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Brain-computer interfaces (BCIs) provide a unique technological solution to circumvent
the damaged motor system. For neurorehabilitation, the BCI can be used to translate
neural signals associated with movement intentions into tangible feedback for the
patient, when they are unable to generate functional movement themselves. Clinical
interest in BCI is growing rapidly, as it would facilitate rehabilitation to commence
earlier following brain damage and provides options for patients who are unable to
partake in traditional physical therapy. However, substantial challenges with existing
BCI implementations have prevented its widespread adoption. Recent advances in
knowledge and technology provide opportunities to facilitate a change, provided that
researchers and clinicians using BCI agree on standardisation of guidelines for protocols
and shared efforts to uncover mechanisms. We propose that addressing the speed and
effectiveness of learning BCI control are priorities for the field, which may be improved
by multimodal or multi-stage approaches harnessing more sensitive neuroimaging
technologies in the early learning stages, before transitioning to more practical, mobile
implementations. Clarification of the neural mechanisms that give rise to improvement
in motor function is an essential next step towards justifying clinical use of BCI. In
particular, quantifying the unknown contribution of non-motor mechanisms to motor
recovery calls for more stringent control conditions in experimental work. Here we
provide a contemporary viewpoint on the factors impeding the scalability of BCI. Further,
we provide a future outlook for optimal design of the technology to best exploit its unique
potential, and best practices for research and reporting of findings.

Keywords: brain-computer interface, stroke, neurorehabilitation, transcranial magnetic stimulation,
neurofeedback

Brain-computer interfaces (BCIs) are hailed as a promising approach to overcome paralysis by
translating brain signals from movement intentions into computerised or motorised feedback. They
can be used to restore, replace, enhance, supplement, or improve the natural output of the central
nervous system (CNS), hence, providing opportunities for motor rehabilitation from a range of
conditions including spinal cord injury, traumatic brain injury and stroke. Following a stroke,
approximately 77% of survivors are left with some degree of upper limb impairment (Nakayama
et al., 1994; Lawrence et al., 2001), which is a key factor in preventing their engagement in normal

Frontiers in Neuroscience | www.frontiersin.org 1 July 2021 | Volume 15 | Article 699428

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.699428
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.699428
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.699428&domain=pdf&date_stamp=2021-07-02
https://www.frontiersin.org/articles/10.3389/fnins.2021.699428/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-699428 June 26, 2021 Time: 19:13 # 2

Simon et al. Brain-Computer Interface for Neurorehabilitation

activities of daily living and rendering them dependant on
caregivers. Rehabilitation approaches that actively promote
intensive and prolonged functional use of the paretic limb
result in the largest gains in movement capability (Veerbeek
et al., 2014). However, the gold standard approaches such
as constraint-induced movement therapy (CIMT) require the
patient to be capable of producing a sufficient level of functional
movement in order to partake (Kwakkel et al., 2015). This
prevents participation for those who are more severely impaired,
or patients in the early weeks after brain injury who have
not yet regained any function. With mounting recent evidence
indicating that early intervention is crucial to harness the brain’s
endogenous recovery processes (Stinear et al., 2020), therapies
that can support the patient to generate appropriate functional
patterns of brain activity and motor behaviour are greatly needed,
during the period when they are unable to generate actual
movement unassisted.

BRAIN-COMPUTER INTERFACE FOR
NEUROREHABILITATION; BASIC
PREMISE AND SCOPE OF THE REVIEW

Non-invasive brain-computer (and brain-machine) interfaces
provide an advanced technological solution, decoding brain
signals directly from the scalp and translating them into
movement of a virtual (on screen) or robotic effector. The effector
can also be the user’s own limb, with electrical stimulation of
muscles triggered by brain activity (Biasiucci et al., 2018; Bai
et al., 2020). By closing the disrupted sensorimotor loop and
providing tangible feedback, the patient learns to control the
effector by motor imagery or movement intentions. Restoring
relevant sensory feedback in relation to volitional movement
attempts is believed to mobilise the fundamental mechanisms
of motor learning (Mrachacz-Kersting et al., 2021). As such,
they can engage in mental practise of movement and keep their
motor neural circuitry active, warding off the detrimental effects
of limb non-use (Buxbaum et al., 2020), its associated white
matter degeneration (Egorova et al., 2020), and promote use-
dependant neuroplastic processes (Xing and Bai, 2020). Despite
largely encouraging evidence suggesting that functional gains
are produced exceeding those of standard care (Hatem et al.,
2016; McConnell et al., 2017; Monge-Pereira et al., 2017; Cervera
et al., 2018; López-Larraz et al., 2018; Raffin and Hummel,
2018; Carvalho et al., 2019; Coscia et al., 2019; Kovyazina
et al., 2019; Remsik et al., 2016; Xing and Bai, 2020) substantial
challenges with existing BCI implementations have prevented
widespread adoption of the technology clinically (Baniqued
et al., 2021). Here we provide a viewpoint on the practical,
technical and mechanistic factors impeding the scalability of
BCI into rehabilitative care packages. Further, we provide a
future outlook for optimal design of the technology to best
exploit its unique potential, and best practices for research and
reporting of findings.

Non-invasive BCI typically consists of three key components:
A recorder, a decoder, and an effector. The recorder acquires
brain signals from the scalp surface. The decoder analyses the

recorded data, and the effector acts upon the information.
In most cases the recorder is an electroencephalogram (EEG)
detecting scalp electrical fluctuations associated with neuronal
activity. In practise, any neural signal could be incorporated
into a BCI, and implementations using magnetoencephalography
(MEG) (Buch et al., 2008; Foldes et al., 2015), functional magnetic
resonance imaging (fMRI) (Thibault et al., 2018) and functional
near-infrared spectroscopy (fNIRS) (Soekadar et al., 2021) have
also shown merit. The decoder is usually a programme run
on a computer, extracting desired aspects from the signal and
conducting analyses in real-time. The analysis process may be
as simple as measuring amplitude or frequency of ongoing brain
activity (Wierzgała et al., 2018), or more complex decompositions
of inter-regional connectivity or dynamic changes to spatial
patterns of activation (Rathee et al., 2017). The effector of a BCI
can take multiple forms. For neurorehabilitation, it may be a
device that assists the patient to complete movements, such as
a robotic limb (Tariq et al., 2018; Soekadar et al., 2019; Khan
et al., 2020), a device that gives virtual (e.g., on-screen) feedback
to the participant to promote appropriate patterns of neural
activity (Kerous et al., 2018; Si-Mohammed et al., 2018; de Castro-
Cros et al., 2020), or a trigger to induce electrical stimulation
of muscles in order to evoke movement (Biasiucci et al., 2018;
Bai et al., 2020). Even in the absence of evoked movement,
electrical stimulation can be used below motor threshold to
provide continuous somatosensory feedback as the BCI signal
(Corbet et al., 2018).

PRACTICAL AND TECHNICAL
CHALLENGES WITH CLINICAL
IMPLEMENTATION OF BCI

For the BCI participant, learning to control the effector requires
multiple practise sessions, viewing continuous feedback and
learning by reward (Chavarriaga et al., 2017; Mrachacz-Kersting
et al., 2021). While passive/implicit learning is known to
play a role in BCI control (Othmer, 2009), most human
participants report developing and fine-tuning mental strategies
throughout the course of training, usually involving imagination
of movement (Majid et al., 2015; Ruddy et al., 2018; Khan
et al., 2020), or in the case of brain injured patients, attempts
to make movement with the paretic limb (Blokland et al.,
2012; Balasubramanian et al., 2018; Bai et al., 2020). Even for
neurologically healthy participants, gaining effective control of an
EEG-BCI takes many distinct sessions (Pfurtscheller et al., 2003;
Stieger et al., 2021). Without seeing tangible results within the
first training sessions, it is likely that patients loose motivation to
continue investing effort into trying to control the BCI. Another
factor known to influence learning is the large variation in
individual capability for motor imagery, contributing to the fact
that 10–30% (Allison and Neuper, 2010; Vidaurre and Blankertz,
2010; Lotte and Jeunet, 2015) of users never achieve control over
the BCI; a phenomenon historically referred to as BCI illiteracy
but more recently coined BCI inefficiency (Thompson, 2019). For
BCI to serve as a useful therapeutic tool for neurorehabilitation,
solutions that allow users to achieve control within a shorter
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time frame, and that are effective across a wider range of motor
imagery capabilities, are needed to secure the future of this
technology.

As the neural signals used to drive effectors in an EEG-
BCI are heavily influenced by ongoing mental state, the
individual capacity to generate high quality mental imagery of
movement dictates how easily detectable the relevant motor
signals will be (Marchesotti et al., 2016; Chavarriaga et al., 2017).
Visual motor imagery, imagining observing yourself perform
a movement, produces less pronounced scalp-recorded signals
than kinaesthetic motor imagery where the feeling of movement
is effectively experienced (Neuper et al., 2005). Kinaesthetic
motor imagery produces more easily detectible neural signals,
at scalp locations overlaying motor cortical brain regions, and
additionally modulates corticospinal excitability measured via
motor evoked potentials (MEPs) in response to transcranial
magnetic stimulation (TMS) (Stinear et al., 2006). However,
about half of participants find it difficult to perform kinaesthetic
motor imagery (Seiler et al., 2017), and those are the lowest
performers on BCI (Vuckovic and Osuagwu, 2013). In some
circumstances, it may be more beneficial to request that the
patient make attempts to execute movements, rather than simply
imagine movement (Blokland et al., 2012; Balasubramanian
et al., 2018; Bai et al., 2020). For motor imagery-based BCI,
multimodal or multi-phase BCI approaches (Leamy et al., 2011;
Fazli et al., 2012) may lead to better accuracy, as different
neuroimaging modalities may be more sensitive than EEG to
detect very weak motor signals (albeit, technologies such as
MRI, fNIRS, MEG, or TMS may be less practical for long-term
practise of BCI). As an example of a potential multi-phase
approach, using a BCI based not upon scalp signals but upon
muscle responses to TMS over the motor cortex, control of
on-screen feedback using motor imagery could be achieved
within just two training sessions (Ruddy et al., 2018). Whereas
EEG scalp signals associated with movement intentions have
poor spatial resolution, TMS can be used to target the motor
cortical representations for specific muscles, selectively providing
feedback of excitability of corticospinal pathways by measuring
the amplitude of motor evoked potentials (MEPs) recorded at
the muscle with electromyography (EMG). When tested in a
sample of stroke patients, most were capable of learning to
increase the excitability of their corticospinal pathways with
TMS neurofeedback, using only motor imagery (Liang et al.,
2020). Using a multimodal approach it may be possible to
train individuals to develop robust motor imagery strategies
that optimally excite the targeted brain-muscle pathways using
TMS neurofeedback within just two sessions, that then translates
to better subsequent performance using functionally relevant
signals on an EEG BCI that has better portability options. This
hypothesis remains to be tested empirically, and it is notable
to point out that the approach may only be applicable to
patients who exhibit MEPs when stimulated. Approximately
13.4% (Stinear et al., 2017a) are deemed “MEP negative,” and
those tend to be the most severely affected (Stinear et al.,
2017b; Smith et al., 2019; Lundquist et al., 2021). Incorporating
multimodality into BCI paradigms may also extend beyond the
aforementioned suggestions concerning acquisition modalities.

Multimodal feedback (i.e., visual plus auditory or somatosensory)
can also enhance the BCI learning experience (Sollfrank et al.,
2016) and improve the quality of detectable brain signals
(Sollfrank et al., 2015).

In order for BCI for neurorehabilitation to become scalable,
it needs to answer to the current requirements of healthcare
providers. Namely, it should reduce rather than increase burden
and need for expert supervision, and instead place high quality
rehabilitation into the hands and home of the patient in a
cost effective manner. Even if initial control of the EEG BCI
can be achieved more quickly using multimodal or multiphase
approaches, longer term use over weeks or months would
still be required alongside the patient’s standard rehabilitative
care in order to promote functional upper limb improvement.
Current implementations of EEG-BCI are not well adapted
for this purpose as they are cumbersome, require lengthy
setup times with wet electrolyte-filled sensors, and a skilled
operator to ensure sufficient signal quality, positioning of the
headgear and execution of (often custom written and not user
friendly) software. Recent technological advances in wireless,
high impedance (dry electrode) EEG systems may enable
better scalability. Using tablet-based software allowing real-time
wireless streaming from a comfortable, wearable EEG cap with
dry electrodes, signals of sufficient quality can be recorded
even in home environments by elderly participants without
assistance (Murphy et al., 2018a,b, 2019; McWilliams et al.,
2021). Advancing this new technology to additionally provide
real-time feedback to the participant is a necessary next step
towards home-based BCI that would allow extended training to
be conducted in the weeks and months following brain injury.
Further, it encourages the patient to feel in control of their
own recovery process, rather than dependant on professionals
or their caregivers. To date, existing implementations of wireless
BCI for neurorehabilitation are at an early stage of technology
readiness, with none reaching even small scale clinical trials
(Baniqued et al., 2021).

CHALLENGES FOR ELUCIDATING
MECHANISMS UNDERLYING
BCI-INDUCED FUNCTIONAL
IMPROVEMENTS

Advocating for clinical use of BCI is difficult when the specific
mechanisms underlying functional improvements remain largely
unknown. In order to make justifiable predictions regarding
whether a patient is likely to benefit from BCI training,
clinicians need to know what aspects of neural function
are being targeted. The vast heterogeneity of available BCI
methods further complicates attempts to elucidate mechanisms,
as it is likely that different approaches target different aspects
of neural circuitry to bring about functional improvements.
A key issue to shed light upon across all types of BCI for
neurorehabilitation is the potential contribution of unspecific
(i.e., non-motor) mechanisms for recovery. Ros et al. (2020)
name four non-specific factors that may contribute to overall
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BCI performance improvement. These include (i) factors
unique to the neurofeedback environment (such as trainer-
participant interaction in a neurotechnology context). (ii)
Factors that are common across interventions (such as benefits
from engaging in a form of cognitive training, as well
as psychosocial and placebo mechanisms related simply to
participating in an experiment). (iii) Repetition-related effects
and (iv) natural effects occurring during the intervention period
such as cognitive development (in children/adolescents) or
age-related cognitive decline in elderly participants. This list
is, however, not exhaustive. Additional to the aforementioned
mechanisms, BCI performance may also be influenced by effects
from sustained exertion of effort or engagement, feelings of
empowerment or competence from achieving control of the
BCI, or general improvements in mood or enjoyment resulting
from engaging with a challenging gamified task. Even with
seemingly adequate control groups, it may be challenging
to match aspects such as effort, attention, enthusiasm, and
enjoyment between those receiving real neurofeedback and
those receiving pseudofeedback which may be less intrinsically
motivating. While it is encouraging that many studies are now
including explicit measures to monitor training-induced changes
to motor neural circuitry (i.e., using neuroimaging), measures
of the aforementioned unspecific effects are rarely included.
Thus, their contribution cannot be evaluated with the currently
available evidence.

While the presence of unspecific BCI effects makes it more
difficult to draw conclusions on how motor improvement for
neurorehabilitation is achieved, it leaves open the intriguing
possibility that although BCI training is conducted in the
motor domain (i.e., using motor imagery), beneficial effects
may not be exclusive to the motor system. For instance, it
is conceivable that increased effortful focus on the BCI task
over a sustained training period may lead to a top-down,
generalised improvement in brain health, materialising as motor
gains (measured by most studies) but also gains in other
(e.g., cognitive) domains, which are not routinely quantified
in BCI studies. This may materialise in the form of improved
executive function, memory, attention, or processing speed. Such
general improvements may be brought about by, for example,
increased blood flow to the brain, enhanced neurochemical
environment promoting plasticity induction, or simply increased
traffic in neural circuitry sustaining healthy activity-induced
myelination processes. Generalised (cross-domain) transfer from
trained to untrained tasks is greatest when the trained task
requires a high degree of attentional focus and cognitive flexibility
(Green and Bavelier, 2008; Bavelier et al., 2018). In this regard,
it is debatable whether the motor imagery BCI is primarily a
motor task, or a cognitive task, making direction of transfer
difficult to ascertain. Future work may focus on whether motor
improvements arise as a result of transfer from improved
cognitive function, or whether a portion of the specific motor
improvements transfer to improve cognitive function. To test this
empirically, design of future BCI studies should routinely include
cognitive performance measurements alongside motor function
tests, with measures taken at multiple timepoints throughout the
learning process.

A small proportion of randomised controlled trials (RCTs)
investigating BCI for neurorehabilitation have made efforts to
measure and/or discuss potential mechanisms that give rise to
functional improvements. Of these, candidate neural changes
that co-occur with improvement in motor function include
enhanced desynchronisation of sensorimotor rhythms (i.e.,
neural oscillations in the alpha 8–12 Hz and beta 13–30 Hz
frequency range) over scalp locations corresponding to motor
cortex (Buch et al., 2008; Prasad et al., 2010; Li et al., 2014;
Ono et al., 2015), changes in functional connectivity (Varkuti
et al., 2013; Pichiorri et al., 2015; Biasiucci et al., 2018; Wu et al.,
2020), lateralisation of neural activity (Ramos-Murguialday
et al., 2013) or changes to white matter microstructure
(Song et al., 2015; Hong et al., 2017). Others have speculated
that BCI works by mobilising the brain’s intrinsic learning
mechanisms, adapting behaviour using classical and/or operant
conditioning giving rise to neural adaptations (Mrachacz-
Kersting et al., 2021). To date, there has not been a comprehensive
account that successfully resolves the aforementioned different
perspectives into a holistic mechanistic model encompassing
the electrophysiological, haemodynamic, and neurochemical
components. Multimodal investigations measuring BCI-related
neural changes simultaneously in each of these different
modalities (e.g., EEG, fMRI, and MR-spectroscopy) are
warranted in order to understand how the neural elements
interact to bring about functional motor improvements. A point
to note is that in none of the above studies were non-motor,
unspecific mechanisms tested, so their contribution to improving
motor function remains unknown. Transfer of benefits to the
non-motor domain were also not quantified, leaving open the
possibility that improvement in motor function may be a result
of general brain health improvement.

Elucidating mechanisms of functional improvement from BCI
is further complicated by the fact that brain injured patients
have widely heterogenous lesions, and lesion size and location
do not predict functional outcomes in a straightforward manner
(Umarova et al., 2021). Even in patients with similar extents
of impairment, lesion location influences performance of BCI
decoding of movement intentions (López-Larraz et al., 2017),
and the scalp detected signals are qualitatively different when
comparing cortical vs subcortical lesions in particular (López-
Larraz et al., 2019). This poses challenges for a “one size fits
all” approach to BCI for neurorehabilitation and stresses the
importance of adaptive algorithms that do not make rigid
a priori assumptions regarding location or characteristics of scalp
detected signals, but rather allow flexibility to detect idiosyncratic
patterns of neural activity that could be used to drive the BCI in
an individually tailored fashion.

OUTLOOK FOR FUTURE SCALABILITY
AND JUSTIFICATION OF BCI USE
CLINICALLY

The field of BCI for neurorehabilitation has benefitted in recent
years from collaborative efforts to standardise approaches using
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the best evidence-based technologies, and with recommendations
for best practise in conducting research. For instance, the
mental-task based BCI (MT-BCI) consortium is a multinational
effort collecting the largest existing sample of BCI data across
nine countries, with the objective to deepen understanding
of learning mechanisms in MT-BCI, improve efficiency and
reliability of MT-BCI and make them more useable for clinical
and non-clinical applications (Jeunet et al., 2020). This “big
data” approach to BCI breaks away from the typical small scale
studies that are characteristic in this field, and may facilitate more
advanced analyses techniques such as machine learning.

A key challenge is to make BCI tasks more user friendly,
providing motivating feedback in a style that the user finds
useful (Kübler et al., 2014; Pillette et al., 2017). Both hardware
and software must be simple to use for patients and caregivers
alike, which may result in greater enthusiasm towards the
technology (Käthner et al., 2017). Tasks should avoid being
fixed and repetitive, but rather should have an adaptive nature
allowing the user to clearly see progression through stages as
performance improves (Jeunet et al., 2016). BCI approaches
that focus on assistance with activities of daily living (Soekadar
et al., 2016) (particularly bimanual tasks in stroke patients)
during physiotherapy may foster motivation and generalisation
of skills towards everyday life (Soekadar et al., 2019). Additional
to this, attempts to improve scientific rigour and reproducibility
in neurofeedback research have established the CRED-nf
framework for reporting of results, and recommendations for
future design of studies (Ros et al., 2020). It is hoped that
these collaborative efforts will improve understanding of BCI
mechanisms by establishing a degree of standardisation of
measurement, and ensuring that adequate experimental controls
are in place.

CONCLUSION

The technological and practical scalability and clinical
justifiability of BCI still pose challenges preventing widespread
use for neurorehabilitation. Recent advances in knowledge
and technology provide opportunities to facilitate a change,
provided that researchers and clinicians using BCI agree on
standardisation of guidelines for protocols and shared efforts
to uncover mechanisms. Addressing BCI inefficiency and speed
of learning are priorities for the field, which may be improved
by multimodal or multi-stage BCI approaches harnessing more

sensitive neuroimaging technologies in the early learning stages,
before transitioning to more practical, mobile implementations.
Clarification of the neural mechanisms that give rise to
improvement in motor function is an essential next step towards
justifying clinical use of BCI. In particular, quantifying the
unknown contribution of non-motor mechanisms to motor
recovery remains elusive and calls for more stringent control
conditions in experimental work. Measurement of additional
neural (non-motor) systems and of performance on non-motor
tasks is also essential to demonstrate specificity or transfer
of the improvements across cognitive and motor domains. If
the effects of motor imagery based BCI are found to generalise
beyond the motor system, for instance to improve cognitive
control or gait, the potential relevance of BCI is expanded
presenting an intriguing opportunity for the field. Ultimately,
if the benefits are further found to generalise beyond lab-based
experimental settings to more ecologically valid aspects affecting
quality of life such as competence and autonomy (Lövdén et al.,
2010; Cremen and Carson, 2017), the intervention can truly be
deemed as effective and worthwhile implementing clinically for
neurorehabilitation.
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