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Abstract

Objective: The collection and use of ordinal variables are common in many psycho-

logical and psychiatric studies. Although the models for continuous variables have

similarities to those for ordinal variables, there are advantages when a model devel-

oped for modeling ordinal data is used such as avoiding ‘‘floor’’ and ‘‘ceiling’’ effects

and avoiding to assign scores, as it happens in continuous models, which can produce

results sensitive to the score assigned. This paper introduces and focuses on the appli-

cation of the ordered stereotype model, which was developed for modeling ordinal

outcomes and is not so popular as other models such as linear regression and pro-

portional odds models. This paper aims to compare the performance of the ordered

stereotype model with other more commonly used models among researchers and

practitioners.

Methods: This article compares the performance of the stereotype model against

the proportional odd and linear regression models, with three, four, and five levels

of ordinal categories and sample sizes 100, 500, and 1000. This paper also discusses

the problem of treating ordinal responses as continuous using a simulation study. The

trend odds model is also presented in the application.

Results: Three types of models were fitted in one real-life example, including ordered

stereotype, proportional odds, and trend odds models. They reached similar conclu-

sions in terms of the significance of covariates. The simulation study evaluated the

performance of the ordered stereotype model under four cases. The performance

varies depending on the scenarios.

Conclusions: The method presented can be applied to several areas of psychiatry

dealing with ordinal outcomes. One of the main advantages of this model is that

it breaks with the assumption of levels of the ordinal response are equally spaced,

which might be not true.
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1 INTRODUCTION

1.1 Background

An ordinal variable is one with a categorical data scale which describes

order, and where the distinct levels of such a variable differ in degree

of dissimilarity more than in quality (Agresti, 2010). In his seminal

paper, Stevens (1946) called a scale ordinal if ‘‘any order-preserving

transformation will leave the scale form invariant’’ (p. 679). This article

focuses on ordinal data which are very frequent in psychological and

psychiatric studies where ordinal outcomes are often defined in several

scales such as Likert scale (e.g., strongly disagree, disagree, neither agree

nor disagree, agree, and strongly agree) and pain scale (e.g., from 0
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to 10, where 0 means ‘‘no pain’’ and 10 means ‘‘extremely painful’’).

It is important to remark that the degree of dissimilarity among the

adjacent levels of the scale in an ordinal variable might not necessarily

be always the same. For instance, the difference in the severity of an

injury expressed by level 2 rather than level 1 might be much more

than the difference expressed by a rating of level 10 rather than 9.

Although the collection and use of ordinal variables is common,

most of the current methods for analysing them treat the data as

if they were continuous or nominal data (Hoffman & Franke, 1986).

Agresti (2010, section 1.3) mentioned several disadvantages of using

standard regression methods. First, the results are sensitive to the

scores assigned. Second, it does not allow for the measurement that

accounts for the error of replacing ordinal responses with contin-

uous responses. Third, it can predict values outside the range of

possible ordinal outcomes. Finally, another disadvantage of applying

ordinary regression to ordinal data is to produce misleading results

due to ‘‘floor’’ and ‘‘ceiling’’ effects on the dependent variable (see

Agresti, 2010, section 1.3.1 and also comments regarding this issue in

McKelvey & Zavoina, 1975; Winship & Mare, 1984; Bauer & Sterba,

2011; and Hedeker, 2015). Another common practice of dealing with

ordinal outcomes is to dichotomize an ordinal variable with the aim

of using logistic regression. However, Sanyeka and Weissfeld (1998)

and Stromberg (1996) empirically showed that the effect estimates,

precision, and predicting power could be very poor.

There are many existing methods developed for modeling ordinal

data that respect the ordinal nature of the data and have advan-

tages such as making as few assumptions as possible, having greater

power for detecting relevant trends, and using measures that are sim-

ilar to those used in ordinary regression for quantitative variables.

Liu and Agresti (2005) and Agresti (2010) described various propor-

tional odds version models using adjacent-categories logits, cumulative

logits (McCullagh, 1980), and continuation-ratio logits (McCullagh &

Nelder, 1989). In the literature, often, a proportional odds model refers

to the one using cumulative logits, which is the most commonly used

model for an ordinal response variable. The proportional odds struc-

ture makes a strong assumption on common odds ratios and this may

be inadequate for some data. Alternatively, a partial proportional odds

model by Peterson and Harrell (1990) allows non-proportional odds for

some or all covariates, but the model might contain many parameters,

especially when there are many response categories. Recent research

develop new methods to allow the flexibility on the proportional odds

structure for modeling ordinal data such as the trend odds model

(Capuano & Dawson, 2013; Capuano et al, 2016, Capuano, Wilson,

Schneider, Leurgans, & Bennett, 2018) and the unconstrained and con-

strained versions of the partial adjacent category logit model (Fullerton

& Xu, 2018). This article focuses on the ordered stereotype model

introduced by Anderson (1984), which is also flexible compared with

the model with the proportional odds structure as a result of adding

additional score parameters. One of the main feature of this model is

that it allows to determine a new spacing among the ordinal categories

dictated by the data. The estimation of the spacing among ordinal

responses is an improvement over other models for ordinal data.

The goal of this article is to introduce the ordered stereotype

model to the researchers and practitioners in the field. We show its

formulation, estimation, checking of overall fit, and its applications.

Besides, we compare the ordered stereotype, proportional odds, and

linear models. We use a simulation study to provide a guideline on the

choice between these models.

This article is structured as follows. The data set used throughout

this article is described in Section 1.2. Section 2 has definitions of the

ordered stereotype model and provide various model checking tools.

We illustrate the use of this model and evaluate the performance

among the proportional odds, ordered stereotype, and ordinary linear

models using a simulation study in Section 3. We conclude with a

discussion, technical notes, and extensions in Section 4.

1.2 Data set

We use the data set from The Television School and Family Smoking

Prevention and Cessation Project (TVSFP) study (Flay et al., 1988)

throughout this article. This study was designed to test independent

and combined effects of a school-based social-resistance curriculum

and a television-based program in terms of tobacco use prevention

and cessation. One of the study outcomes is a tobacco and health

knowledge (THKS) ordinal scale, which assesses the familiarity of stu-

dents with tobacco and health. The sample consists of 1,600 7th-grade

students from 135 classrooms of 28 Los Angeles schools who had com-

pleted data on the THKS variable at both pretest and post-test times.

Table S1 in the Supplementary information summarizes the frequen-

cies of THKS variable in an eight-level ordinal scale. The most frequent

categories are 1–4 (86.4% of the total), which present a similar fre-

quency (between 18% and 25% of the total). From there, frequency

in the first category is small and those from the last three cate-

gories decrease severely as the level of the ordinal response increases.

The covariates were represented at Los Angeles school-level. The 28

schools were randomized to either: (a) a social-resistance classroom

curriculum (CC), (b) a media (TV) intervention, (c) a combination of CC

and TV, and (d) a no treatment control group. These conditions form

a 2x2 design of CC (yes or no) by TV (yes or no). Table S2 in the Sup-

plementary information describes all the variables and their possible

values.

2 METHODS

2.1 The ordered stereotype model

Currently, the most frequently used in practice is probably the pro-

portional odds model (Hosmer, Lemeshow, & Sturdivant, 2013, p.

297). It has the simplicity to interpret the covariate effect on ordi-

nal responses due to the proportional odds assumption (McCullagh,

1980; Liu & Agresti, 2005; Agresti, 2010). Liu (2014) mentioned that

because the proportional odds assumption is often violated, instead of

using the partial proportional odds model (Peterson & Harrell, 1990),

The stereotype model is an alternative option. It does not eliminate

the other options, such as using the trend odd model (Capuano &

Dawson, 2013, Capuano et al., 2016, 2018). Additionally, Greenland

(1994) showed that the progression of a disease through various

stages is naturally modeled by the stereotype model, and that the

model is valid also under case dependent sampling, as opposed to the

proportional odds model (Kuss, 2006). The stereotype model is not

as popular as other equivalent ordinal regression models but it has
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been used in applied research (see e.g., Ananth & Kleinbaum, 1997 in

epidemiology, Hendrickx & Gazenboom, 1998 in sociology, Guisan &

Harrell, 2000 in ecology, and Lall, Campbell, Walters, & Morgan, 2002

and Abreu, Siqueira, Cardoso, & Caiaffa, 2008 in quality of life stud-

ies). Next, we give a general form of the model and discuss ways to

check the overall quality of fit.

2.2 The ordered stereotype model. Formulation

Let Yi be an ordinal response with q categories (e.g., strongly agree,

agree, neutral, disagree, strongly disagree) for observation i, where

i = 1, … , n. The ordered stereotype model (Anderson, 1984) for the

probability that Yi takes the category k (k = 1, … , q) is characterized

by the following log odds:

log

(
P
[
Yi = k|xi

]
P
[
Yi = 1|xi

]) = 𝛼k + 𝜙k𝜷
′xi, i = 1, … , n, k = 2, … , q,

(1)

where the inclusion of the following monotone non-decreasing

constraint

0 = 𝜙1 ≤ 𝜙2 ≤ … ≤ 𝜙q = 1 (2)

ensures that the response Yi is ordinal (see Anderson, 1984). The vector

xi is a set of predictor variables (covariates) for observation i which

can be categorical or continuous, and the p ×1 vector of parameters 𝜷

represents the effects of xi on the log odds for the category k, relative

to the baseline category of Yi. This formulation of the model treats the

first category as the baseline category, the parameters {𝛼2, … , 𝛼q} are

the intercepts, and {𝜙1, 𝜙2, … , 𝜙q} are the parameters which can be

interpreted as the ‘‘scores’’ for the categories of the response variable

Yi. We restrict 𝛼1 = 𝜙1 = 0 and 𝜙q = 1 to ensure identifiability. With

this construction, the response probabilities are as follows:

𝜃ik = P
[
Yi = k|xi

]
=

exp(𝛼k + 𝜙k𝜷
′xi)∑q

𝓁=1 exp(𝛼𝓁 + 𝜙𝓁𝜷
′xi)

for k = 1, … , q. (3)

An advantage of the stereotype model is that it is more parsimo-

nious than the baseline category logit model that has the form 𝛼k +𝜷′
kxi

on the right-hand side of model (1). Additionally, the ordered stereo-

type model is more flexible than adjacent categories logits models

with proportional odds structure (Agresti, 2010, section 4.3.4) as a

result of the {𝜙k} parameters. Agresti (2010, see chapter 4) showed

that the stereotype model is equivalent to the proportional odds ver-

sion of the adjacent-categories logit model, when the scores {𝜙k} are

equally spaced. Although the model has advantages, it is not as popu-

lar as the proportional odds model, because the parameters are more

difficult to estimate due to the intrinsic nonlinearity, which arises from

the product of parameters in the predictor. However, the parame-

ter estimates may be calculated by the standard maximum likelihood

(ML) method (see, e.g., Agresti, 2010) by imposing the monotone non-

decreasing constraint (2) through the reparametrization described in

Fernández, Arnold, & Pledger (2016). To the best of our knowledge,

there are a couple of fitting the stereotype model in R (R Core Team,

2013). The R packages for fitting the stereotype model in R (R Core

Team, 2013). The R package ordinalgmifs (Archer et al., 2014) pro-

vides the function ordinalgmifs for fitting ordered stereotype models

when the number of parameters exceeds the sample size, using the

generalized monotone incremental forward stagewise method and

imposing penalties to a set of chosen predictors. However, this pack-

age can be used also in the case of non-high dimension data without

specifying any penalty on the predictors in the model fitting pro-

cess. This package includes a vignette (https://cran.r-project.org/web/

packages/ordinalgmifs/vignettes/ordinalgmifs.pdf), which is a tutorial

on fitting the ordinal stereotype model. Yee and Hastie (2003) fit-

ted the stereotype model using the vector generalized additive model

(VGAM) package (Yee, 2008), although it is not able to include the

monotonic constraint in the score parameters. This paper obtains the

maximum likelihood estimates of ordered stereotype models using the

R function ordinalgmifs.

2.3 Estimation of non-equal space among ordinal

categories

An important remark regarding the use of ordinal responses is that the

utilization of the first q positive integers as labels does not imply that

there is an equal space among ordinal categories. The fitted spacing is

instead determined by the distance among adjacent score parameters

{𝜙k} and it could be different to the default equal spacing among its

categories. To illustrate this, Figure 1 compares visually the default

equal spacing with the fitted spacing. The data set for this example is

related to the responses of 70 students giving feedback about a second

year Applied Statistics course at Victoria University of Wellington.

Model (1) was fitted with individual students and feedback questions

as covariates. The figure depicts two graphs with a 5-level Likert scale

in an ordinal response variable (i.e., strongly disagree, disagree, neither

agree nor disagree, agree, and strongly agree).

In the right graph, the equally spaced scale is depicted in the bottom

axis and the fitted score scale is dictated by the data in the top

axis. The fitted score parameters were 𝜙2 = 0.252, 𝜙3 = 0.748, and

𝜙4 = 0.946 (𝜙1 = 0 and 𝜙5 = 1 are restricted to ensure identifiability).

The left graph shows a dotted straight line which corresponds to the

equally spaced categories and the line depicts how different the fitted

score parameters are from this uniformity. The amount of nonlinearity

shows the distortion of the scale from the incorrect equally spaced

scale. Therefore, the adjacent ordinal categories are not equally spaced

based on the data.

We estimate the distance between two adjacent categories, for

example, k + 1 and k, based on 𝜙k+1 − 𝜙k. For instance, the scores

of 𝜙̂1 = 0, 𝜙̂2 = 0.252, 𝜙̂3 = 0.748, 𝜙̂4 = 0.946, and 𝜙̂5 = 1 imply

that the spacing between categories disagree and neither agree nor

disagree is the largest (𝜙̂3 − 𝜙̂2 = 0.496) and the shortest (𝜙̂5 −
𝜙̂4 = 0.054) is between strongly agree and agree categories. The

categories strongly agree and agree are less distinguishable based

on the information of individuals and feedback questions than the

categories disagree and neither agree nor disagree. These two graphs

allow us to easily depict the new uneven spacing of the levels of the

ordinal response. Furthermore, if 𝜙k = 𝜙k+1, the covariates x do not

distinguish between them. Therefore, we could collapse them as a

single response category (Fernández et al., 2016; Agresti, 2010). To

make the inference about how close these categories are, overlapping

confidence intervals around the scores 𝜙k and 𝜙k+1 may give evidence

that ordinal categories k and k + 1 are not distinguishable.

https://cran.r-project.org/web/packages/ordinalgmifs/vignettes/ordinalgmifs.pdf
https://cran.r-project.org/web/packages/ordinalgmifs/vignettes/ordinalgmifs.pdf
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FIGURE 1 Reassigned ordinal scale: Scale comparison between default equal spacing and fitted spacing given by score parameters {𝜙k} for
ordinal response variable with a 5-level Likert scale (strongly disagree, disagree, neither agree nor disagree, agree, strongly agree)

2.4 Check the model overall fit

One might express data in a contingency table where the columns

are ordinal responses and the row variable represents all classifica-

tions/patterns for covariates. For instance, we can cross–classify all

observations for the TVSFP data in Section 2 into a 4 × 8 contingency

table with (a)–(d) groups (as described in Section 2) as rows and the

eight ordinal scales as columns. The cell count for row i and column

j is the number of subjects who were in the group i and responded

on level j. The fitted cell counts are calculated from the estimated

response probabilities (3).

In terms of assessing the adequacy of the fitted model for ordered

stereotype models, the Pearson X2 and the deviance G2 statistics are

two classical summary measures to compare the maximum likelihood

fitted cell counts that satisfy Model (1) to the observed cell counts.

They have the following forms (Agresti, 2007, pp. 35–36):

X2 =
∑

all cells

(observed cell count − fitted cell count)2

fitted cell count

G2 = 2
∑

all cells

(observed cell count) log

(
observed cell count

fitted cell count

)
.

(4)

For the large sample theory, both test statistics follow an asymptotic

chi–square distribution with df (number of logits from the left hand side

of Model 1—number of parameters from the left hand side of Model

1) when almost all the fitted cell counts are at least 5. The asymptotic

theory holds only when the model has covariates with few patterns.

It does not hold when there is a continuous covariate. For the TVSFP

data in Section 2, because the covariates result in four groups (a–d),

there are (q −1) ×4 = (8−1) ×4 = 28 logits from the left hand side of

Model (1). The parameters for Model (1) include (q − 1) of 𝛼k's, (q − 2)
of 𝜙k's, and three group effects in 𝛽's. Therefore, the test statistic has

((q − 1) × 4) − ((q − 1) + (q − 2) + (4 − 1)) = 12 degrees of freedom.

When the large sample criterion does not hold for Pearson X2

and the deviance G2 statistics, Fernández and Liu (2016) proposed

a goodness-of-fit test of the ordered stereotype model, Sg1 ,g2
. The

test is based on the well-known Hosmer–Lemeshow test (Hosmer &

Lemeshow, 1980) and its version for the proportional odds regression

model (Fagerland & Hosmer, 2013). The latter test statistic is calculated

from a grouping scheme assuming that the levels of the ordinal

response are equally spaced, which might not be true. The Sg1 ,g2
test

statistic takes the use of the new adjusted spacing to partition data

as it uses the ordered stereotype model. Fernández and Liu (2016)

showed the steps to construct the proposed test as follows:

• Calculate the estimated probabilities 𝜃ik (Equation 3) for each

observation i = 1, … , n and response category k = 1, … , q.

• Compute the weighted score for each observation:

si =
q∑

k=1

vk × 𝜃̂ik, i = 1, … , n, (5)

where v1 = 1, vq = q and vk = 1 + (q − 1) × 𝜙̂k . Note that the {vk} in

the range of [1, q] are the rescaled ordinal scores for the response

categories, calculated from the score parameter estimates {𝜙̂k} in

[0,1].
• Replace the observed response {yi} for each observation by its

corresponding rescaled ordinal scores {vk}, denoted by {ŷi}. For

example, ŷi = vk if yi = k. Due to the nature of ordinal stereotype

models, the spacing information between response categories is

better captured by {vk}. As a result, the equal spacing between

categories is removed by the new fitted spacing.

• Compute the deviances for each observation: di = si − ŷi (i =
1, … , n).

• Sort the n observations ascending by {di}.
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• Create a first partition into g1 groups of the data, such that each

group 𝓁 contains n𝓁 = n∕g1 observations (𝓁 = 1, … , g1 and n =
n1+n2+… +ng1

). For instance, if g1 = 2, the data is divided into two

portions in which each portion contains 50% of the observations.

As a result of this step, the data are grouped according to the

level of deviations. This is favorable to produce similar groups of

observations based on their quality of fit (deviance). Fernández and

Liu (2016) suggested to use g1 = 2.

• For each g1 group, we sort the corresponding {n𝓁 ,𝓁 = 1, … , g1}
observations ascending by the weighted scores {si}.

• For each g1 group, we create a second partition into g2 subgroups

based on the weighted sorting scores {si}, such that each subgroup

contains {n𝓁∕g2,𝓁 = 1, … , g1} observations.

• Cross classify the observations according to the G = g1 × g2 groups

and the ordinal response categories to create a G × q contingency

table. The observed frequencies {ogk} and the estimated expected

frequencies {egk} under the model are defined as:

ogk =
∑
𝜐∈Υg

I[y𝜐 = k] and egk =
∑
𝜐∈Υg

𝜃𝜐k, for

g = 1, … ,G, k = 1, … , q,

where 𝛶g denotes the set of indices of the observations in group

g and I[A] is a binary indicator that takes value 1 if A is true and 0

otherwise.

• Compute the Pearson 𝜒2 statistic Sg1 ,g2
as:

Sg1 ,g2
=

G∑
g=1

q∑
k=1

(ogk − egk)2

egk
, (6)

where G = g1 × g2.

The Sg1 ,g2
test statistic follows a 𝜒2 distribution with df = (G−2)(q−

1) + (q − 2) degrees of freedom when the fitted model is correct (see

details in Fernández & Liu, 2016, section 3).

2.5 Check the ordinal assumption

Because the ordered stereotype model is a special case of the

baseline–category logit model (also known as multinomial logistic

regression)

log

(
P
[
Yi = k|xi

]
P
[
Yi = 1|xi

]) = 𝛼k + 𝜷′
kxi i = 1, … , n, k = 2, … , q, (7)

we could check the adequacy of the ordinal trend, that is, whether it is

plausible to replace 𝜷′
kxi by 𝜙k𝜷

′xi with 0 = 𝜙1 ≤ 𝜙2 ≤ … ≤ 𝜙q = 1

using a likelihood ratio test. The test statistic has form:

D = −2 log

(
maximum likelihood for Model (1)
maximum likelihood for Model (7)

)
. (8)

The test statistic follows an asymptotic 𝜒2 distribution with (p) × (q −
1)− (p+(q−2)) = pq−2p−q+2 degrees of freedom under the ordinal

trend assumption. When there is only one covariate (p = 1), the test

statistic has zero degrees of freedom. The model fitting is the same

between the baseline category logit model and the stereotype model

without the monotone nondecreasing constraint (2). Therefore, the

test is only valid for p ≥ 2.

Another possible model comparison test is to compare the pro-

portional odds model with the ordered stereotype model. Given that

the proportional odds model is more parsimonious than the ordered

stereotype model, we also could check how much information has

been missed by fitting a proportional odds model instead of an ordered

stereotype model. As those two models are not nested, we could

calculate an information criterion measure such as AIC and BIC to

compare those models.

3 RESULT

3.1 Application

We fit the ordered stereotype model to the original eight-level ordinal

response THKS from the n = 1,600 students using the covariates

CC, TV, and their interaction CCTV. Note that we intentionally ignore

the class and school levels here as we simply want to demonstrate

the use of ordered stereotype model for independent observations. A

two-level mixed effects model allowing for nesting of students within

classrooms can be applied allowing for nesting of students within

classrooms using a Bayesian approach. We remark that we only used

post-test responses for simplicity. There are two ways to consider both

pretest and post-test responses. One is to treat the pretest response

as a covariate. Another one is to include a subject-specific random

effect.

After model fitting, the estimates of the score parameters are 𝜙k =
(0,0.083,0.324,0.452,0.988,0.999,1,1), which shows an uneven

spacing among ordinal outcomes. As we explained in Section 3.2, the

closeness of the first two and last four score parameters implies that

the set of covariates do not distinguish between those categories. We

can therefore collapse those categories, and end up with only four

ordinal categories. Table S3 in the Supplementary information sum-

marizes the frequencies of the new four-level variable (THKS4), which

are now all quite balanced (between 22.2% and 27.9% of the total

observations). The ordered stereotype model was fitted again using

the same set of covariates and the response outcome THKS4.

Table 1 gives the result of the model fitting showing that the

covariate social-resistance classroom curriculum (CC) is significant at

0.05 level on the tobacco and health knowledge of the students. At

0.01 level, both covariates and their interaction have a significant

effect on the response. The fitted scores shows uneven spacing

({𝜙k} = (0,0.197,0.878,1), in which adjacent ordinal categories 3 and

4 are closer than 2 and 3, or 1 and 2.

TABLE 1 Results of fitting the ordered stereotype model
(Equation 1) for the TVSFP data set. The four-level response
variable THKS4 is used

Coefficient Estimation SE 95% CI

𝛼2 0.023 0.108 (−0.190,0.235)

𝛼3 −0.341 0.126 (−0.587,−0.095)

𝛼4 −0.305 0.133 (−0.565,−0.045)

𝛽1 (CC) 1.052*** 0.202 (0.656,1.447)

𝛽2 (TV) 0.309* 0.169 (−0.021,0.639)

𝛽3 (CCTV) −0.467* 0.252 (−0.962,0.027)

𝜙2 0.197 0.114 (0.083,0.311)

𝜙3 0.878 0.121 (0.757,0.999)

***Significant at .01 level. **Significant at .05 level. *Significant at .1

level.
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Figure S1 in the Supplementary information illustrates how adja-

cent categories are not equally spaced for this data set. We might

rescale {𝜙k} as 𝜈1 = 1, 𝜈q = q and𝜈k = 1 + (q − 1) × 𝜙k in order

to put the categories in its original range [1, q]. In this case,

{𝜈k} = (1,1.59,3.63,4).

Regarding the goodness–of–fit of the model, it is important to

remark that the test Sg1 ,g2
might not fit well when all covariates

are dichotomous variables because this produces a small number of

covariates patterns and the approximate chi-square distribution does

not hold. Thus, as all covariates of the TVSFP study data set are

dichotomous, we calculated both the Pearson X2 and the deviance

G2 statistic tests for assessing the goodness-of-fit of the model, as

discussed in Section 3.3. We calculated the 4 × 4 contingency table,

which satisfies the requirement that all expected frequencies should

be greater than 1 and at least 80% should be greater than 5 for a good

𝜒2
df

-approximation. Table S4 in the Supplementary information gives

the table of observed and expected frequencies by cross-classifying

the four collapsed ordinal response levels (columns) and the four

covariate patterns (rows). The value of the tests are very similar

(X2 = 3.4299 and G2 = 3.4297) giving the same p value < .489, which

suggests no evidence of lack of fit at 5% of significance level.

We also calculated the AIC and BIC values to compare the

baseline-category logit model, the proportional odds model, and the

ordered stereotype model for the TVSFP study data set. The results

are shown in Table S5 in the Supplementary information. The ordered

stereotype model is the best model according to AIC. However, the

BIC values show that the proportional odds model is the best model,

which makes sense because BIC penalizes less parsimonious models.

Thus, there is not much information missed by fitting a proportional

odds model instead of an ordered stereotype model for this data set.

On the other hand, the baseline-category logit model is the less appro-

priate model according to AIC and BIC, indicating that the ordinal

assumption is necessary.

Finally, we fitted both the proportional odds and trend odds models

to the application dataset (SAS script is available in the Supplementary

information, Appendix 1 in Section B). The trend odds model assumes

that the ordinal data are generated by a latent non-standard logistic

distribution, for example, logistic distribution with a scale parameter

that is different from one, which makes the model more flexible in

several cases. It assumes that nonproportional odds are monotonic

so that a common slope (𝛾) could be used for different ordinal levels

and requires to know the scaling between response categories (tk) in

advance. For instance, Capuano and Dawson (2013) used tk = k − 1.

In contrast, spacing parameters (𝜙's) in the ordered stereotype model

are estimated from data. Table 2 shows the results for the comparison

between the proportional odds and trend odds models for the TVSFP

data set. The significant estimates of both models are similar. The

discrepancy lies in the covariate CCTV, which is not significant in the

trend odds model, but significant in the proportional odds model.

Additionally, Figure 2 compares the proportional odds model and

the nonproportional odds model. Using both likelihood ratio test

p value = .2595) and score test p value = .2631), we conclude that the

proportional odds model is adequate for the TVSFP study data set.

TABLE 2 Results of fitting the proportional odds model (POM)
and the trend odds model (TOM) for the TVSFP data set. The
four-level response variable THKS4 is used

POM TOM

Coefficient Estimation SE Estimation SE

𝛼2 0.8890*** 0.0937 0.8610*** 0.0956

𝛼3 −0.2752*** 0.0906 −0.2730*** 0.0897

𝛼4 −1.3661*** 0.0967 −1.3200*** 0.1033

𝛽1 (CC) 0.7770*** 0.1282 0.8158*** 0.1630

𝛽2 (TV) 0.2244* 0.1239 0.2233*** 0.0248

𝛽3 (CCTV) −0.3720** 0.1799 −0.2743 0.2224

𝛾̂1 (CC) - - −0.0432 0.0862

𝛾̂2 (TV) - - −0.0022 0.0496

𝛾̂3 (CCTV) - - −0.0749 0.1026

Abbreviations: POM, proportional odds model; SE, standard error;

TOM, trend odds model.

***Significant at .01 level. **Significant at .05 level. *Significant at .1

level.

FIGURE 2 Graphical comparison between the proportional odds
model and the nonproportional odds model: Ordinal response
variable in the TVSFP study data set

3.2 Simulation study

We set up a simulation study in a diverse range of scenarios with

the aim of measuring how different the results are when the ordinal-

ity in the response variable is not taken into account properly using

two cases. We also compare the choice of ordered stereotype and

proportional odds models when neither of them is the true model in

Case 3. In Case 4, in order to check the robustness of the ordered

stereotype model, we compare the performance of the linear regres-

sion and ordered stereotype models when the true model is the linear

regression model.

Case 1. The goal of Case 1 is to evaluate if we can keep the same

set of predictors by naively treating the ordinal scales as equal

space measurements to fit an ordinary linear regression model.

On the basis of Agresti's findings (Agresti, 2010, section 1.3.1),

the design of the models intentionally includes an interaction term

between the covariates. We expect to have similar findings.

The data were generated from the following ordered

stereotype model

log

(
P
[
Yi = k|x1, x2

]
P
[
Yi = 1|x1, x2

]) = 𝛼k + 𝜙k(𝛽1xi1 + 𝛽2xi2),

i = 1, … , n, k = 2, … , q,

(9)
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which does not include an interaction term between the covari-

ates x1 and x2 and includes the monotone ordinal constraint

(Equation 2) to ensure the ordinal nature of the data generated.

The fitted models include the linear regression model:

E[Yi|x1, x2] = 𝛼 + 𝛽1xi1 + 𝛽2xi2 + 𝛽12xi1xi2, i = 1, … , n (10)

and the ordered stereotype model as follows:

log

(
P
[
Yi = k|x1, x2

]
P
[
Yi = 1|x1, x2

]) = 𝛼k + 𝜙k(𝛽1xi1 + 𝛽2xi2 + 𝛽12xi1xi2),

i = 1, … , n, k = 2, … , q.

(11)

We are interested in testing the hypothesis 0 ∶ 𝛽12 = 0 against

1 ∶ 𝛽12 ≠ 0 at a 5% significance level. Because the true model

does not have the interaction effect, we should not reject the null

hypothesis too often for both fitted models if we can keep the

same set of predictors.

We simulated data from Equation (9) varying the response

categories (q = 3,4,5) and the covariate parameters (𝛽1, 𝛽2).
Table 3 shows a summary of the true parameters for the model,

where the score parameters {𝜙k} were assigned to be equally

spaced and the true parameters {𝛼k} were chosen to avoid highly

unbalanced frequencies in the response categories.

Two different scenarios were considered in regard with the

distribution of the covariates x1 and x2. Scenario 1 has x1 ∼
 (0,1) and x2 ∼ Bern(0.5); and Scenario 2 has both x1 and x2

follow  (0,1) independently. For each case, we generated 5,000

TABLE 3 Parameters used to investigate the proportion of
times that 0 ∶ 𝛽12 = 0 is rejected at a 5% significance level
for the ordered stereotype model (Equation 9) for q = 3,4,5

response categories

Categories

(q) {𝜶k} { 𝝓k}

3 (0,−0.6,−1.5) (0,1∕2,1)
4 (0,0.2,−0.8,−1.2) (0,1∕3,2∕3,1)
5 (0,−0.1,−0.8,−1.2,−1.6) (0,1∕4,2∕4,3∕4,1)

TABLE 4 Proportion of times that 0 ∶ 𝛽12 = 0 was rejected at a
5% level with n = 500, over 5,000 simulations for Scenario 1
(x1 ∼  (0,1) and x2 ∼ Bern(0.5)) when each of the LRM and the
OSM was fitted

q=3 q=4 q=5

𝜷1 𝜷2 LRM OSM LRM OSM LRM OSM

0.50 2.5 6.82 4.36 5.53 5.50 4.90 5.07

0.75 2.5 8.42 4.14 5.54 5.42 5.16 5.04

1.00 2.5 10.31 4.38 5.18 5.32 4.98 5.82

0.50 3.0 8.51 4.93 5.78 4.83 7.28 4.68

0.75 3.0 12.34 4.26 6.85 4.92 6.84 4.46

1.00 3.0 15.54 4.18 7.20 4.79 7.82 5.10

0.50 3.5 10.24 5.12 6.08 4.97 8.78 4.98

0.75 3.5 16.02 4.18 9.04 4.82 8.48 4.52

1.00 3.5 21.55 5.15 10.92 5.18 10.83 4.72

0.50 4.0 11.12 4.85 7.62 5.15 10.31 5.28

0.75 4.0 21.68 5.04 11.42 5.18 12.95 4.77

1.00 4.0 29.35 4.29 14.21 4.98 13.91 5.02

Abbreviations: LRM, linear regression model; OSM, ordered stereotype

model.

data sets (replicates) of sample size n = 500 and we calculated the

proportion of times the hypothesis 0 ∶ 𝛽12 = 0 was rejected at a

5% level. Tables 4 and 5 show an overall summary of the results

for different configurations of the covariate effect parameters

(𝛽1, 𝛽2) for Scenario 1 and Scenario 2 with n = 500, respectively.

The equivalent results for sample sizes n = 100 and n = 1,000

are shown in Tables S6–S9 in the Supplementary information.

The rejection rate of the test when an ordered stereotype

model was fitted is close to the nominal level regardless different

combinations of (𝛽1, 𝛽2), which is expected. However, the results

when a linear regression model was fitted are much worse, with

rejection rates up to 29% (q = 3, 𝛽1 = 1, 𝛽2 = 4 in Scenario 1).

It confirms that no interaction term is no longer true by naively

treating the ordinal scales as equal space measurements to fit an

ordinary linear regression model. Additionally, Table 6 shows a

summary table of the averages of all scenarios broken down by

sample size. The stereotype model obtained the worst results for

Scenario 1 when n = 100, which makes sense. In that case, the

values were a little bit higher than the 5% nominal level (6.26,

6.22, and 6.29 in average when q =3, 4, and 5, respectively), but

the results are close to the 5% nominal level when the sample size

increases. However, the linear regression model has an erratic

TABLE 5 Proportion of times that 0 ∶ 𝛽12 = 0 was rejected at a 5%
level with n = 500, over 5,000 simulations for Scenario 2 (x1 ∼  (0,1)
and x2 ∼  (0,1)) when each of the LRM and the OSM was fitted

q=3 q=4 q=5

𝜷1 𝜷2 LRM OSM LRM OSM LRM OSM

1.0 2.5 10.18 5.14 7.52 5.98 10.18 6.34

2.0 2.5 23.36 4.52 14.44 6.12 19.52 6.14

3.0 2.5 26.46 4.54 18.41 5.48 23.56 5.54

1.0 3.0 9.62 5.12 6.56 5.30 8.14 6.06

2.0 3.0 23.06 4.54 15.58 5.24 20.62 6.22

3.0 3.0 28.86 4.68 19.86 4.96 24.72 5.72

1.0 3.5 8.14 4.78 6.22 5.30 9.16 5.94

2.0 3.5 21.66 4.25 14.66 5.68 19.52 5.74

3.0 3.5 27.94 5.17 20.16 5.08 26.61 5.44

1.0 4.0 6.94 4.24 5.62 4.94 6.84 5.56

2.0 4.0 18.16 4.46 13.84 4.78 16.32 4.67

3.0 4.0 26.82 5.13 19.74 4.24 25.7 4.32

Abbreviations: LRM, least regression model; OSM, ordered stereotype

model.

TABLE 6 Proportion of times that 0 ∶ 𝛽12 = 0 was rejected at a
5% level, over 5,000 simulations when each of the LRM and the
OSM was fitted, averaged over all the scenarios and broken down
by sample size

q=3 q=4 q=5

Scenario n LRM OSM LRM OSM LRM OSM

1 100 5.43 6.26 5.36 6.22 5.54 6.29

500 14.33 4.57 7.95 5.09 8.52 4.96

1000 11.47 4.8 6.66 5.04 8.16 4.95

2 100 16.73 5.21 16.65 5.22 16.93 5.16

500 19.27 4.71 13.55 5.26 17.57 5.64

1000 16.77 5.21 19.56 5.14 16.85 5.2

Abbreviations: LRM, least regression model; OSM, ordered stereotype

model.
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TABLE 7 Proportion of times that 0 ∶ 𝛽12 = 0 was rejected at
a 5% level with n = 500 and q = 5, over 5000 simulations for
Scenario 1 (x1 ∼  (0,1) and x2 ∼ Bern(0.5)) and Scenario 2
(x1 ∼  (0,1) and x2 ∼  (0,1)) when each of the linear
regression model (LRM) and the ordered stereotype model
(OSM) was fitted. The values of the intercepts {𝛼} are chosen to
classify three types of unbalanced scenarios: a) towards lower
ordinal categories (‘‘Low’’), b) towards mid ordinal categories
(‘‘Mid’’), and c) towards higher ordinal categories (‘‘High’’)

Low Mid High

𝜷1 𝜷2 LRM OSM LRM OSM LRM OSM

Scenario 1 0.50 2.50 11.92 4.74 4.61 5.11 51.25 4.83

0.75 3.00 20.68 5.00 4.65 5.00 88.95 5.30

1.00 4.00 23.00 4.65 4.65 4.43 93.52 4.22

Scenario 2 0.50 2.50 20.21 5.01 4.28 5.12 13.24 5.63

0.75 3.00 34.35 4.92 5.78 5.45 22.36 5.89

1.00 4.00 48.98 4.47 10.28 5.28 31.05 5.62

behavior: it performs well when n = 100 but when n increases,

it performs badly. Moreover for Scenario 2 (i.e., two normal

distributions), the ordered stereotype model performs well. It was

quite the opposite for the linear regression model

Finally, we ran a sample of this simulation study but at 1% and

10% significance levels (not shown in this paper). The results were

very similar to those at a 5% significance level.

It could be common to find unbalanced frequencies of the ordi-

nal responses in data from real examples. In order to test that,

we extended the scenarios in this case taking into account unbal-

anced ordinal frequencies. In particular, we ran simulations for

the same Scenarios 1 and 2 and used different configurations of

the covariate effect parameters (𝛽1, 𝛽2). We modified the values

of the intercepts {𝛼} in order to get three types of unbalanced

frequencies: (a) unbalanced towards lower ordinal categories

(𝜶 = [0,0.2,−1.0,−1.6,−2.5]), (b) unbalanced towards mid ordi-

nal categories (𝜶 = [0,0.2,1.0,−1.6,−2.5]), and (c) unbalanced

towards higher ordinal categories (𝜶 = [0,−1.6,−2.5,0.2,1.0]).
For each scenario, we generated 5,000 data sets (replicates) of

sample size n = 500 and q = 5 and calculated the proportion of

times the hypothesis 0 ∶ 𝛽12 = 0 was rejected at a 5% level.

Table 7 gives the parameter setup and the results. It shows that

the ordered stereotype model is robust to all unbalanced scenar-

ios, whereas the linear regression model has a bad performance

in all scenarios apart from some cases of the scenario where the

unbalanced frequencies are towards mid ordinal categories.

Case 2. Consider three models as follows:

log

(
P
[
Yi = k|x1, … , xp

]
P
[
Yi = 1|x1, … , xp

]) = 𝛼k + 𝜙k(𝛽1xi1 + … + 𝛽pxip),

k = 2, … , q,

(12)

log

(
P
[
Yi ≤ k|x1, … , xp

]
1 − P

[
Yi ≤ k|x1, … , xp

]) = 𝛼k + 𝛽1xi1 + … + 𝛽pxip,

k = 1, … , q − 1,

(13)

E[Yi|x1, … , xp] = 𝛼 + 𝛽1xi1 + … + 𝛽pxip, (14)

The goal of Case 2 is to evaluate main effects by comparing

ordered stereotype (12), proportional odds (13), and ordinary

linear (14) models. The true model includes relevant and noise

covariates that allows us to check the size and power of a test

for main effects. The data were generated from Model (12) or

Model (13) under different scenarios listed in Table 8. The score

parameters {𝜙k} ranges from equally spaced to highly unbalanced

patterns and the true parameters {𝜇k} were chosen to avoid

highly unbalanced frequencies in the response categories. The

fitted models include all three models (12)–(14).

We are interested in testing the hypotheses 0 ∶ 𝛽1 = 0

against 1 ∶ 𝛽1 ≠ 0 and 0 ∶ 𝛽2 = 0 against 1 ∶ 𝛽2 ≠ 0 at a 5%

significance level, respectively. For each scenario, we generated

5,000 data sets (replicates) of sample size n = 500 and we

calculated the proportion of times that the hypothesis 0 ∶ 𝛽h = 0

was rejected at a 5% level for h = 1, 2 using a likelihood ratio test

statistic. When the true parameter equals 0, we obtain the size of

a test. On the other hand, if the true parameter does not equal 0,

the power of a test can be found. We set 𝛽1 ≠ 0 and 𝛽2 = 0 for

all scenarios when there are two parameters (p = 2) in a model

to obtain both size and power of a test. Table 8 shows results

for different configurations of the covariates x1 and x2 between

 (5,3) and Bern(0.5) distributions.

When there is only one covariate, the performance of ordered

stereotype models (12) is the best in terms of the size of tests,

regardless the true model. The power of tests seems to be

similar across three different fitted models. When there are two

covariates, the performance of an ordered stereotype model

(12) depends on the magnitude of the non–zero parameter. As

the magnitude increases, the better the performance. Due to

the multiplicative structure of 𝜙k and 𝛽's, the performance of

{𝜙̂k} relies on the non–zero 𝛽's. Given a fixed sample size, {𝜙̂k}
are further away from the true {𝜙k} if all 𝛽's are closer to 0.

That is, we cannot estimate the score parameters well if there

is little information on covariates. It also applies to the cases

when the non–zero 𝛽 is associated with a binary covariate (e.g.,

S2211-S2234). Besides, because of the multiplicative structure,

for the scenarios with p = 1, the likelihood ratio test statistic

has an asymptotic chi-square distribution with three degrees of

freedom for an ordered stereotype model under 0. The three

degrees of freedom come from 𝛽 , 𝜙2, and 𝜙3 under q = 4.

The ordinary linear model (14) is the worst when the true score

parameters are highly unbalanced (e.g., S2134). When data were

generated from a proportional odds model (13), the result from

fitting a linear model is not bad. The stereotype model fitting is also

good, considering Scenario P2114 (with 𝛽1 = 1.00) only due to the

multiplicative issue. When data were generated from a stereotype

model with two continuous covariates, the proportional odds

model fitting is slightly worse than the stereotype model fitting

for a large 𝛽1 (= 1.00).

From simulations in Cases 1 and 2, we conclude that when the

predictor structure is complicated, that is, with interaction terms,

results by fitting of a linear regression model are different from

the true situation. For the cases with main effects only, fitting a

linear model could also result in a misleading result when there

are two or more covariates.
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TABLE 8 True model columns show parameters used to generate data for q = 4 response categories with n = 500. Fitted model columns
show proportions of times that 0 ∶ 𝛽h = 0 was rejected at a 5% level, over 5,000 simulations with h = 1, 2. When the true 𝛽h = 0, the
proportion = size of the test; and when the true 𝛽h ≠ 0, the proportion = power of the test

True Model Fitted Model: Size/Power (in %)

Scenario Model p x1 x2 {𝜙k} 𝛽1 𝛽2 (12) (13) (14)

S1111 (12) 1 N(5,3) - (0,1∕3,2∕3,1) 0 - 4.94/- 4.60/- 4.62/-

S1112 (12) 1 N(5,3) - (0,1∕3,2∕3,1) 0.20 - -/89.7 -/86.4 -/86.1

S2111 (12) 2 N(5,3) N(5,3) (0,1∕3,2∕3,1) 0.15 0 5.26/66.1 5.04/61.4 5.30/61.5

S2112 (12) 2 N(5,3) N(5,3) (0,1∕3,2∕3,1) 0.25 0 5.18/92.3 5.06/91.2 5.20/91.1

S2113 (12) 2 N(5,3) N(5,3) (0,1∕3,2∕3,1) 0.50 0 5.15/100 5.28/100 5.25/100

S2114 (12) 2 N(5,3) N(5,3) (0,1∕3,2∕3,1) 1.00 0 5.00/100 5.34/100 5.00/100

S2121 (12) 2 N(5,3) N(5,3) (0,0.2,0.8,1) 0.15 0 5.80/63.2 5.42/57.0 5.40/57.1

S2122 (12) 2 N(5,3) N(5,3) (0,0.2,0.8,1) 0.25 0 6.10/95.8 5.94/96.0 6.12/95.7

S2123 (12) 2 N(5,3) N(5,3) (0,0.2,0.8,1) 0.50 0 5.00/100 4.80/100 4.92/100

S2124 (12) 2 N(5,3) N(5,3) (0,0.2,0.8,1) 1.00 0 5.32/100 5.64/100 4.90/100

S2131 (12) 2 N(5,3) N(5,3) (0,0.3,0.998,1) 0.15 0 5.88/67.6 5.16/63.2 5.20/61.7

S2132 (12) 2 N(5,3) N(5,3) (0,0.3,0.998,1) 0.25 0 5.28/97.4 4.48/97.0 4.54/96.6

S2133 (12) 2 N(5,3) N(5,3) (0,0.3,0.998,1) 0.50 0 5.12/100 5.14/100 4.92/100

S2134 (12) 2 N(5,3) N(5,3) (0,0.3,0.998,1) 1.00 0 5.20/100 4.80/98.7 3.30/100

S2211 (12) 2 B(0.5) N(5,3) (0,1∕3,2∕3,1) 0.15 0 5.50/9.75 4.90/7.90 5.30/8.00

S2212 (12) 2 B(0.5) N(5,3) (0,1∕3,2∕3,1) 0.25 0 5.40/13.8 5.40/13.8 4.80/14.2

S2213 (12) 2 B(0.5) N(5,3) (0,1∕3,2∕3,1) 0.50 0 5.65/48.8 5.35/45.8 5.30/47.7

S2214 (12) 2 B(0.5) N(5,3) (0,1∕3,2∕3,1) 1.00 0 5.74/95.5 5.64/94.9 5.52/95.6

S2221 (12) 2 B(0.5) N(5,3) (0,0.2,0.8,1) 0.15 0 6.65/11.8 4.50/8.60 4.85/8.40

S2222 (12) 2 B(0.5) N(5,3) (0,0.2,0.8,1) 0.25 0 5.45/17.5 5.25/15.7 5.60/16.9

S2223 (12) 2 B(0.5) N(5,3) (0,0.2,0.8,1) 0.50 0 6.35/53.7 6.05/48.5 5.90/51.3

S2224 (12) 2 B(0.5) N(5,3) (0,0.2,0.8,1) 1.00 0 5.35/97.7 5.30/97.6 5.00/97.9

S2231 (12) 2 B(0.5) N(5,3) (0,0.3,0.998,1) 0.15 0 5.85/10.1 4.66/8.24 4.06/8.60

S2232 (12) 2 B(0.5) N(5,3) (0,0.3,0.998,1) 0.25 0 5.85/21.1 4.15/18.3 4.10/18.7

S2233 (12) 2 B(0.5) N(5,3) (0,0.3,0.998,1) 0.50 0 6.65/62.8 5.30/56.6 5.25/55.3

S2234 (12) 2 B(0.5) N(5,3) (0,0.3,0.998,1) 1.00 0 5.55/99.3 5.60/99.2 5.30/99.0

P1111 (13) 1 N(5,3) - - 0 - 4.96/- 4.64/- 4.42/-

P1112 (13) 1 N(5,3) - - 0.15 - -/87.2 -/89.2 -/89.1

P2111 (13) 2 N(5,3) N(5,3) - 0.15 0 5.88/85.6 4.84/84.3 4.56/81.5

P2112 (13) 2 N(5,3) N(5,3) - 0.25 0 5.84/99.9 4.98/99.9 5.12/99.9

P2113 (13) 2 N(5,3) N(5,3) - 0.50 0 5.56/100 5.12/100 5.22/100

P2114 (13) 2 N(5,3) N(5,3) - 1.00 0 5.52/100 5.60/100 5.30/100

Note. The scenario is labeled by ‘‘Mabcd’’, where M=S for Model (12) and M=P for Model (13); ‘‘a’’ indicates the number of covariates p; ‘‘b’’ indicates the

distribution of x's; ‘‘c’’ shows the structure of {𝜙k}; and ‘‘d’’ shows different values of 𝛽's.

Case 3. When a baseline–categories logit model is the true

model, the choice between ordered stereotype and proportional

odds models might depend on the parameter structure in the

baseline–categories logit model. We simulated several scenarios

to investigate it.

The data were generated from the following

baseline–categories logit model

log

(
P
[
Yi = k|x1, x2

]
P
[
Yi = 1|x1, x2

]) = 𝛼k + 𝛽k1xi1 + 𝛽k2xi2,

i = 1, … , n, k = 2, … , q,

(15)

where q = 4 and the true parameters {𝛼k} were chosen to

avoid highly unbalanced frequencies in the response categories.

The covariates x1 and x2 were generated from  (5,3) with

sample sizes n = 100,500, and 1,000. If both {𝛽k1} and {𝛽k2} are

monotonic increasing over k = 1, … , q, it implies that the ordered

stereotype model (1) would provide a good fit. The goal of the

simulation study in Case 3 is to investigate the situations when it

is not true.

We fitted both ordered stereotype (12) and proportional odds

(13) models for each scenarios listed in Table 9. We compared

the two fitted models using AIC. Table 9 shows the proportion of

times over 5,000 simulations that the ordered stereotype model

(12) has a lower AIC than the proportional odds model (13).

For Scenarios 1-3, {𝛽k1} are nondecreasing over k, but {𝛽k2}

may not have the same pattern. The ordered stereotype model

(12) was preferable for these scenarios. However, when both

{𝛽k1} and {𝛽k2} do not follow a monotonic increasing/decreasing

pattern as in Scenario 4, the proportional odds model (13) was

preferred, that is, we didn't gain much by adding additional

parameters using ordered stereotype models in terms of the

model fitting. Additionally, we also note that the larger the sample

size, the larger the proportion of times that AIC results in favor of

the stereotype model is. Moreover, those proportions converge

to around 65% when n = 1,000. Because there is generally a

trade-off between goodness-of-fit and parsimony, the choice of

models depends on researcher's needs. If a better fit is not a big
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TABLE 9 True model columns show parameters used in Model (15) to generate data for q = 4 response categories
with n = 100,500, and 1,000. The last column gives the proportion of times that the ordered stereotype model (12)
is better than the proportional odds model (13) over 5,000 simulations when the two models were fitted

Scenario True model AIC results in favor of (12) (in %)

{𝛽k1} {𝛽k2} n = 100 n = 500 n = 1000

1 (0, 0.25, 0.50, 0.8) (0, 0.5, −0.05, −0.5) 51.34 61.58 68.73

2 (0, 0.25, 0.50, 0.8) (0, 0.5, −0.2, −0.5) 49.16 58.14 65.36

3 (0, 0.25, 0.50, 0.8) (0, −0.2, −0.4, −0.5) 42.12 55.62 65.79

4 (0, 2.0, 2.1, 1.9) (0, 0.5, −0.05, −0.5) 25.56 33.24 64.83

problem, the proportional odds model is more parsimonious and

easier to interpret than the stereotype model.

Case 4. With the aim of looking into robustness to misspecifi-

cation of the ordered stereotype model, we set up a simulation

study when the linear model is the true model. This case is simi-

lar to Case 1, but now the data was generated from Model (10)

without the interaction effect under a diverse range of scenar-

ios listed in the first two columns of Table 10. The fitted models

are Models (10) and (11). We are interested in testing the same

hypothesis about the interaction term between covariates x1 and

x2: 0 ∶ 𝛽12 = 0 against 1 ∶ 𝛽12 ≠ 0 at a 5% significance level.

Because the true model does not have the interaction effect, we

should not reject the null hypothesis too often for both fitted

models if we can keep the same set of predictors. Table 10 shows

the results when x1 ∼  (0,1) and x2 ∼ Bern(0.5) when n = 500.

The results for sample sizes n = 100 and n = 1000 are given in

Tables S10 and S11 in the Supplementary information.

We can observe that the rejection rate of the test when the

ordered stereotype model was fitted are very close to the 5%

nominal level in all the scenarios, which shows that the model is

quite adequate even though the true model is the linear regression

model.

TABLE 10 Case 4. Proportion of times that 0 ∶ 𝛽12 = 0 was
rejected at a 5% level with n = 500, over 5,000 simulations for
Scenario 1 (x1 ∼  (0,1) and x2 ∼ Bern(0.5)) when each of the
LRM and the OSM was fitted

q=3 q=4 q=5

𝜷1 𝜷2 LRM OSM LRM OSM LRM OSM

0.50 2.5 3.98 4.12 5.20 5.50 4.98 5.08

0.75 2.5 5.06 4.97 4.83 4.60 4.22 3.98

1.00 2.5 5.07 4.74 4.92 5.06 4.80 4.80

0.50 3.0 5.12 4.67 4.58 4.61 4.92 5.18

0.75 3.0 4.91 5.00 5.58 5.52 4.79 5.28

1.00 3.0 5.03 5.01 4.77 4.96 4.79 5.66

0.50 3.5 5.15 4.65 5.00 5.33 5.04 5.28

0.75 3.5 5.08 4.76 5.30 4.80 5.04 5.29

1.00 3.5 5.01 5.02 5.00 5.00 4.95 5.30

0.50 4.0 4.84 4.72 4.78 4.12 4.69 4.55

0.75 4.0 4.70 4.62 4.68 4.76 4.55 4.48

1.00 4.0 5.13 4.67 4.84 4.68 4.69 4.75

Abbreviations: LRM, least regression model; OSM, ordered

stereotype model.

4 DISCUSSION

Psychiatric studies often deal with ordinal outcomes. These variables

do not follow a normal distribution and, therefore, the application

of ordinary regression might produce misleading results due to, for

instance, ‘‘floor’’ and ‘‘ceiling’’ effects. This article has introduced

a regression model developed for the analysis of ordinal data, the

ordered stereotype model. Its use has several benefits such as making

as few assumptions as possible, having greater power for detecting

relevant trends, and using measures that are similar to those used in

ordinary regression for quantitative variables (Agresti, 2010, section

1.2). One of the main advantages of this model is that it breaks with the

assumption of levels of the ordinal response are equally spaced, which

might be not true. We particularly focused on this model because it

is straightforward to obtain score parameter estimates to determine a

new uneven spacing of the ordinal outcomes.

The application of this model to different ordinal data structures,

which are common in many psychiatric research studies, has been

demonstrated. For independent observations, the formulation of the

model, estimation of its parameters, and assessment of the adequacy

of the fitted model have been presented. This paper also discusses the

problem of treating ordinal responses as continuous using a simulation

study. One might lead to a misleading result by fitting an ordinary linear

regression model if there is more than one covariate. The simulation

study also compare the differences between proportional odds and

ordered stereotype models. When the true ordered stereotype model

has equally spaced scores, fitting a proportional odds model seems

plausible. However, it gets worse when the score parameters are

highly unbalanced.

The use of the models and methods described in this article may be

advantageous for practitioners in the field. Assigning nonequal scores

to ordinal categories gives an easy way to show the spacing among

ordinal categories. If practitioners have some knowledge about the

score for each of the ordered categories, assigning scores might be

the best way to analyse data, because ordinary linear models can be

applied. However, if practitioners do not have any predetermined idea

about the spacing between adjacent categories, the use of an ordered

stereotype model is convenient as the data dictate the nonequally

spaced scores among ordinal outcomes. Thus, for independent obser-

vations, descriptive statistics can be calculated using the new scores

of ordinal scales. It may benefit the practitioners who can easily

understand the mean or median as summary statistics.

This article has attempted to present the models and its application

in the less technical possible way. The program for checking the
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ordered stereotype model overall fit was written in R. Meanwhile, the

code is available upon request to the authors.

The estimation of the spacing among ordinal responses is an

improvement over other ordinal data models such as proportional

odds model and continuation-ratio model, although more research in

performance comparison with others equivalent methods is needed.

Additionally, the development of methods for multilevel ordinal data

(clustered and longitudinal data) where the ordered stereotype model

were the underlying model might be a field to explore for future

research.
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