 
limitations (or possibly because of it), the SOFA score remains a reliable 
metric for quantifying the degree of physiological derangement across 
very divergent patient populations. For instance, a the numerical value 
of a SOFA score in the adult population is considered to be equivalently 
deranged as the same value in the Pediatric SOFA (pSOFA) score in the 
pediatric population [11–13] (in fact, this underlying assumption is 
present in the development of the pSOFA score). Therefore, the SOFA 
score (within its varied forms), represents a robust and generalizable 
quantification of the degree of physiological derangement seen in sepsis. 
Additionally, there is a continuum of measured values and associated 
levels of physiological derangement that is present within each category 
of the SOFA score, with the reasonable assumption that worsening 
values reflect worsening derangement, that is not reflected by the actual 
SOFA score. A fundamental limitation at present of ML prediction in 
sepsis is that the specific values of the incorporated data points will have 
varying statistical distributions within a specific data set, and these 
differences lead to data drift when applying external or longitudinal 
validation. In essence, the ML algorithms learn a limited physiological 
“truth” present in the training set that may not apply to the specifics of a 
different data set. Thus, while the SOFA score does apply a generalizable 
metric for quantifying physiological derangement, in of itself it is too 
coarse to allow for sufficient discrimination between data points 
necessary for modern ML approaches. Therefore, we make the logical 
extrapolation and assume that there is, at least as a first approximation, 
a linear progression of the component measurements used to calculate 
the SOFA score where the greater deviance from normal values reflect 
greater physiological derangement: we term this transform the Contin
uous Age-Normalized SOFA (CAN-SOFA) score. 

The continuous aspect of the CAN-SOFA can address more nuanced 
alterations in the patients' condition. The normalization aspect of the 
CAN-SOFA is predicated on the recognition that baseline “normal” 
measurements of physiologic parameters can vary based on age, with a 
consequent impact on how “deviations” might present in the pediatric 
population. Therefore, we incorporate an age-based normalization 
process to allow comparison between pediatric and adult physiological 
parameters. These steps allow us to use the CAN-SOFA score as a means 
of normalizing and quantifying the degree of physiological de
rangements across populations such that ML can be applied. 

Herein we present an example of using the CAN-SOFA score to 
evaluate: 1) the efficacy of the normalization process by determining 
whether training on a pediatric sepsis cohort could generalize to an 
adult sepsis population, and then 2) determining if the generalizing ef
fect of the CAN-SOFA could effectively use training on an adult sepsis 
cohort to effectively classify pediatric sepsis patients. Note that this 
represents two distinct training and testing tasks. 

Methods 

Data sources 

Generation of a Sepsis classifier and testing its generalizability 
required the use of two datasets. The data used for the training and 
evaluation of the Sepsis classifier came from the Pediatric Intensive Care 
Database (PIC) [14]. This database is a pediatric specific dataset 
collected from Children's Hospital of Zhejiang University School of 
Medicine in China. From the dataset all the patient time-points with at 
least one lab and vital sign data element were used. 

This resulted in 12,749 patients with a total of 111,532 data points. 
Each data point contains data that was collected at the same time. This 
resulted in a sparse dataset due to vitals, and labs being recorded at 
different frequencies. To reduce the amount of missing data, each pa
tient's data was aggregated by hour based on admission time. For col
umns with multiple entries per hour the mean was taken. This resulted 
in 37,558 data points. For each data point a label was given, Septic or 
Non-septic, this was the classification label that our model predicted. To 
assign these labels the ICD_10 discharge code and the ICU admission 
time were used. The ICD_10 code represents the diagnoses and proced
ures, using these codes patients were classified as having sepsis while 
hospitalized, of these 12,749 patients, 296 had sepsis. The issue with just 
using the ICD_10 code is that there is no time of diagnosis. This caused 
all the data of patients discharged with an ICD_10 sepsis code to be 
marked as septic. To address this problem ICU transfer time was used. 
Using this time point, all the data points before ICU were classified as not 
septic and the data after were classified as Septic. This resulted in 19,781 
data points being classified as Septic. We recognize that using the 
combination of ICD_10 code to determine the presence of sepsis and the 
ICU transfer time to define the onset of sepsis is controversial and does 
not rigorously meet the Sepsis-3 definition [15]; however, we choose to 
utilize this approximation as publicly available databases do not contain 
sufficiently granular information to meet this definition without the use 
of data imputation techniques. Further, as the focus of this paper is on 
the pre-processing of EHR data such that models informed by the pre- 
processed data are maximally generalizable, we posit that the use of 
our consistent definition among the different populations (children and 
adults) is an excellent exemplar as we do not have to rely on synthetic or 
imputed data. 

To test the generalizability of the classifier The Medical Information 
Mart for Intensive Care (MIMIC) [16], an adult dataset, was used. The 
same data collection and cleaning process was used except for one key 
difference. Due to only having ICU data in MIMIC, data from 10,000 
separate non-septic patients was collected to be used as the non-septic 
data points. This resulted in 970,627 data points after aggregating on 
the hour with 70,272 being non-septic and 900,355 being septic. 

The main difference between the two datasets is the age range they 
contain with PIC containing patients under 18 and MIMIC containing 
patients over 18. This results in Creatinine, Total Bilirubin, C Reactive 

Table 1 
Data features used to inform that machine-learning 
classifier.  

Category Measurement 

Vital pO2 
Vital Oxygen saturation 
Vital Temperature 
Vital Respiratory rate 
Vital Pulse 
Vital Mean arterial pressure 
Lab Fshunt 
Lab C reactive protein 
Lab Total bilirubin 
Lab Indirect bilirubin 
Lab Creatinine  

C. Marassi et al.                                                                                                                                                                                                                                 



Surgery Open Science 16 (2023) 77–81

79

Protein, Pulse, Respiratory Rate and Mean Arterial Pressure having 
different ranges between datasets. 

Continuous/age-normalizing transformation 

The numerical value ranges for the SOFA and pSOFA scores were 
normalized using an assumption of a linear progression of those values 
and the reflected physiological derangement. The complete set of vari
ables that were used in this work are shown in Table 1. A subset of the 
formulas for the generation of the Continuous SOFA score can be seen in 
Table 2. We present an example for a specific patient in Table 3, in which 
the first column shows the variable of interest, the second column shows 
the raw value, and the third column determines the continuous SOFA 
score for metrics that are associated with SOFA scores or a deviance 
score for other metrics. Variables marked with an asterisk are not con
verted to deviance scores as they are equally informative for children 
and adults and are simply normalized at the time of training. Variables 
that have been bolded were transformed using the continuous SOFA 
transformations. Details regarding the full transformation can be found 
in the supplementary material. We note that we include additional 
variables not used in the SOFA score: Pulse, Respiratory Rate, and C 
Reactive Protein. 

Machine learning algorithm 

In general, the purpose of an ML algorithm is to discover a complex 
pattern in data that would be otherwise occluded due to the nature of the 
data (i.e., dimensionality, missingness, etc.). To address the problem of 
classifying patients as septic based on their vitals and labs, an ensemble 
method was chosen, specifically gradient-boosted trees. Ensemble 
methods are a machine learning technique that uses many distinct 
classifiers or regressors and combines their results by either averaging or 
taking the majority. This results in a model with better performance than 
its individual components. The gradient-boosted trees algorithm 
XGBoost [17] was chosen due to its ability to deal with sparse data, as 
described below. To illustrate how the XGBoost algorithm works, we 
provide an explanatory diagram in Fig. 1. In this diagram, each node of 
the decision tree contains a mathematical operation, or ‘decision,’ 
labeled DXy, in which X represents the sequence in which the decision is 
operated upon and y represents an individual tree model in the 
ensemble. Results are indicated by the A's. In this work, the result is a 
prediction of whether or not that patient will evolve into a state of sepsis 
in the course of their hospitalization. The mathematical operations 
represented by the decisions could be something like, ‘Is the normalized 
renal sofa score>2?’ with the answer then informing subsequent de
cisions. One explicit strength of the XGBoost algorithm is its ability to 
deal with missing (i.e., NaN) data in the training datasets by using the 
presence of missing data for a specific variable as a node in the decision 
tree, for example, if there is no data on serum creatinine, then other 
variables may be more informative towards the final prediction. Ulti
mately, the results from all of the individual tree model are aggregated 
together to give the final result (Fig. 2). 

For training of the model, the data was randomly split with 80 % of 
the data going to the training set and 20 % going to validation. To 
accommodate for the imbalance in the data, a class weighting was 
applied. This was done for each class using the equation below: 

weightX = numberOfSamples/(numberOfClasses*numberOfSamplesInClassX)

The models were evaluated based on their accuracy and F1 score. 
Multiple models were trained to tune XGBoost's hyperparameters. 

Results 

The model was initially trained on the PIC data achieving an accu
racy of 0.84. Then all the MIMIC data was fed to the algorithm to assess Ta
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the model's ability to generalize to another dataset. The classifier ach
ieved an accuracy of 0.80 (Industry Standard for Good Performance is 
between 70 % and 90 %, with >90 % being Very Good [18]). The reverse 
was then done, training the model on the MIMIC data and testing on the 
PIC data, to see if it was possible to leverage more readily available adult 
sepsis data to inform classification in a pediatric context. To test this the 
model was trained on a subset of the MIMIC dataset to match the size of 
the PIC dataset with the data points being selected at random. After the 

classifier was retrained it had an accuracy of 0.95 on the MIMIC test set 
and an accuracy of 0.77 on the PIC data. 

Discussion 

We demonstrate a novel interpretation of the SOFA score, the CAN- 
SOFA score, as means of normalizing and quantifying physiological 
derangement in sepsis that allows the training of a robust ML sepsis 
prediction algorithm that generalizes from pediatric patients to adult 
patients. This approach is novel as it incorporates the knowledge present 
in a well-established sepsis scoring system that has already demon
strated efficacy in generalizing across patient populations considered to 
be widely divergent. This pre-processing of data provides a degree of 
interpretability and generalizability often missing in standard ML 
approaches. 

There have been other attempts to reconcile the step function nature 
of the SOFA score with the fact that the component values are more 
continuous, most notably, DeepSOFA [19]. A significant difference be
tween CAN-SOFA and DeepSOFA is that the underlying methodology of 
DeepSOFA, seeking a “hidden” complex function that associates the time 
series measurements, and is subject to exactly the same limitations of 
brittleness, overfitting and need for retraining present in standard ML 
sepsis prediction. Further, we note that, while CAN-SOFA was only 
evaluated using data from two institutions (PIC and MIMIC), as was the 
case with DeepSOFA, CAN-SOFA was trained and tested on two distinct 
populations (pediatric vs adult), demonstrating that the pre-processing/ 
normalization of the data increases the overall generalizability of the 
method. 

Additionally, in contrast with other studies using machine learning 
to predict or detect sepsis [20], we did not use the Sepsis-3 [15] defi
nition for sepsis, rather we used ICD diagnosis codes present in the 
electronic health record (EHR). The reasoning for this is that, in order to 
meet this definition, the patient must maintain vital signs and laboratory 
observables outside of the normal regime for at least 5 h; in our data
bases, no patient EHRs contain sufficient data to determine this. Other 
studies [19,20] have used data imputation techniques to fill out missing 
data, though choice of imputation technique can significantly affect the 
reproducibility, generalizability, and accuracy of results [21]; as such, 
we chose to explore a technique that did not rely on explicit data 
imputation. Instead, we utilized the diagnosis code that reflects a com
bination of the diagnosing clinician's expertise (including awareness of 
the Sepsis-3 guidelines) and known sepsis-identifier present in EHR 
systems. 

A key point in the development and deployment of CAN-SOFA is that 
some basic interpretation of the properties of the underlying data can 

Table 3 
Example patient data: in the first column, we present a list of variables used in 
the ML model; in the second column, we present the raw value for that variable, 
with NaN indicating missing data for that patient; in the third column, we 
present the continuous age-normalized score. Variables marked with an asterisk 
are not converted to deviance scores as they are equally informative for children 
and adults and are simply normalized at the time of training. Variables that have 
been bolded were transformed using the continuous SOFA transformations.   

Raw value Age-normalized score 

Age 1.1 yrs 1.1 yrs 
C Reactive protein_mean 1.86 2.32 
Creatinine_mean 1.58484163 4.28280543 
Fshunt_mean* 5.7 5.7 
MAP_max 53 1.12 
MAP_mean 53 1.12 
MAP_median 53 1.12 
MAP_min 53 1.12 
Oxygen Saturation_max* 100 100 
Oxygen Saturation_mean* 98.4 98.4 
Oxygen Saturation_median* 98.4 98.4 
Oxygen Saturation_min* 96.8 96.8 
Pulse_max NaN NaN 
Pulse_mean NaN NaN 
Pulse_median NaN NaN 
Pulse_min NaN NaN 
Pulse_std NaN NaN 
Respiratory Rate_max 70 0.0008329 
Respiratory Rate_mean 69 0.00074961 
Respiratory Rate_median 69 0.00074961 
Respiratory Rate_min 68 0.00066632 
Temperature_max* 37 37 
Temperature_mean* 36.8333333 36.8333333 
Temperature_median* 37 37 
Temperature_min* 36.5 36.5 
Total Bilirubin_mean* 14.55 5 
White Blood Cells_mean* NaN NaN 
p02_max* 173 173 
p02_mean* 124 124 
p02_median* 124 124 
p02_min* 75 75 
paCO2_mean* 42.45 42.45  

Fig. 1. Explanatory diagram of the XGBoost algorithm. Each node of the decision tree contains a mathematical operation, or ‘decision,’ labeled DXy, in which X 
represents the sequence in which the decision is operated upon and y represents an individual tree model in the ensemble. Results are indicated by the A's. 
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provide considerable assistance in overcoming the intrinsic limitations 
of ML methods. In fact, this approach is increasingly being recognized in 
the general artificial intelligence community, where the limitations of 
deep learning methods are becoming more evident even as those systems 
reach higher levels of performance. 
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