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Abstract: Pulmonary fibrosis is a consequence of the pathological accumulation of extracellular
matrix (ECM), which finally leads to lung scarring. Although the pulmonary fibrogenesis is almost
known, the last two years of the COVID-19 pandemic caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and its post effects added new particularities which need to be explored.
Many questions remain about how pulmonary fibrotic changes occur within the lungs of COVID-19
patients, and whether the changes will persist long term or are capable of resolving. This review
brings together existing knowledge on both COVID-19 and pulmonary fibrosis, starting with the
main key players in promoting pulmonary fibrosis, such as alveolar and endothelial cells, fibroblasts,
lipofibroblasts, and macrophages. Further, we provide an overview of the main molecular mech-
anisms driving the fibrotic process in connection with Galactin-1, -3, -8, and -9, together with the
currently approved and newly proposed clinical therapeutic solutions given for the treatment of
fibrosis, based on their inhibition. The work underlines the particular pathways and processes that
may be implicated in pulmonary fibrosis pathogenesis post-SARS-CoV-2 viral infection. The recent
data suggest that galectin-1, -3, -8, and -9 could become valuable biomarkers for the diagnosis and
prognosis of lung fibrosis post-COVID-19 and promising molecular targets for the development of
new and original therapeutic tools to treat the disease.

Keywords: COVID-19; pulmonary fibrosis; galectin; myofibroblasts

1. Introduction

Pulmonary fibrosis is a consequence of the pathological accumulation of extracellular
matrix (ECM) and blockade of the pathways responsible for the deactivation of pro-fibrotic
cells and for removing the proliferated matrix, which finally leads to lung scarring. This
complex process involves activation of the acute/chronic immune mechanisms, driven by
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neutrophils and macrophages, due to their released cytokines, chemokines; myofibroblast
transition of epithelial cells; a procoagulant framing in the lung and the oxidative signaling,
supported by the accumulation of reactive oxygen species in the lungs; and replacement
of the normal type I alveolar epithelium with hyperplastic type II cells [1]. A key role in
pulmonary fibrosis progression is the epithelial–mesenchymal interplay, in which abnormal
lung mesenchymal cells are related to loss of alveolar type I cells and accumulation of
hyperplastic alveolar type II cells, resulting in the accumulation of damaged ECM and lung
abnormal architecture remodeling [1].

Although the mechanism by which pulmonary fibrosis progresses is almost known,
the last two years of the COVID-19 pandemic caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and its post effects added new particularities which need to be
explored. SARS-CoV-2 infection has been demonstrated to induce acute respiratory distress
syndrome (ARDS) in an estimated 17.2–31% of COVID-19 cases [2,3]. The pulmonary
injury seems to be directly related to viral disruption of alveolar epithelial cells and to a
large number of infected and uninfected macrophages. Monocyte-derived macrophages
migrate to the lung tissue where they become infected resident macrophages and can
produce large amounts of pro-inflammatory cytokines and chemokines, which contribute
to local tissue inflammation and a harmful systemic inflammatory response called cytokine
storm [4]. The severity of the SARS-CoV-2 infections may drive the healing evolution
and therefore it is important to evaluate possible post-infection complications, especially
lung fibrosis. In fact, post-COVID-19 pulmonary fibrosis may be defined as the presence
of persistent fibrotic pulmonary sequelae observed by tomography during clinical visit
post-infection, which can be associated with functional impairment [5]. The risk factors
for the pulmonary fibrosis development in COVID-19 may be considered advanced age,
comorbidities such as hypertension and diabetes, or prolonged Intensive Care Unit stay and
duration of mechanical ventilation, a particular cellular level host response [2,6]. McGroder
et al. [7] enrolled 76 COVID patients who required supplemental oxygen or mechanical
ventilation (42%) during hospitalization and demonstrated four months post-infection that
the severity of initial symptoms, duration of mechanical ventilation, LDH on admission,
and leucocyte telomere length are independent risk factors for fibrotic-like radiographic
abnormalities. Similarly, Patil et al. [8] associated the impact of 600 patients with lung
fibrosis post-COVID-19, evaluated at six weeks post-discharge from the hospital, with the
severity of the initial disease and the duration, and comorbidities (diabetes). In the absence
of the consistent data/protocol available for diagnostic tests, or a specific anti-fibrotic
therapy, clinicians suggest a clinical visit and an imaging test, at 1, 3, 6, and 12 months
after discharge for those with moderate/severe pneumonia in the infectious phase of
COVID-19 [9]. However, clinicians propose complementary strategies to reduce the risk
to develop pulmonary fibrosis, such as inhibition of viral replication, a long-standing
inhibition of the inflammatory response, or the administration of anti-fibrotic therapy [10].
The time since the onset of the COVID-19 pandemic is short, and it is difficult to clarify the
mid- and long-term consequences of COVID-19, but at least we can learn from previous
experience with the SARS-CoV-1 epidemic when 8000 patients were infected and 900 deaths.
In about one-third of patients, pneumonia was complicated by ARDS. One of the most
informative studies enrolled 97 patients which were evaluated by chest radiography one-
year after the infection with SARS; abnormalities on radiography were observed in 28% of
patients and were positively correlated with functional impairment, whereas 55 patients
with two-year follow-up data still have persistent impairment of lung function [11].

2. The Main Key Players in Promoting Pulmonary Fibrosis after SARS-CoV-2
Viral Infection
2.1. Lung Epithelial Cells and Epithelial–Mesenchymal Transition

The alveolar epithelium is composed of 85–90% of type I alveolar epithelial cells and
10–15% of type II alveolar epithelial cells [12]. The latter perform a number of essential
activities for lung functions, as the production of the surfactant to prevent alveolar collapse,
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and stabilization of the airway epithelial barrier; they are also involved in the immune-
defense processes during lung injury and differentiation into type I alveolar epithelial cells
to promote tissue repair [13,14].

After an alveolar injury, in the absence of balanced pathways, the pathogenesis pro-
gresses to acute respiratory distress syndrome (ARDS), driven by three phases: exudative,
proliferative, and fibrosis [15,16]. The exudative phase activates innate cell-mediated immu-
nity which induced permeabilization of vascular endothelium and alterations of the alveo-
lar epithelium, followed by the recruitment of neutrophils, monocytes, and macrophages,
promoting a strong lung inflammation known as a “cytokine storm” [17,18]. The last
results support a hypothesis in which type II alveolar epithelial cell dysfunctions or injuries
promote the initiation of the idiopathic pulmonary fibrosis, which leads to fibrosis and
progressive loss of lung function [19]. In turn, the loss of functional cells can limit the
repairability of the damaged alveolus. Furthermore, type II alveolar epithelial cells acquire
a profibrotic phenotype and produce paracrine mediators that stimulate and activate fibrob-
lasts [19]. In addition, it was found that transforming growth factor-beta (TGFβ) is mainly
produced by the epithelial cells which express integrins needed for activation of the inactive
form, while cessation of its signaling within the lung epithelium can alleviate pulmonary
fibrosis [20–22]. Connective tissue growth factor (CTGF) is stimulated by TGFβ signaling
and contributes to increasing secretion and deposition of collagen deposition by fibrob-
lasts [23,24]. Studies on bleomycin-induced lung fibrosis showed an increased expression
of CTGF in type II alveolar epithelial cells, whereas its blockade can stop fibrosis [25,26].

Epithelial–mesenchymal transition (EMT) is a promoter of the fibrosis process, in
which epithelial cells progressively lose the normal phenotype and upregulate profibro-
genic markers such as α-smooth muscle actin (α-SMA), fibroblast-specific protein 1 (FSP1),
collagen 1, and fibronectin [27]. Some results evidenced the capacity of the alveolar ep-
ithelial cells to trans-differentiate into fibrogenic myofibroblasts [28,29]. After SARS-CoV-2
infection, EMT seems to be promoted by neutrophil extracellular traps (NETs) and the
secretion of alveolar macrophage factors, as TGF-β, IL-8, and IL-1β, as was noticed in vitro
by exposure of alveolar macrophages and neutrophils to the virus [30].

After lung injury, TGF-β overexpressed by damaged epithelial and endothelial cells,
but also by macrophages and fibroblasts, stimulates EMT, leading to a positive-stimulation
loop. The “canonical” TGF-β signaling pathway is dependent on the activation of the
SMAD transcriptional activators, which are responsible for the induction of EMT in epithe-
lial cells [31]. In fact, “non-canonical” TGF-β signaling which involved the extracellular-
signal-regulated kinase (ERK) pathway can modulate the EMT trans-differentiation and
promote fibrosis [31]. TGF-β1 induced EMT due to its crosstalk with the canonical Wnt/β-
catenin pathway [32]; upon TGF-β stimulation, β-catenin is accumulated into the nucleus
and promotes EMT in alveolar epithelial cells [33], induced fibroblast proliferation, and
pulmonary ECM deposition. The EMT pathogenesis seems to be linked with alveolar
epithelial cells autophagy and driven to fibrosis and other lung pathology [34].

Hedgehog signaling is a key regulator of the epithelial–mesenchymal interactions
during tissue repair and fibrosis [35,36]. In normal conditions, lung hedgehog signal-
ing maintains fibroblast quiescence and homeostasis [35]. In pathological conditions, as
in idiopathic pulmonary fibrosis, hedgehog signaling is overreactive, demonstrated in
bleomycin-induced lung fibrosis, while blocking of the hedgehog epithelial–fibroblast
trans-differentiation can alleviate experimental pulmonary fibrosis [37–39].

Recent results highlighted the potentially critical role of the cellular endoplasmic
reticulum (ER) stress in the activation of the unfolded protein response and the production
of dysfunctional epithelial cell phenotype that facilitates fibrotic remodeling of the lung
tissue in IPF [40]. Additionally, it was demonstrated that ER stress enhances fibrosis
through IRE1a-mediated degradation of miR-150 and XBP-1 splicing [41].
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2.2. Endothelial Cells and Trans-Differentiation to Myofibroblasts

During fibrosis pathogenesis, endothelial cells trans-differentiate into myofibroblasts
in a process named endothelial–mesenchymal transition. During the pathological trans-
formation, endothelial cells decrease the expression of specific endothelial markers such
as platelet endothelial cell adhesion molecule (PECAM), vascular endothelial cadherin,
and increase the expression of pro-fibrogenic markers, including α-SMA, Col-1, and fi-
bronectin [42]. The over-production and deposition of the collagen in idiopathic pulmonary
fibrosis is also due to the trans-differentiation of endothelial cells, not only of alveolar
cells into myofibroblasts, and their induction is done similarly by TGF-β, Wnt/β-catenin
pathways, and PDGF pathways [43].

2.3. Lung Fibroblasts and Trans-Differentiation to Myofibroblasts

The lung resident fibroblasts are activated by the pro-inflammatory cytokines se-
creted from macrophages and T cells (e.g., IL-6, TNF-α, and TGF-β) and they achieve
a spindle-shaped phenotype and start to produce collagen. PDGF signaling modulates
fibroblast proliferation and differentiation and also promotes TGF-β release from activated
macrophages and epithelial cells, contributing to the self-activating loop of collagen secre-
tion and deposition [44]. Other fibrosis promoters are fibroblast growth factor receptors
(FGFR-1, -2) which are also fibroblast activators and they contribute essentially to collagen
synthesis and deposition driven by FGF-2 [45]. FGFR-1 and FGFR-2 were found to be highly
expressed in lung cells, as epithelial and interstitial cells, endothelial, and myofibroblast-
like cells of patients with idiopathic pulmonary fibrosis. The resistance to apoptosis in
fibroblasts and myofibroblasts is another contributor to fibrosis. The PI3K/AKT/mTOR
activation reduces autophagy in fibroblasts and myofibroblasts [46], while the inhibition of
EF2K and p38 MAPK signaling decreases autophagy processes, that in turn reduce lung
fibroblast apoptosis [47].

2.4. Lung Lipofibroblasts

Pulmonary lipofibroblasts, a special type of interstitial fibroblasts which contain typical
lipid droplets, are located nearb type 2 alveolar epithelial cells to transfer triglyceride to
these epithelial cells [48,49]. Lipofibroblasts interplay with resident lung mesenchymal
cells proposed to represent the mesenchymal niche for type 2 alveolar epithelial stem
cells [50]. They are heterogeneous populations that expressed different markers, such as
platelet-derived growth factor receptor alpha (PdgfrαPos), Axin2Pos, and fibroblast growth
factor 10 (Fgf10Pos) [50].

Lipofibroblasts may have an important role in the post-COVID-19 effects, especially
in obese or diabetic patients [50]. In response to various stimuli, such as hyperoxia and
infection [51], pulmonary lipofibroblasts can trans-differentiate from myofibroblasts and
contribute to pulmonary fibrosis [52]. Although there is no evidence regarding the mecha-
nism of how the lipofibroblasts promote pulmonary fibrosis after SARS-CoV-2 infection, a
positive correlation was suggested between the number of pulmonary lipofibroblasts and
the severity of pulmonary fibrosis [53].

2.5. Lung Macrophages

The lungs host two types of macrophage populations, based on their origin: resident
alveolar macrophages and monocyte-derived macrophages [27]. They have the ability to
polarize from M1, a pro-inflammatory phenotype in M2 “alternatively activated status”
which is involved in healing and anti-inflammatory activity [54].

There are several findings examining the roles of macrophages in pulmonary fibrosis
regulation, being a major source of TGF-β during fibrogenesis [55]. They also promote
fibroblast trans-differentiation and proliferation through the secretion of growth factors,
such as FGF, VEGF, PDGF, and insulin-like growth factor 1 (IGF-1) [55,56]. Interestingly,
macrophages are able to exacerbate fibrosis by IL-1β and CCL18 synthesis [57], or inhibit it
by producing matrix metalloproteinases (MMPs), which degrade ECM [58]. Polarized M2
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macrophages are responsible for the inflammatory process inhibition and for the fibrotic pro-
motion, through the secretion of chemokines, MMPs, tissue inhibitor of metalloproteinases
(TIMPs), and fibronectin. Moreover, M2 macrophages have the ability to trans-differentiate
into fibrocyte-like cells that express collagen [59,60].

Recently, it was demonstrated the association of COVID-19-induced “acute respiratory
distress syndrome” (ARDS) with an accumulation of monocyte-derived macrophages with
significant transcriptional similarities to profibrotic macrophages in idiopathic pulmonary
fibrosis [61]. Moreover, in severe COVID-19 cases, the resident alveolar macrophages
were found with defective antigen signatures and were severely depleted, and replaced
by inflammatory monocytes and monocyte-derived macrophages [62]. Recent results
suggested that pro-fibrotic M2 macrophage markers are responsible for the increasing risk
of complications after SARS-CoV-2 infection in obese type 2 diabetes patients [63].

3. Galectins Promote Lung Tissue Remodeling and Fibrosis Post-COVID-19
3.1. Galectin-1 and -8

Galectin-1 (Gal-1) is a member of the galectin family with a high affinity for β galactose-
containing oligosaccharides [64]. Gal-1 is a key player in different biological functions,
including growth, cell proliferation, inflammation/immune response, and carcinogene-
sis [65–67]. Recently, the involvement of Gal-1 in the progression of idiopathic pulmonary
fibrosis has been demonstrated. In hypoxemic conditions, Gal-1 interplays with focal
adhesion kinase-1 (FAK1) in lung epithelial cells and contributes to trans-differentiation
of fibroblasts into myofibroblasts [68], whereas its inhibition reduced FAK1 activity and
alleviated fibrogenesis progression [69].

COVID-19 pathogenesis is characterized by the adaptative-immune stimulation after
viral infection and respiratory dysfunction resulting from pulmonary injury and lung
hypoxemia. The cytokines storm and hyper inflammation [70] induced endothelial and
alveolar damage, followed after 3 weeks by fibrotic features and clinical characteristic
symptoms [27]. In this regard, Gal-1 appears to be involved in the COVID-19 pathogenesis,
finding a correlation between its blood level, proinflammatory cytokines, and clinical
parameters (chest radiography, dry cough); elevated serum Gal-1 values were correlated
with IL-1β, IL6, IL-10, IL-23, and IL-33 [71]. Moreover, the statistical analysis highlighted
the increased level of IL-10 and Gal-1, as well as a strong positive correlation between them
in stage III of COVID-19, suggesting their dependent immunomodulation [71].

Endothelial dysfunctions play a crucial role in SARS-CoV-2 pathology and have
been recently demonstrated to be connected with immune cell recruitments and hyper-
inflammation and formation of alveolar thrombi by platelets and fibrin. Interestingly,
pro-inflammatory mediators interplay with Gal-1, -3, and -8, which act in a concerted man-
ner through the N- and O-linked glycans located on the S viral protein, and assuming to
form a galectin-glycan lattice on the surface of the virus and endothelial cells, generated by
the angiotensin-converting (ACE2) receptor, integrin β1, and CD44 [72]. However, it was
demonstrated that Gal-1 and -8 induce conformational changes in αIIbβ3-integrin surface
receptors on platelets and lead to fibrinogen binding and platelet activation and aggrega-
tion [73,74]. The process has been found to involve Ca2+ mobilization, phosphorylation of
mitogen-activated protein kinases (MAPKs), Akt, and β3 integrin [75,76]. Based on these
findings, Gal-1 and -8 may be considered therapeutic targets against viral infection and en-
dothelial dysfunction in the lung microvasculature, against the severe immuno-thrombosis
complication of the disease [77], or against trans-differentiation of lung fibroblasts into
myofibroblasts, a crucial step in pulmonary fibrosis progression post-COVID-19 [68].

3.2. Galectin-3

Gal-3 is another important β-galactoside-binding lectin, and the most studied in terms of
involvement in COVID-19 pathology and a possible therapeutic target for this disease [78,79].
Gal-3 modulates the inflammatory response and tissue repair after lung injury [80,81], and
is highly expressed in fibroblasts, endothelial cells, and alveolar macrophages [82–85]. It
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is well known that Gal-3 plays a crucial role in SARS-CoV-2 infection, not only by being
structurally close to the N-terminal domain of coronaviruses spike protein subunit 1 [86],
but also by its ability to bind the ACE receptor, which has a structural affinity to ACE2
receptor [87]. Further, Gal-3 is involved in the immune response, modulating cytokine
secretion [88], and leading to a cytokine storm syndrome [78,79]. Moreover, the highest
blood levels of Gal-3 were found in the severe cases of COVID-19 [89,90]. The COVID
patients with acute respiratory failure and Gal-3 serum levels above 35.3 ng/mL, were
found to be more likely to develop severe ARDS, but also markedly at higher risk of
intensive care unit admission or death [91]. Similarly, Xu et al. [92] already explained its
role as a prognostic factor in ARDS. In this regard, Gal-3 may be considered a prognostic
biomarker in COVID-19 disease [91].

Going further, Gal-3 was found to be involved not just in the viral infection via spike
protein, and in the macrophage-related hyper inflammation phase and cytokine storm,
but also in the COVID-19-related pulmonary fibrosis joined to the alveolar damage,
edema, and inflammation [87]. Previously, it was demonstrated that the involvement of
Gal-3 in promoting TGF-β1 signaling [83] further induces epithelial–mesenchymal tran-
sition, ECM production, and apoptosis of alveolar epithelial cells (AECs) in pulmonary
fibrosis, whereas inhibiting TGF-β activity reduces PF [29,93–95]. Higher Gal-3 level was
noticed in the bronchoalveolar lavage of the patients with pulmonary fibrosis, but lower
after receiving corticosteroid therapy, whereas Gal-1 overproduction in U937 mono-
cytes was stimulated by TNF-α and interferon-gamma in a positive loop [96]. Severe
COVID-19 was associated with hyper inflammation and supported by the concomitant
upregulation of Gal-3, TNF-α, and IL-6 in lobar and bronchial pneumonia [97]. In this
regard, Gal-3 seems to have an important role in the immune response and inflamma-
tion, prior to the development of pulmonary fibrosis. Data show that IL-4 stimulates
a Gal-3 autocrine loop with increased expression and secretion of Gal-3 that binds and
cross-links CD98 on macrophages [83], via CD98-mediated PI3K alternative macrophage
activation pathway [83,98,99]. Moreover, Gal-3 seems to have the ability to bind and ac-
tivate TLR4 [100] and subsequently induced lung fibrogenesis, while fibroblast-specific
deletion of TLR4 in mice induced a significant reduction in lung fibrosis [101]. The fibro-
genesis is also supported by a pro-fibrotic macrophage subtype, which is phenotypically
characterized by the expression of TREM2 [102]. In hypoxemic condition, Gal-3 binds
and activates TREM2 and triggers lung fibrosis [87,103,104]. Similarly, a role of Gal-3
in the microglial pro-inflammatory response and the ability of Gal-3 to further activate
TREM2 [105] was demonstrated, which can prevent macrophage apoptosis, promote
survival, and support M2 differentiation [106,107].

Fibrosis can be more promoted by Gal-3 through regulating endothelial–mesenchymal
transition [108], a key event in the progression of idiopathic pulmonary fibrosis.

3.3. Galectin-9

Gal-9 is another lectin involved in SARS-CoV-2 pathogenesis. Firstly, was found that a
baseline of 2.042 pg/mL plasma Gal-9 can differentiate SARS-CoV-2-infected from nonin-
fected patients with 95% specificity, whereas a strong correlation with proinflammatory
mediators was noticed [109]. Firstly, Gal-9’s role in viral attachment and entry into alveolar
epithelial cells in a dependent manner by enhancing the binding affinity of the viral spike
protein to alveolar type 2 cells was shown [110]. Another study suggested the potential role
of Gal-9 and the T cell immunoglobulin and mucin domain-containing 3 protein (TIM-3) in
T cells during the progression of the disease [111], while high levels of the plasmatic Gal-9
cleaved form could be associated with inflammatory markers that reflect the severity of
COVID-19 pneumonia [112].

Overall, the role of galectin-1, -3, -8, -9 in the mechanism regulating myofibroblasts
activation in pulmonary fibrosis post-COVID-19 is presented in Figure 1.
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4. Therapeutic Strategies Based on Galectin Inhibitors 

Figure 1. Schematic representation of the galectin-1, -3, -8, and -9 role in the mechanism regulating
myofibroblasts activation in pulmonary fibrosis post-COVID-19. macrophages (MG); type I alveolar
epithelial cells (AT1); type II alveolar epithelial cells (AT2); dendritic cell (DC); epithelial-mesenchymal
transition (EMT); endothelial-mesenchymal transition (EndMT); myofibroblast (Mfb); fibroblast (Fb);
lipofibroblasts (Lfb); monocyte (Mo); platelet (Pt); activated platelet (aPt); polymorphonuclear
neutrophil (PMN); neutrophil extracellular trap (NETs); angiotensin-converting enzyme 2 receptor
(ACE2); mesenchymal stromal cells (MSCs); platelet-derived growth factor (PDGF); transforming
growth factor beta1 (TGF-β). This figure was created with BioRender.com (accessed on 18 July 2022).

4. Therapeutic Strategies Based on Galectin Inhibitors

Based on the characteristics of galectins to recognize galactose as well as galactose-
containing di- and oligosaccharides, the drug discovery efforts have been focused to
develop inhibitors that can be options for fibrosis therapies.

Table 1 presents all the ongoing clinical trials targeting the galectins for the treatment
of fibrosis. Interestingly, they all have the inhibition of Galectin 3 as target in two different
clinical fibrosis settings, namely non-alcoholic steatohepatitis (NASH) with advance fibro-
sis [113,114] and idiopathic pulmonary fibrosis (IPS) [115,116]. These Galectin 3 inhibitors
are all in phase 1 or phase 2 evaluation and have all been compared with placebo.
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Table 1. Clinical trials targeting the galectins for the treatment of fibrosis.

Sponsor Compound Proposed Target Indication Phase NCT Number

Galectin
Therapeutics Inc. GR-MD-02 Galectin 3 Non-alcoholic steatohepatitis

(NASH) with advance fibrosis Phase 2 NCT02421094

Galecto Biotech AB GB1211 Galectin 3 Non-alcoholic steatohepatitis
(NASH) and liver fibrosis Phase 1b/2a NCT04607655

Galecto Biotech AB GB0139 Galectin-3 Idiopathic Pulmonary Fibrosis
(IPF) Phase 2 NCT03832946

Galecto Biotech AB TD139 Galectin-3 Idiopathic Pulmonary Fibrosis
(IPF) Phase 1/2 NCT02257177

Particularly, fibrotic NASH participants (18–75 years) were administered with the
Galectin 3 inhibitors GR-MD-02 (8 mg/kg) [113] or GB1211 (10 and 100 mg/kg, orally, twice
per day over 12 weeks) [114]. Specifically, GB1211 safety and tolerability profile determina-
tion is ongoing by analyzing vital signs, electrocardiogram (ECG), adverse events, and clin-
ical parameters along with pharmacokinetics and pharmacodynamics [114]. Instead, GR-
MD-02 is in evaluation for mean changes in liver fibrosis determined from LiverMultiScan
(LMS), a multi-parametric Magnetic Resonance Imaging (MRI) technique [113]. Regarding
the IPS, two different clinical trials administered the Galectin 3 inhibitor GB0139, previ-
ously known as TD139, in 18 to 85 adult patients via dry powder inhaler (DPI) [115,116].
Specifically, TD139 has been tested before in a single ascending dose phase 1 study
(0.5–1.5–3–10–20–50 mg, once a day for 14 days) and then in a multiple dose expansion
cohort, in order to assess the adverse events until 30 days after the first dose, along with its
safety and tolerability profile, pharmacokinetics, and pharmacodynamics [116]. Addition-
ally, the efficacy of 3 mg GB0139 (once a day over 52 weeks) is in ongoing evaluation by
assessing the annual rate of Forced Vital Capacity (FVC), the time of first respiratory related
first hospitalization, the time to death, and the Respiratory Related Quality of Life [115].
Although for two of these clinical trials testing Galectin 3 inhibitors no results have been
reported until now [114,115], neither oral GR-MD-02 nor inhaled TD139 has associated
to serious adverse events and they seem to significantly modify primary and secondary
outcomes compared to placebo groups [113,116].
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