
Bioscience Reports (2022) 42 BSR20221041
https://doi.org/10.1042/BSR20221041

*These authors contributed
equally to this work.

Received: 14 May 2022
Revised: 22 August 2022
Accepted: 31 August 2022

Accepted Manuscript online:
02 September 2022
Version of Record published:
21 September 2022

Research Article

Gr1+ myeloid-derived suppressor cells participate in
the regulation of lung–gut axis during mouse
emphysema model

Jing Yang1,* , Jiajia Zeng2,*, Shuaini Yang2, Xin Guan1, Qiaoying Gao1, Simeng He3, Xiaoyang Wu3, Lixiu Ge4

and Hong Bai2
1Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western
Medicine, Tianjin Nankai Hospital, Tianjin 300100, China; 2Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune
Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; 3Department of Anesthesiology and
Critical Care Medicine, Tianjin Nankai Hospital, Nankai University, Tianjin 300071, China; 4Department of Clinical Laboratory, Tianjin Nankai Hospital, Tianjin 300100, China

Correspondence: Jing Yang (yj518629@126.com) or Hong Bai (hongbai25@tmu.edu.cn)

Background: Chronic obstructive pulmonary disease (COPD) is often accompanied by in-
testinal symptoms. Myeloid-derived suppressor cells (MDSCs) possess immunosuppres-
sive ability in cancer, chronic inflammation, and infection. The aim of this study was to ver-
ify the distribution of MDSCs in emphysema mouse model and participation in lung–gut
cross-talk.
Methods: Adult male C57BL/6 mice were exposed to cigarette smoke (CS) for 6 months
or injected with porcine pancreas elastase to establish emphysema models. Flow cytome-
try and immunohistochemistry analysis revealed the distribution of MDSCs in tissues. The
expression of inflammation and MDSCs-associated genes in the small intestine and colon
were analyzed by real-time PCR.
Results: The small intestine and colon of CS-induced emphysematous mice displayed
pathological changes, CD4+/CD8+ T cells imbalance, and increased neutrophils, mono-
cytes, and macrophages infiltration. A significant expansion of MDSCs could be seen
in CS-affected respiratory and gastrointestinal tract. Importantly, higher expression of
MDSCs-related effector molecules inducible nitric oxide synthase (INOS), NADPH oxidase
2 (NOX2), and arginase 1 (ARG-1) suggested the immunosuppressive effect of migrated
MDSCs (P<0.05).
Conclusion: These data provide evidence for lung–gut axis in emphysema model and the
participants of MDSCs.

Introduction
Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease characterized
by not fully reversible airflow limitation. It is usually induced by long-term exposure to toxic gases and
particles from cigarette smoke (CS) and biomass fuel, causing impaired lung function, high morbidity, and
mortality in patients worldwide [1,2]. Moreover, it has long been recognized that progressive inflamma-
tion in the airways, the alveoli, and the microvasculature is a primary feature of COPD [3]. Emphysema has
been recognized as the main pathological component of COPD. It has always emphasized of research that
focuses on the COPD pathogenesis with the characteristics of abnormal permanent enlargement of the
airspaces and destruction of the alveolar wall [4]. However, the mechanisms that attack the initiation and
progression of emphysema and decline of lung function are not well understood, consequently hampering
the progression of effective therapy for COPD patients. Animal model of emphysema with pathological
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changes accurately recapitulating most of the key features of the human disease will be helpful in efforts to improve
our understanding of COPD physiology, pathophysiology, and treatments [5].

Chronic airway diseases, like COPD, asthma, and respiratory virus infection, are often accompanied by gastroin-
testinal symptoms [6–8]. For example, associations between COPD and inflammatory bowel disease (IBD) have been
demonstrated [9,10]. Epidemiologic studies have shown significant increases in incidence [11] and prevalence [12]
of IBD in patients with airway diseases. Complementarily, many studies have highlighted a higher incidence of pul-
monary inflammation in IBD, with IBD patients developing extraintestinal manifestations of diseases, such as pul-
monary dysfunction [13]. Although the pathophysiologic mechanisms are still areas of intensive research, accumu-
lating evidence suggest the influence of the gut condition on lung immunity, referred to as the lung–gut axis, which
describes the common mucosal immune system of the respiratory and gastrointestinal tract.

Myeloid-derived suppressor cells (MDSCs) described a largely heterogeneous ensemble of myeloid cells with potent
immunosuppressive activity in cancer and diseases including chronic inflammation, infection, autoimmune diseases,
trauma, graft versus host disease, etc. [14]. This cell population was reported to be composed of granulocytes, mono-
cytes, and other myeloid cells with distinct functional properties [15]. One of the primary functions of MDSCs is their
capability to inhibit both the adaptive (CD8+ and CD4+ T lymphocytes) and innate immunity (natural killer [NK]
cells) via the production of effector molecules, such as arginase 1 (ARG-1), nitric oxide, inducible nitric oxide synthase
(INOS), and reactive oxygen species (ROS), etc. [16,17]. Poor lung function of COPD patients is thought to result, in
part, from exaggerated innate immune-mediated pulmonary inflammation in response to chronic air pollutant expo-
sure [18,19]. Furthermore, several lines of evidence suggest that emphysema pathogenesis involves the participation
of a complex network of inflammatory cells, such as neutrophils, macrophages, and lymphocytes [20–22]. Based on
the participants of these inflammatory cells in COPD pathogenesis and the heterogeneity of MDSCs, we hypothesize
that MDSCs participate in the lung–gut cross-talk of mice model of pulmonary emphysema.

In the present study, we used mouse models of COPD, namely CS-induced and porcine pancreatic elastase
(PPE)-induced emphysema, to examine the participation of MDSCs in the lung–gut axis of COPD pathogenesis.
We observed apparent pathological changes, CD4+ T/CD8+ T cells imbalance, and increased innate immune cells
(neutrophils, monocytes, and macrophages) in the small intestine and colon of emphysematous mice. Flow cytome-
try analysis found expansions of MDSCs to the respiratory and gastrointestinal tract. Importantly, higher expression
of MDSC-related effector molecules in CS-affected intestinal tract, including INOS, NOX2, and ARG1, proves that
migrated MDSCs played an immune regulatory role. Thus, our study recognized the existence of the lung–gut axis in
the murine model of emphysema and demonstrated the regulatory role of MDSCs through modulating inflammatory
levels.

Materials and methods
Mice
Male C57BL/6 mice at the age of 8–10-week-old were purchased from Beijing HFK Biotechnology Co. Ltd. (Beijing,
China) and were housed in specific pathogen-free conditions under a 12-h light/dark cycle at 22–24◦C each day.

For the whole-body CS exposure model, mice were exposed to CS according to a modified protocol from previ-
ously published work [23,24]. Briefly, whole-body exposure to CS (11 mg tar, 0.8 mg or less of nicotine, and 13 mg
CO) occurred in an 18-L plastic chamber. Mice received smoke produced by burning filter-tipped ZuanShi cigarettes
(China Tobacco Hebei Industrial Co., Ltd., China). Mice were exposed four times per day with a 30-min smoke-free
interval, 5 days per week for 24 weeks at a concentration of 400–500 mg/m3 total particulates. Littermate control mice
were exposed to normal air.

For PPE-induced emphysema mouse model, mice were anesthetized with a combined injection of xylazine (5
mg/kg) and ketamine (40 mg/kg), and then intratracheally injected with 4.8 U/mg of PPE (Cat#: E7885, Sigma, MO,
USA) on day 0. Mice were sacrificed on day 21 after elastase administration.

All animal experiments were carried out at the Tianjin Nankai Hospital and followed the guidelines of the Animal
Ethical and Welfare Committee and were approved by the Medicine Ethical Committee of Tianjin Nankai Hospital
(number NKYY-DWLL-2020-117). At the end of the experiment, all animals were anesthetized by intraperitoneal
pentobarbital sodium and sacrificed by CO2 asphyxiation.

Histopathological examination
Lung tissue, small intestine, and colon were harvested aseptically from mice, fixed in 10% formalin for 24 h. After
dehydration and embedding in paraffin, 4-μm serial sections were prepared for histological analysis and were stained
with either hematoxylin-eosin (H&E) or periodic acid Schiff (PAS), strictly following the manufacturer’s instructions.
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Slides were reviewed in a blinded fashion and the degree of tissue damage was estimated through a light microscope.
To measure alveolar destruction, airspace size was evaluated by quantifying the mean linear intercept (MLI) in the
average of ten randomly selected fields per lung specimen from model or control mice (n=5), as previously reported
[25].

Cell isolation
Mesenteric lymph nodes (MLNs) and spleen single-cell suspensions were prepared by mechanical disruption and
passed through a 40-μm cell strainer.

Lung was aseptically removed from mice, minced into small pieces by scissors, and incubated in a digestion medium
containing 0.5 mg/ml collagenase IV (Sigma, MO, USA) in RPMI 1640 medium at 37◦C for 30 min. After erythrocytes
lysis, the cells were washed and kept on ice until labeling. The small intestine and colon were washed with cold PBS
(1% BSA), cut into approximatively 1-cm long pieces, and then incubated for 20 min at 37◦C in RPMI 1640 medium
containing 5 mM EDTA with shaking. After three washing steps, the remaining tissue was digested for 50 min at 37◦C
with complete RPMI 1640 medium (10% FBS) containing 0.5 mg/ml collagenase IV and 1 mg/ml DNase I (Roche,
Switzerland). Then, tissue suspension was passed through a 40-μm filter, and cells were collected and resuspended
in PBS for further treatment.

Flow cytometry
Single-cell suspensions (106 cells in 100 μl total volume) were treated with antibodies to mouse CD16/32 pure an-
tibody (BD Phamingen, CA, USA) for 30 min at 4◦C in the dark. Then, the cells were incubated with indicated
antimouse monoclonal antibodies for 30 min on ice in the dark for surface marker analysis. The following antimouse
monoclonal antibodies were used: CD3, CD4, CD8, CD45, CD11b, CD86, CD206, Ly6C, Ly6G, Gr1, and F4/80, which
were purchased from BioLegend (BioLegend, Inc., CA, USA). Isotype-matched antibodies were used as controls. All
operations were performed strictly in accordance with protocols. Raw data were collected on an EXFLOW-206 flow
cytometer (Dakewe Biotech Co. Ltd., Shanghai, China) and analyzed using FlowJo 10.0 software (BD, CA, USA).

Immunohistochemistry
The 4-μm paraffin-embedded lung, small intestine, and colon sections were deparaffinized, rehydrated in xylene
and an alcohol gradient, rinsed with distilled water and soak in PBS for 5 min and heated in a sodium citrate so-
lution for antigen retrieval before immunohistochemical staining. The staining was performed strictly according to
the Histostain – Plus Kits (Cat#: SP-0022, Bioss Antibodies). Briefly, endogenous peroxidase activity (3% hydrogen
peroxide, 15–20 min) and nonspecific binding (goat serum, 15–20 min) were blocked, sections were incubated with
the indicated primary antibody at 4◦C overnight or at 37◦C for 2–3 h in a humidified box, then washed three times
with PBS and incubated with the secondary biotinylated IgG antibody at room temperature or 37◦C for 15–20 min.
Subsequently, incubated with Corseradase-labeled Streptamildew Lectein Working Solution (S-A/HRP) at room tem-
perature or 37◦C for 15–20 min. Finally, DAB or AEC reagent was used to detect these labeled antibodies. All images
were detected using a microscope (Leica DMI4000B, Germany).

For immunohistochemistry, the expression of CD4, CD8, F4/80, and Gr1 in the small intestine and colon were de-
tected with mouse monoclonal antibodies. Primary antibodies were CD4 (Cat#: 25229, Cell-Signaling Technologies,
MA, USA), CD8 (Cat#: 98941, Cell-Signaling Technologies, MA, USA), F4/80 (Cat#: 123102, Biolegend), and Gr1
(Cat#: 108402, Biolegend). The secondary antibody is contained in the Histostain – Plus Kits.

Quantitative real-time PCR
Total RNA was extracted from mouse small intestine samples and colon sections using the RNeasy Mini Kit (Qiagen,
CA, USA). cDNA was synthesized by using PrimeScript RT reagent Kit (PRT) (Takara, Osaka, Japan). Real-time
quantitative PCR (RT-qPCR) involved the use of TB Green Premix Ex Taq (Takara, Osaka, Japan) on a 7500 Real-Time
PCR system (Applied Biosystems, MA, USA). All operations were performed strictly according to the manufacturer’s
instructions. The fold changes in the gene expression levels of target genes were calculated with normalization to the
endogenous control GAPDH values using the 2-��Ct comparative cycle threshold method. All primer sequences
used were as shown in Table 1.

Statistical analyses
All statistical analyses and preparation of graphs were performed with GraphPad Prism 5 software (GraphPad Soft-
ware Ltd., CA, USA). A Student’s t-test was used for a two-group comparison. Statistical differences among multiple
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Table 1 Primer sequences used for RT-qPCR analysis

Gene Reverse sequence (5′-3′) Forward sequence (5′-3′)

GAPDH GGAAGAGTGGGAGTTGCTGTTG CCTGGAGAAACCTGCCAAGTA

IFN-γ TGACTCCTTTTCCGCTTCCTGAG TGAACGCTACACACTGCATCTTGG

TNF-α ACATTCGAGGCTCCAGTGAATTCGG GGCAGGTCTACTTTGGAGTCATTGC

TGF-β GGGGCTGATCCCGTTGATT ACGTCACTGGAGTTGTACGG

IL-10 CTATGCAGTTGATGAAGATGTCAAA ACCTGGTAGAAGTGATGCCCCAGGCA

ARG1 GTGATGCCCCAGATGGTTTTC AACACGGCAGTGGCTTTAACCT

NOX2 TCATGGTGCACAGCAAAGTGAT GACCCAGATGCAGGAAAGGAA

INOS GAAACTATGGAGCACAGCCACAT AGGAAGTGGGCCGAAGGAT

NQO1 AGTGCCCACAGAGAGGCCAAA GCATTGGCCACACTCCACCAG

HO-1 GGCTGTCGATGTTCGGGAAGG CACGCCAGCCACACAGCACTA

GCLC CTCAAGAACATCGCCTCCATTCAG ACATCTACCACGCAGTCAAGGACC

ZO-1 GAG CGG ACA AAT CCT CTC TG GAA CGA GGC ATC ATC CCT AA

occludin TCA TTC ACT TTG CCA TTG GA TTT GTG GGA CAAGGA ACA CA

groups were assessed with one-way ANOVA, followed by the Tukey’s test. Error bars in the data are presented as the
means +− SD, and P-values<0.05 were regarded as statistically significant.

Results
Chronic whole-body CS exposure or PPE intratracheal instillation results
in lung emphysema
In the present study, two mice models of experimental emphysema were established by chronic whole-body exposure
to CS for 24 weeks or intratracheal administration of PPE for 21 days.

Compared with the control mice, CS exposure and PPE administration groups displayed typical manifestations of
emphysema. As shown in Supplementary Figure S1A,B, both emphysema models exhibited dramatically airway space
enlargements and increased mean linear intercepts (MLI) of lung tissue, with increased destruction of the alveolar wall
and the rupture of the alveolar septum (MLI: air exposed control group: 33.41+−4.47 μm; smoke group: 67.86+−15.09
μm; PPE group: 69.35+−16.02 μm). Further PAS staining showed that CS exposure and PPE administration induced
more epithelial cells in lung tissues (PAS positive nuclei numbers: air exposed control group: 14.58+−0.53; smoke
group: 19.88+−0.84; PPE group: 18.10+−2.10, Supplementary Figure S1C,D). These results suggest that the pulmonary
emphysema mouse model was successfully established.

Mouse model of emphysema displayed intestinal pathological changes
To determine whether lung inflammations can affect the intestines, we collected intestinal samples from our
well-established experimental emphysema mouse models. Compared with air-exposed mice, H&E results presented
pathological changes in the small intestine and colon sections, especially in the small intestine, including inflamma-
tory cell infiltration and epithelial architecture destruction (Figure 1A). Furthermore, irregular stool specimens were
observed from CS exposure and PPE-induced emphysema mice, suggesting intestinal dysfunction in emphysema
models (Figure 1B).

Mice model of emphysema showed T-cell immune dysregulation in the
respiratory and intestinal tract
To assess the immunologic functions of emphysema-affected organs, we compared the numbers of CD4+ and CD8+

T-cell populations in the blood, lung, and MLNs of air-exposed and pulmonary emphysema mice via flow cytometry
analysis first. Compared with normal air-exposed WT controls, exposure to CS resulted in a significantly decrease
of CD4+ T cells (Blood: air-exposed control group: 69.18+−4.79%; smoke group: 51.93+−9.06; Lung: air-exposed con-
trol group: 51.69+−6.48%; smoke group: 38.16+−4.05; MLNs: air-exposed control group: 61.47+−2.45%; smoke group:
55.84+−1.40, Figure 2A) and increase of CD8+ T cells (Blood: air-exposed control group: 15.51+−6.48%; smoke group:
35.19+−9.62; Lung: air-exposed control group: 26.01+−3.21%; smoke group: 38.08+−1.45; MLNs: air-exposed con-
trol group: 29.36+−0.15%; smoke group: 36.22+−0.99, Figure 2B), as well as dramatically down-regulated CD4/CD8
ratio (Blood: air-exposed control group: 4.07+−1.31%; smoke group: 1.99+−0.88; Lung: air-exposed control group:
2.11+−0.49%; smoke group: 1.05+−0.16; MLNs: air-exposed control group: 2.05+−0.07%; smoke group: 1.58+−0.14,
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Figure 1. Mice model of emphysema displayed intestinal pathological changes

(A) Comparison of H&E staining of the small intestine (upper, Scale bar = 100 μm) and colon (lower, Scale bar = 100 μm) from air–

exposed control and emphysema model mice were performed (n=5 per group). (B) Effects of CS and PPE on the feces of C57BL/6

mice. Feces collected from air-exposed control and emphysema model mice under the normal diet for 1 h were represented (n=3

per group).

Figure 2C) in the blood, lungs, and MLNs tissues. Similarly, we also found the same tendency of T-cell subsets imbal-
ance in PPE-induced emphysema group. The T-cell immune responses disorders in the intestinal tract were further
supported by immunohistochemistry analysis (Figure 2D), wherein fewer CD4-positive cells and more CD8-positive
cells were found both in the small intestine and colon of emphysema mice. These results suggested that pulmonary
emphysema seems to lead to T-cell immune dysregulation and subsequent immunological abnormalities in the gut.

Mice model of emphysema displayed intestinal inflammation
COPD is characterized by persistent airflow limitation and increased airway inflammation [26]. We next assessed the
inflammatory cells in the emphysema-affected intestine and colon. Flow cytometry (Supplementary Figure S2) and
analysis (Figure 3A,B) revealed higher percentages of ‘inflammatory’ monocytes (CD11b+ Ly6C+) and neutrophils
(CD11b+ Ly6G+) both in the small intestine and colon of model of emphysema in mice induced by long-term CS ex-
posure compared with control group exposed to normal air (P<0.001). In contrast, PPE administration dramatically
decreased the number of monocytes and neutrophils in colons without significant changes in small intestine tissues
than in the air-treated group. This might be associated with occludin overexpression and enhancement of epithelial
barrier function (Supplementary Figure S3B).
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Figure 2. Changes in CD4+ T cells and CD8+ T cells occurred in the emphysema model

(A–C) The percentage of CD3+CD4+ and CD3+CD8+ T cells, as well as the CD4+/CD8+ ratio in the blood, lung, and MLNs of

air-exposed control (white histograms), CS exposure (gray histograms), and PPE administration (black histograms) mice were

analyzed by flow cytometry as described (n=5 mice per group). Data are represented as means +− SD by one-way ANOVA. *P<0.05,

**P<0.01, ***P<0.001. (D) Representative Immunohistochemical staining images of CD4+ and CD8+ T cells in the small intestine

and colon from air-exposed control or emphysema model mice. Scale bar = 100 μm.
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Figure 3. Monocytes, neutrophils, and macrophages increased in chronic CS-treatment emphysema model mice

Flow cytometry was used to measure the percentage of CD11b+ Ly6C+ cells (‘inflammatory’ monocytes), CD11b+ Ly6G+ cells

(neutrophils), and CD11b+ F4/80+ cells (macrophages) in the small intestine (A) and colon (B) of air-exposed control and emphy-

sema model mice. (C) Immunohistochemical evaluation of F4/80 expression in the small intestine (upper) and colon (lower) from

air-exposed control or emphysema model mice (n=5 per group). Scale bar = 100 μm. (D) The ratio of M1 (CD11b+F4/80+CD86+

cells) to M2 (CD11b+F4/80+CD206+ cells) were assessed in the small intestine and colon from three groups (n=5).
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Figure 4. Intestinal inflammation increased in emphysema model mice

Total RNA extracted from small intestine (A) and colon (B) of air-exposed control or emphysema model mice was assayed for IFN-γ,

TNF-α (proinflammatory cytokines), TGF-β, and IL-10 (anti-inflammatory cytokines) mRNA expression by qPCR using specific

primers. Data are represented as means +− SD by one-way ANOVA. *P<0.05, **P<0.01, ***P<0.001.

Macrophages exhibit considerable diversity and plasticity, enabling them to respond effectively to the stimulation
of environmental signals by changing their phenotypes to classically activated macrophages (M1) or alternatively
activated macrophages (M2), posing proinflammatory or immunoregulatory functions, respectively [27]. As shown in
Figure 3A,B, flow cytometry analysis reveals the accumulation of macrophages (CD11b+ F4/80+) in CS-treated mice
compared with in control mice, which then verified by immunohistochemical evaluation (Figure 3C). In addition,
a significantly upregulation of M1/M2 ratio (CD86+/CD206+) in the small intestine and colon of CS-exposed mice
suggested the proinflammatory status of intestinal macrophage (Figure 3D). Interestingly, PPE administration drove
a shift of M1 polarization in the small intestine and colon, although the number of total macrophages in that was
comparable between air- and PPE-treated groups.

Given that CS-exposed mice had increased intestinal inflammatory cells, we next assessed the mRNA expres-
sion of inflammatory cytokines in the small intestine and colon. PCR results showed higher mRNA expression of
IFN-γ (smoke group: 2.26-fold higher; P<0.001) and TNF-α (smoke group: 3.98-fold higher; P<0.001) as well
as higher anti-inflammatory factor TGF-β (smoke group: 4.03-fold higher; P<0.001) and IL-10 (smoke group:
6.19-fold higher; P<0.001) in the small intestine of CS exposure (Figure 4A), wherein decreased IFN-γ (smoke group:
0.62-fold higher; P<0.01), TGF-β (smoke group: 0.66-fold higher; P<0.001) and IL-10 (smoke group: 0.57-fold
higher; P<0.001) but increased TNF-α in the colon (smoke group: 1.66-fold, 0.62-fold higher; P<0.01; Figure 4B).
Notably, the expression of inflammation-related genes TNF-a was up-regulated in the colon tissues of PPE-treated
mice compared with the control and CS-exposed groups. These data suggest that pulmonary emphysema plays a role
in inducing intestinal inflammation dysfunction and has different impacts on the small intestine and colon.
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Figure 5. Chronic CS treatment increased the expansion of CD11b+Gr1+ MDSCs cells in tissues

(A,B) The percentage of CD11b+Gr1+ MDSCs in the spleen, lung, MLNs, small intestine, and colon of air-exposed control and

emphysema model mice was quantified by flow cytometry (n=5). Data are represented as means +− SD by one-way ANOVA.

**P<0.01, ***P<0.001. (C) Immunohistochemical evaluation of Gr1 expression in the small intestine (upper) and colon (lower) from

air-exposed control or emphysema model mice. Small intestine (upper) and colon (lower) staining with Gr1 marker (brown).

Migration of MDSCs to the respiratory and gastrointestinal tract was
elevated in mice model of CS-induced emphysema
MDSCs were previously shown to have the potential to suppress immune cells (especially T lymphocytes) as a regu-
latory mechanism. Hence, we investigated the expansion of CD45+CD11b+Gr1+ MDSCs in the spleen, lung, MLNs,
small intestine, and colon between the air-exposed control group and mice with emphysema combining flow cy-
tometry and immunohistochemistry analyses. As shown in Figure 5A,B, flow cytometry analysis identified increased
percentages of MDSCs in these tissues (Spleen: air-exposed control group: 2.99+−0.62%; smoke group: 16.64+−4.10%;
PPE group: 3.43+−1.15%; Lung: air-exposed control group: 2.66+−0.18%; smoke group: 15.26+−4.45%; PPE group:
3.11+−0.37%; MLNs: air-exposed control group: 0.41+−0.10%; smoke group: 2.25+−0.15%; PPE group: 0.60+−0.12%;
Small intestine: air-exposed control group: 0.17+−0.03%; smoke group: 8.69+−2.57%; PPE group: 0.31+−0.03%; Colon:
air-exposed control group: 2.45+−0.22%; smoke group: 7.36+−1.13%; PPE group: 1.57+−0.38%) of model mice as com-
pared with the control group. Consistent with these data, immunohistochemistry analysis verified further that the
small intestine and colon sections of emphysema animals were surrounded by increased Gr1+ MDSC-positive cells
compared with wild-type mice (Figure 5C).
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Figure 6. Chronic CS treatment affects the expression of MDSCs-related inhibitory genes in the intestine

Total RNA extracted from small intestine (A) and colon (B) of air-exposed control or emphysema model mice. Quantification and

statistical analysis results of NOX2, ARG1, and INOS, glutamic acid cysteine ligase catalytic subunit (GCLC), NQO1, and HO-1

mRNA expression by qPCR using specific primers in air-exposed control (white histograms), CS exposure (gray histograms), and

PPE administration (black histograms) mice (n=5). Data are represented as means +− SD by one-way ANOVA. *P<0.05, **P<0.01,

***P<0.001.

Higher expression of MDSCs-related effector molecules was identified in
the intestinal tract of mouse model of CS-induced emphysema
To test the biological functions of migrated MDSCs in the emphysema-induced lung–gut cross-talk, PCR analysis was
conducted to clarify the expression of NADPH oxidase 2 (NOX2), enzyme ARG1, and INOS in the intestinal tract,
which are reported to be produced in MDSCs and featured by this immune subset to exert their immunosuppressive
function [28]. CS-induced emphysema mice showed increased NOX2 (smoke group: 3.76-fold higher; P<0.001),
ARG1 (smoke group: 1.54-fold higher; P<0.001), and INOS (smoke group: 2.68-fold higher; P<0.001) expression
than the control group in the small intestine (Figure 6A); however, decreased NOX2 (smoke group: 0.48-fold higher;
P<0.001) and ARG1 (smoke group: 0.61-fold higher; P<0.001) in the colon (Figure 6B). As for PPE model mice,
expression of NOX2 and INOS gene was decreased in the colon, whereas no significant differences be detected in the
small intestine of the expression of NOX2, ARG1, and INOS gene when comparing PPE model and control mice, as
measured by qPCR.
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Oxidative stress was reported as an important mechanism for the occurrence and exacerbation of COPD [4,29].
We next detected the expression level of oxidative stress-related proteins heme oxygenase 1 (HO-1), GCLC, and
NAD(P)H quinone oxidoreductase-1 (NQO-1). The PCR results showed significant differences between the emphy-
sema and control mice, especially in the PPE-induced pulmonary emphysema mice model, acting as further evidence
for the lung–gut cross-talk in this model.

Discussion
Both respiratory and gastrointestinal tracts belong to mucosal tissues. Recent research on the early embryo, signal
pathway, mucosal immunity, and gut microbiota on lung immunity further proposed the correlation between the lung
and gut [30]. With the same embryonic origin and structural similarities, the respiratory and gastrointestinal tracts
have different environments and functions in mature individuals [31]. Under pathological statements, these com-
monalities in structures may account for an overlap of pathogenic risk factors and comparable immune responses
between the gut–lung axis. Many mechanisms could participate in this pathologic process, such as gut microbiota
alternation, transportation of microRNAs and inflammasomes, and metabolites [32–34]. Rutten et al. reported in-
creased gut permeability in COPD patients [35]. Further studies identified that intestinal barrier dysfunction would
be driven by systemic hypoxia induced by the impaired pulmonary gas exchange during chronic CS exposure in
animal models and patients [35,36].

In line with the strong epidemiological evidence that a vital cross-talk between the gut and lungs [26,37], we
demonstrated here that intestinal dysfunction occurred in the emphysema model as CS exposure and PPE-induced
emphysema mice with irregular stool shapes and intestinal pathological changes compared with air-exposed con-
trol mice. Smoking is a common risk factor not only for the development of COPD but also for a number of other
diseases. It is well established that cigarette smoking directly drives lung inflammatory response; however, effect on
other tissues is incompletely understood. Our study here demonstrated the influence of emphysema on the intestinal
tract in CS-induced mouse model. First, both the small intestine and colon displayed severe pathology, imbalanced
CD4+/CD8+ T-cell ratio and inflammation. Furthermore, we found the accumulation of MDSCs and changes of
MDSC-related effector molecules in lung–gut axis-involved tissues. The present study identified the disorder of the
immune system and inflammatory response in the intestinal tract of emphysema mice model and revealed the un-
appreciated participation of MDSCs in COPD pathogenesis, following long-term CS exposure. These results provide
experimental evidence for the existence of the lung–gut axis in COPD using the CS exposure-induced COPD mouse
model.

Myeloid cells represent a highly diverse population comprising mononuclear cells and granulocytic cells [38].
Myelopoiesis against pathogenic signals is a critical protection mechanism for the host. However, the persistent stim-
ulation associated with chronic infection, inflammation may induce modest but persistent myelopoiesis. Myeloid
cells generated under these conditions take on altered biochemical profiles and functional activity compared with
neutrophils and monocytes. The main functional characteristic of these abnormally differentiated cells, referred to as
MDSC, is their potent ability to suppress various immune responses [14,39]. Based on this characteristic, one of the
major functional roles of MDSCs is suppressing antitumor immunity [40–42]. MDSCs also suppress inflammation
and promote insulin sensitivity in obesity [43]. It was reported that exposure of mice to CS causes the accumulation of
this group of cells in the lungs and spleens [44]. In the present study, we further identified the migration of MDSCs in
the lung and gut of CS exposure-induced emphysematous mice, which expanded the extensive regulation of MDSCs
in lung disease.

Many mechanisms could participate in the gut–lung cross-talking process in COPD models, such as gut microbiota
alternation, transportation of microRNAs and inflammasomes, and metabolites [32–34]. Here, we successfully adopt
two groups of emphysema mouse models by CS chronic exposure and PPE administration, respectively. However,
changes in the gastrointestinal tract were not wholly the same in the two groups, especially in intestinal inflamma-
tion, MDSCs accumulation, and oxidative stress responses. Research indicated that long-term CS exposure resulted
in intestinal mucosal barrier dysfunction in a rat model of COPD [45]. Rutten et al. also reported increased gut per-
meability in COPD patients [35]. Further studies identified intestinal barrier dysfunction driven by systemic hypoxia
induced by impaired pulmonary gas exchange during chronic CS exposure in animal models and patients [35,36].
Similarly, we demonstrated that the mRNA levels of the tight junction proteins zona occludens-1 (ZO-1) and occludin
decreased in the small intestine and colon tissues of smoke mice compared with those of control groups. However,
reduced ZO-1 and occludin expression in the small intestine but increased occludin level in the colon tissues could be
seen in PPE-induced mice compared with control mice, which might be responsible for the impaired accumulation
of monocytes, neutrophils, and Gr1+ MDSCs into the colon in this model. As to MDSCs level, the PPE group showed
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inapparent MDSCs accumulation, lower MDSCs-related inhibitory genes changes, and more tremendous oxidative
stress-related molecule changes than smoke-induced emphysema. It seems that PPE models of emphysema do not
trigger all of the physiological events that CS models do [46], proving that the CS-induced mice model appears to best
represent human emphysema’s pathogenesis, including impaired lung function, emphysema, small airway remodel-
ing, chronic lung inflammation, and pulmonary hypertension.

Notably, inflammatory responses were different in the small intestine and colon of emphysema mice models in our
study, which indicated that the influence of lung disease on the gastrointestinal tract was dependent on the location.
In the CS-exposure mouse model, the percentages of proinflammatory cells and proinflammatory cytokines genes
(IFN-γ, TNF-α) were significantly higher in the small intestine than colon tissues. Correspondingly, MDSCs and
anti-inflammatory genes (TGF-β, IL-10) were also up-regulated. These results suggest that proinflammatory and
anti-inflammatory responses might reach balance at a higher level for the presence of gut-associated lymphoid tissue
(GALT) in the small intestine. In contrast, both anti-inflammatory and MDSCs functional-related genes (NOX2 and
ARG1) expression levels decreased significantly in colon tissues of CS exposure mice, suggesting the downregulated
immunosuppressive role of migrated MDSC in the colon. Similar to ours, it is reported cigarette smoking has a diverse
effect on the colon and ileum. In a smoking cessation mice model, cessation led to pathological amelioration to
different extents in the colon and ileum, which may be due to the differences in microbiota and basal oxygen tensions
[47,48].

In conclusion, our study demonstrated that MDSCs participate in the lung–gut axis in the mouse model of COPD.
Though future experiments are needed to explore the potential molecular mechanism and biological effect of this
group of immunosuppressive cells, our study provides sufficient experimental evidence for the lung–gut axis in the
emphysema model. More importantly, our findings reveal a new biological application of MDSCs, promoting the
in-depth understanding of the of COPD pathogenesis, will provide new strategies for research and potential im-
munotherapy targets for COPD.
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