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Head and neck squamous cell carcinoma (HNSCC) have a high incidence and

mortality rate, and investigating the pathogenesis and potential therapeutic

strategies of HNSCC is required for further progress. Immunotherapy is a

considerable therapeutic strategy for HNSCC due to its potential to produce

a broad and long-lasting antitumor response. However, immune escape, which

involves mechanisms including dyregulation of cytokines, perturbation of

immune checkpoints, and recruitment of inhibitory cell populations, limit the

efficacy of immunotherapy. Currently, multiple immunotherapy strategies for

HNSCC have been exploited, including immune checkpoint inhibitors,

costimulatory agonists, antigenic vaccines, oncolytic virus therapy, adoptive

T cell transfer (ACT), and epidermal growth factor receptor (EGFR)-targeted

therapy. Each of these strategies has unique advantages, and the appropriate

application of these immunotherapies in HNSCC treatment has significant value

for patients. Therefore, this review comprehensively summarizes the

mechanisms of immune escape and the characteristics of different

immunotherapy strategies in HNSCC to provide a foundation and

consideration for the clinical treatment of HNSCC.
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1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is a type of solid tumor that

develops from the mucosal epithelium of the mouth, pharynx, and larynx (Solomon

et al., 2018; Kitamura et al., 2020; Ding et al., 2021). HNSCC, as the sixth most

common cancer in the world, results in an annual death toll of approximately

350,000 and a 5-years morbidity and mortality rate of approximately 40%–50%.

HNSCC of the oral cavity (oral squamous cell carcinoma, OSCC) and larynx is

frequently linked to tobacco, alcohol, and betel nut use, whereas HNSCC of the

oropharynx is mostly linked to human papillomavirus (HPV) infection (Kawakita and
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Matsuo, 2017; McDermott and Bowles, 2019a; McDermott

and Bowles, 2019b; Li et al., 2020; Zhou and Parsons, 2020).

Currently, the main treatment option for HNSCC is a

combination of surgery, chemotherapy, and radiotherapy.

However, the prognosis of HNSCC patients remains poor

due to late diagnosis, high rates of primary-site recurrence,

and lymphatic metastasis. Thus, there has been no significant

improvement in long-term patient survival. The treatment of

recurrent/metastatic HNSCC is one of the most difficult

clinical challenges.

Emerging tumor immunotherapy is an important method

for the treatment of HNSCC (Huang et al., 2022a). Activating

an effective immune response can impair the phenotype and

function of tumor cells, killing malignant cells, and trigger an

adaptive immune response (Xia et al., 2021). However,

immune escape caused by multiple mechanisms in HNSCC

limits the immune system from recognizing and attacking

tumor cells (Wang et al., 2021a). Therefore,

immunotherapies overcoming the immune escape and

enhancing immune killing has become an important goal

(Zhang and Zhang, 2020). Current immunotherapy takes

many forms (Figure 1), including immune checkpoint

inhibitors, costimulatory agonists, antigenic vaccines,

oncolytic virus therapy, adoptive T cell transfer (ACT),

and epidermal growth factor receptor (EGFR)-targeted

therapy. On the one hand, these immunotherapies target a

variety of coinhibitory and costimulatory signaling

molecules present on the surface of immune cells. The

application of immune checkpoint inhibitors and

costimulatory agonists can achieve effective antitumor

immune effects. On the other hand, antigenic vaccines are

a type of active immunotherapy in which antigens are derived

from tumors. Antigenic vaccines delivered to the immune

system in a sufficiently immunogenic context can elicit an

antitumor immune response against tumor-associated

antigens (TAAs) and tumor-specific antigens (TSAs)

(Melief et al., 2015). In addition, oncolytic virus therapy is

based on the direct killing effect of viruses on tumor cells to

achieve antitumor effects. ACT requires taking tumor-

specific T cells from patients and expanding them in vitro

FIGURE 1
Current immunotherapy strategies for HNSCC. Current immunotherapies for HNSCC include immune checkpoint inhibitors, costimulatory
agonists, antigenic vaccines, oncolytic virus therapy, adoptive T cell transfer (ACT), and epidermal growth factor receptor (EGFR)-targeted
monoclonal antibodies (mAbs).
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and then infusing them back into the patient to kill the tumor

cells. Therefore, oncolytic virus therapy and ACT are two

promising immunotherapy approaches due to their specific

therapeutic effects.

Herein, we summarize the immune escape mechanisms and

review existing immunotherapeutic strategies for HNSCC. In

addition, the advantages and limitations of different

immunotherapy strategies are further discussed to provide

theoretical support for clinicians.

2 Immune escape mechanisms of
HNSCC

Ideally, the immune system would be able to exert an

active immune killing effect by recognizing TAAs or TSAs.

However, HNSCC is characterized by a combination of

immune escape mechanisms to suppress immune attacks,

which results in low response rates to immunotherapy in the

clinical management of HNSCC-related conditions. In the

following, the mechanisms of HNSCC-evaded immunity are

discussed, including physical blockade, dysregulation of

cytokines, perturbation of immune checkpoints,

recruitment of inhibitory cell populations, negative

influences of exosomes, and competitive metabolism of

tumor cells (Figure 2).

2.1 Physical blockade of immune cell
infiltration

The elevated tumor interstitial pressure (TIP) physically

blocks the infiltration of immune cells. On the one hand, the

high rate of proliferation of HNSCC cells leads to the

formation of abnormal blood vessels and lymphatic vessels,

allowing fluid to leak and accumulate further in the

interstitium. On the other hand, in the HNSCC tumor

microenvironment (TME), the stiff and swollen extracellular

matrix (ECM) combines with rapidly proliferating cancer cells,

further leading to an elevated TIP (Ariffin et al., 2014). The

unstable vascular system of tumors helps maintain a TME

characterized by a low pH, hypoxic environment in which

compounds such as galactose lectin-1 and adenosine, which

inhibit effector T cells (Teff), are induced to be secreted,

ultimately creating a permissive environment for tumor

growth (Schaaf et al., 2018). In addition, tumor extracellular

matrix induced drug resistance and immune suppression via

high expression of collagen (Peng et al., 2020).

2.2 Dysregulation of cytokines

When a proportion of immune cells overcome the barrier of

high TIP and infiltrate into the nest of HNSCC tumor cells,

FIGURE 2
Schematic diagram describing the mechanisms of HNSCC-evaded immunity. Immune escape mechanisms, including physical blockade,
dysregulation of cytokines, perturbation of immune checkpoint, recruitment of inhibitory cell populations, negative influences of exosomes, and
competitive metabolism of tumor cells, result in HNSCC becoming a refractory tumor.
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dysregulation of many cytokines in HNSCC can mediate

immune escape. Transforming growth factor (TGF)-β is a

regulatory cytokine, and overexpression of TGF-β1 in

HNSCCs has been reported to lead to over proliferation of

head and neck epithelial cells and then enhance inflammation

and angiogenesis (Lu et al., 2004). Moreover, TGF-β has been

shown to promote tumor progression in HNSCC through

mechanisms, such as impeding dendritic cell (DC) maturation

(Wrzesinski et al., 2007), inhibiting natural killer (NK) cytotoxic

effects (Klöss et al., 2015), and affecting TME-associated

immunosuppressive cells (Pang et al., 2018).

Furthermore, interleukin (IL)-6 and IL-10 signaling have

tumor-promoting functions. IL-6 induces tumor pro-survival

and pro-proliferation signaling by activating signal transducers

and activators of transcription (STAT) 3 (Shinagawa et al., 2017),

and promotes tumor immune escape by further inhibiting the

activation of DCs, NKs, and T cells (Cheng et al., 2003). IL-10 can

promote immune suppression by inhibiting interferon (IFN)-α
secretion by plasmacytoid dendritic cells (pDCs) (Bruchhage

et al., 2018). In addition, vascular endothelial growth factor

(VGEF) and prostaglandin (PG) E2 are upregulated in

HNSCC tumor cells. The former inhibits the maturation of

DCs and leads to inactivation of T cells (Siemert et al., 2021).

The latter can suppress immune responses mediated by adaptive

regulatory T cells (Balch et al., 1982).

2.3 Perturbation of immune checkpoints

There are two types of immune checkpoints:

immunosuppressive checkpoints and immune costimulatory

checkpoints. In healthy humans, immunosuppressive

checkpoints control the immune response. They are often

expressed on immune cells (e.g., T cells), and when bound to

the corresponding ligand, they effectively suppress the

immune response, thus protecting the body from

autoimmune diseases (Sharma and Allison, 2015). In

contrast, in HNSCC, tumor cells intelligently exploit the

specific physicochemical properties of the TME to mediate

the upregulation of immunosuppressive receptors or ligands,

ultimately inhibiting the antitumor effects of the immune

system (Deng et al., 2018). Several immunosuppressive

checkpoints have been reported to be associated with

HNSCC, including programmed death-1 (PD-1),

programmed death ligand-1 (PD-L1), cytotoxic

T-lymphocyte-associated protein-4 (CTLA-4), lymphocyte

activation gene-3 (LAG-3), T cell immunoglobulin mucin-3

(TIM-3), and T cell immunoglobulin ITIM domain (TIGIT)

(Moy et al., 2017; Deng et al., 2018). Perturbations of the

immune costimulatory checkpoints have also been reported

in HNSCC. The costimulatory signal is a secondary signal

that mediates the activation and proliferation of immune

cells (Sanchez-Paulete et al., 2016; Liao et al., 2019).

Important costimulatory signaling molecules that

have been identified in HNSCC include CD137, OX40

(CD134), CD40, and glucocorticoid-induced tumor

necrosis factor receptor (GITR) (Liao et al., 2019).

However, the specific TME of HNSCC accomplishes

immune escape by blocking the enrichment and activation

of costimulatory signals.

2.4 Recruitment of inhibitory cell
populations

Relevant immunosuppressive cells in the TME of HNSCC

mainly include T regulatory cells (Tregs), myeloid-derived

suppressor cells (MDSCs), tumor-associated macrophages

(TAMs), and cancer-associated fibroblasts (CAFs) (Davis

et al., 2016). Tregs are a heterogeneous population of T cells

with immunosuppressive functions. Recruitment of Tregs to the

TME occurs by binding of C-C chemokine receptor type 4

(CCR4) on the T cell surface by macrophage-derived

chemokine (MDC/CCL22) produced by the tumor (Nishikawa

and Sakaguchi, 2014; Propper and Balkwill, 2022). In addition,

Tregs activate angiogenic markers such as vascular endothelial

growth factor (VEGF) in the TME, which promotes tumor

angiogenesis (Lugano et al., 2020). Moreover, Tregs mediate

tumor immune escape through the production of TGF-β and

IL-10 (Dennis et al., 2013; Batlle and Massagué, 2019).

MDSCs are a heterogeneous group of immature myeloid cells

that can significantly suppress the immune cell response. In the

TME of HNSCC, MDSCs highly express arginase 1 (Arg-1),

inducible nitric oxide synthase (iNOS). L-arginine is a common

substrate for Arg-1 and iNOS, and thus L-arginine in the TME is

continuously depleted. This ultimately affects the maturation of

T cell receptors (Szefel et al., 2019). High concentrations of ROS

also inhibit T cell responses (Ohl and Tenbrock, 2018); in

parallel, MDSCs promote the production of Tregs (Serafini

et al., 2008).

Mature macrophages become TAMs upon recruitment to the

TME of HNSCC, and TAMs use receptors (e.g., Gas6 and Protein

S) as bridging ligands to bind to the “eat-me” signal

phosphatidylserine on the apoptotic cell membrane, further

polarizing TAMs to the protumor M2 phenotype (Myers

et al., 2019). M2 TAMs mediate tumor immunosuppression

through the secretion of immunosuppressive cytokines such as

IL-1β, IL-6, IL-10, and TGF-β and suppress T cell immune

responses through the expression of the immunosuppressive

ligand PD-L1 (De Palma and Lewis, 2013).

CAFs are supportive stromal cells in the TME and are

involved in the remodeling of the extracellular matrix, and the

cancer nest is thus protected by the stroma. In HNSCC, CAFs

have been shown to inhibit T cell proliferation via the PD-1/PD-

L1 axis (Takahashi et al., 2015). Furthermore, it was reported that

CAF-derived lactate enhances HNSCC tumor development by
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increasing oxidative phosphorylation (OXPHOS) activity (Jiang

et al., 2019).

2.5 Negative influences of exosomes

Exosomes are biologically active and informative bilayer

nanovesicles (30–150 nm) derived from the endosomal

pathway. Tumor-derived exosomes (TDEs) consist mainly of

abundant bioactive proteins (oncoproteins, immunomodulatory

molecules, and growth factors, etc.) and nucleic acids

(microRNA, mRNA, etc.) that convey information (Huang

et al., 2022b). There is growing evidence that exosomes are

directly related to HNSCC-mediated immune escape (Wang

et al., 2021b).

Exosomes influence the growth and progression of HNSCC.

Angiogenesis is an important factor in promoting tumor

proliferation. A mouse model study confirmed that TDE

promotes tumor angiogenesis through phenotypic regulation

of endothelial cells, which may contribute to the growth and

metastasis of HNSCC (Ludwig et al., 2018). Another study found

that TDEs containing TGF-β promoted HNSCC angiogenesis

and drove tumor progression (Ludwig et al., 2020). In addition,

some studies have shown that RNA from TDEs, plays an

important role in promoting HNSCC progression and

metastasis. CAFs were reported to promote the proliferation

and metastasis of tumor cells by transferring exosomal miR-34a-

5p (Li et al., 2018) and miR-382-5p (Sun et al., 2019) into them.

Exosomes derived from hypoxic tumor cells can promote cell

migration and invasion by delivering miR-21 to normoxic

HNSCC cells (Wang et al., 2016).

Exosomes can also contribute to an immunosuppressive

microenvironment. First, exosomes can mediate

immunosuppression by altering the number and activity of

immunosuppressive cells, such as Tregs and MDSCs (Xiao

et al., 2019). A recent animal study demonstrated that

exosomal CMTM6 from tumor cells induced polarization of

M2 TAMs (Pang et al., 2021). Furthermore, exosomes

secreted from HNSCC are enriched with suppressive

molecules such as inhibitory cytokines (IL-10 and TGF-β1),
checkpoint receptor ligands (PD-L1), cyclooxygenase-2 (COX-

2) and death receptor ligands (FasL), which can ultimately impair

T and NK-cell function (Whiteside, 2016).

2.6 Competitivemetabolism of tumor cells

Tumor cells competitively metabolize and consume nutrients

essential for effective immune cell function (Sukumar et al., 2015).

For example, glucose is an important source of energy for HNSCC

cell proliferation and survival as well as for immune cell activation,

differentiation, and function. Tumor cell glycolytic activity may

limit the glucose consumption of tumor infiltrating lymphocyte

(TIL), resulting in T cell anergy and immune escape (Sandulache

et al., 2011; Chang et al., 2015). Similarly, tryptophan is essential

for T-lymphocyte growth and granzyme B production, and in the

HNSCC TME, tumor cells can also catabolize tryptophan by

releasing excess indoleamine-2,3-oxidase (IDO), ultimately

impairing the immune response (Sukumar et al., 2017).

3 Application of immune checkpoint
inhibitors in immunotherapy for
HNSCC

In the past decades, dozens of studies and clinical trials have

demonstrated the superiority of immunotherapy in prolonging

the survival of patients with HNSCC. Immune checkpoint

inhibitors have great prospects in immunotherapy, such as

PD-1/PD-L1, CTLA-4, LAG-3, TIM-3, and TIGIT antibodies

(Figure 3).

3.1 Programmed cell death protein-1
antibody

The interaction of PD-L1, which is highly expressed in tumor

cells, and PD-1 on the surface of T cells inhibits the body’s

immune response and promotes tumor progression and

metastasis. By blocking the PD-1/PD-L1 pathway, the body’s

antitumor immunity can be restored, and the effect of tumor

immunotherapy can be achieved. Inhibitors of PD-1 that have

been tested in HNSCC include pembrolizumab and nivolumab.

Pembrolizumab is an IgG4 monoclonal antibody. In the phase

I trial KEYNOTE-012, pembrolizumab was 18% effective in the

treatment of patients with recurrent metastatic HNSCC (Seiwert

et al., 2016), and its safety and durable antitumor activity were

confirmed by long-term follow-up (Mehra et al., 2018).

Subsequently, in phase II KEYNOTE-055, pembrolizumab was

shown to have meaningful antitumor activity and safety in

recurrent and/or metastatic (R/M) HNSCC previously treated

with platinum and cetuximab (Bauml et al., 2017). In the

continuing phase III KEYNOTE-040 trial, pembrolizumab for

R/M HNSCC demonstrated a stable safety profile accompanied

by prolonged overall patient survival compared to the standard

treatment arm (standard doses of methotrexate, doxorubicin, or

cetuximab intravenously) (Cohen et al., 2019a). The phase III

KEYNOTE-048 clinical trial opens a new era of first-line treatment

for R/M HNSCC, and this trial measured the expression levels of

PD-L1 to assess the effect of immunotherapy. The combined

proportional score (CPS) is defined as the sum of PD-L1-

stained tumor cells and surrounding lymphocytes and

macrophages divided by the total number of live tumor cells

multiplied by 100 (Cohen et al., 2019b). The results showed

that pembrolizumab monotherapy improved survival in PD-L1-

positive (CPS ≥ 1) patients compared to the extreme regimen, with
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a more significant benefit in PD-L1 strongly positive (CPS ≥ 20)

patients (median overall survival, mOS: 14.9 vs. 10.8 months).

Pembrolizumab in combination with chemotherapy prolonged

mOS in the overall population, resulting in a survival of >4 years in
nearly 1/5 patients (Burtness et al., 2019).

Nivolumab is another PD-1 monoclonal antibody

approved for the second-line treatment of R/M HNSCC. In

the phase III CHECKMATE-141 clinical trial, Ferris et al.

divided 361 subjects into nivolumab and standard treatment

groups (methotrexate, docetaxel, or cetuximab), with the

nivolumab-treated group demonstrating a higher mOS

(7.5 months vs. 5.1 months). Moreover, the probability of

grade three or four adverse events was 13.1% in the

nivolumab treatment group compared to 35.1% in the

standard treatment group (Ferris et al., 2016). Immediately

afterward, the team collected follow-up data for 24 months

and concluded, consistent with the preliminary results, that

nivolumab provided a longer-term, safer overall survival (OS)

benefit in the treatment of R/M HNSCC, with an almost 3-

fold increase in the 24-months OS rate compared to the

standard treatment group (16.9% vs. 6.0%) (Ferris et al.,

2018a). Further recent clinical trials on CheckMate 141

have also confirmed that nivolumab improves treatment

outcomes regardless of prior treatment with cetuximab

in R/M HNSCC patients and that the use of nivolumab

results in a further reduction in the risk of death compared

to single-agent chemotherapy (Ferris et al., 2019). In addition,

nivolumab has also been reported to show a similarly

good prognosis in Asian populations (Yen et al., 2020).

Recently, a CheckMate 358 trial demonstrated that

nivolumab induced pathological regression in HPV-

positive and HPV-negative HNSCC (Ferris et al., 2021),

and these results will provide a reference for investigating

the addition of anti-PD-1 to adjuvant therapy in patients with

locally advanced disease.

3.2 Programmed cell death protein-L1
antibody

PD-L1, one of the ligands of PD-1, is upregulated in HNSCC

as well as in many types of solid tumors, and in recent studies, it

has been shown that patients with high PD-L1 expression achieve

better antitumor response and OS in immunotherapy (Patel

et al., 2020). However, PD-L1 expression has been found to

vary throughout the course of HNSCC, and patients with

relapsed disease were advised to have their PD-L1 expression

levels re-evaluated (Delafoy et al., 2022).

Durvalumab is a high-affinity humanized IgG1 monoclonal

antibody targeting PD-L1 that blocks the binding of PD-L1 to

PD-1 and CD80/B7.1, restores the immune response, and kills

tumor cells (Chen et al., 2022). Durvalumab was used to evaluate

the safety of treating R/M HNSCC in a phase I/II study with

promising results (Segal et al., 2019). A phase II HAWK study

(NCT02207530) was conducted in R/M HNSCC patients with

PD-L1 expression ≥25% who had progressed after prior

platinum-based chemotherapy. The subjects were treated with

durvalumab monotherapy, which demonstrated good antitumor

activity and safety (Zandberg et al., 2019). A higher objective

response rate (ORR: 29.4% vs. 10.9%) and longer overall survival

FIGURE 3
Schematic diagram of immune checkpoint inhibitors in immunotherapy for HNSCC.
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(OS: 10.2 vs. 5.0 months) were also observed with durvalumab in

HPV-positive patients (Zandberg et al., 2019). Next, the Phase III

EAGLE study (NCT02369874) (Ferris et al., 2020) and the Phase

II CONDOR study (NCT02319044) (Siu et al., 2019) compared

the effects of durvalumab monotherapy or in combination with

the CTLA-4 inhibitor tremelimumab. The results showed that

there was not a significant difference in OS; however, the higher

survival and response rates at 12–24 months demonstrated the

clinical efficacy of durvalumab.

Avelumab is another anti-PD-L1 antibody that has been

explored in clinical trials in combination with

chemoradiotherapy for the treatment of HNSCC. A phase I

trial (NCT02938273) reported the feasibility of cetuximab-RT

in combination with avelumab (Elbers et al., 2020). A phase Ib

trial (NCT01772004) in which patients with platinum-

refractory/ineligible R/M HNSCC were treated with avelumab,

demonstrated controlled safety and clinical activity (Guigay et al.,

2021). The safety phase of the randomized phase III trial

(NCT02999087) then demonstrated the tolerability of the

combination of avelumab + cetuximab-RT for LA-HNSCC

and will advance into further clinical trials (Tao et al., 2020).

One phase III clinical trial has been completed and published

(NCT02952586). A total of 697 patients with locally advanced

HNSCC were divided into an avelumab group (n = 350,

avelumab + chemoradiotherapy) and a placebo group (n =

347, chemoradiotherapy) by Lee et al. (2021). The results

showed that dismal asavelumab did not improve patients’

progression-free survival when compared to standard-of-care

chemoradiotherapy alone. These data, however, provide a

foundation for future research, and the authors predict that

avelumab paired with chemoradiotherapy could provide

significant benefits to patients with HNSCC who have high

PD-L1 expression.

Atezolizumab has also been investigated in the treatment of

HNSCC, with the combination of atezolizumab and GDC-0919

(IDO1 inhibitor) showing a controlled safety profile in a phase I

clinical trial (NCT02471846) in advanced HNSCC (Jung et al.,

2019). In addition, atezolizumab monotherapy (NCT03452137),

atezolizumab in combination with radiotherapy

(NCT05053737), atezolizumab in combination with VEGF-A-

targeting monoclonal antibody bevacizumab (NCT03818061),

and atezolizumab presurgery (NCT05110781) are being

investigated for HNSCC (Garcia et al., 2020). The efficacy of

the treatment deserves further observation in the future.

3.3 Cytotoxic T-lymphocyte-associated
protein-4 antibody

CTLA-4, also known as CD152, is a CD28 homolog

expressed on the surface of T-lymphocytes. CTLA-4 competes

with CD28 for binding to the antigen-presenting cell (APC)

surface ligands CD80 and CD86. CTLA-4 has a higher affinity for

CD80/CD86 than CD28, resulting in dephosphorylation of T cell

receptor (TCR) signaling proteins such as CD3, which mediates

T cell unresponsiveness and thus participates in the negative

regulation of the immune response (Rowshanravan et al., 2018).

CTLA-4 inhibitors are currently being used in clinical trials

primarily as combination therapies. Jie et al. demonstrated

that ipilimumab contributes to the clinical efficacy of

cetuximab treatment by targeting CTLA-4+ Tregs and

restoring the effects of cetuximab-mediated antibody-

dependent cell-mediated cytotoxicity (ADCC) and NK cells

(Rowshanravan et al., 2018). A phase I clinical trial

(NCT01935921) confirmed the safety of ipilimumab, and the

recommended phase II dose (RP2D) for ipilimumab plus

cetuximab-RT was 1 mg/kg in weeks 5, 8, 11, and 14 (Ferris

et al., 2022). A phase II clinical trial (NCT02919683) failed to

demonstrate that nivolumab in combination with ipilimumab

was superior to nivolumab alone in untreated HNSCC

(Schoenfeld et al., 2020). The phase III CheckMate-651 study

evaluated the efficacy of nivolumab in combination with

ipilimumab versus EXTREME in the first-line treatment of

R/M HNSCC. Unfortunately, the effect of the immunotherapy

combination did not provide a statistically significant

improvement in OS (Argiris et al., 2021). Current clinical

studies on tremelimumab have focused on its combination

with durvalumab in R/M HNSCC, but as previously

mentioned (Siu et al., 2019; Ferris et al., 2020), the application

of tremelimumab did not significantly benefit HNSCC patients.

3.4 Lymphocyte activation gene 3 protein
antibody

LAG-3 (CD223) is another helper suppressor checkpoint

molecule in HNSCC that is expressed primarily on activated

T cells and, to a lesser extent, also on NK cells, DCs, and B cells.

LAG-3 inhibits T-cell activation by competing with CD4 for

binding to major histocompatibility complex class II (MHC-II)

(Huard et al., 1997). In addition, LAG-3 is highly expressed on

Tregs of HNSCC patients (Jie et al., 2013). Recent evidence

suggests that LAG-3 exhibits significant upregulation in HPV-

associated HNSCC compared to HPV-independent HNSCC.

Interestingly, this observation was not detected in other

pathways, such as PD-1 and CTLA-4, and appears to be

specific to LAG-3, suggesting that HPV-associated HNSCC

may benefit significantly from LAG-3 blockade (Panda et al.,

2020). The current rationale for LAG-3 inhibitors is entirely

centered on blocking the LAG-3/MHC-II pathway. Notably,

Wang et al. introduced another ligand of LAG-3, Fibrinogen-

like protein 1 (FGL1), and suggested a potential new target in

cancer immunotherapy, the FGL1/LAG-3 pathway (Wang et al.,

2019). Blockade of the FGL1-LAG-3 interaction by monoclonal

antibodies stimulates tumor immunity in a receptor–ligand

interdependent manner.
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Deng et al. (2016) established a preclinical model of HNSCC

mice, which ultimately validated the efficacy of LAG-3 blockade

in vivo. By blocking LAG-3 through the infusion of anti-mouse

LAG-3 antibodies, the investigators observed an inhibition of

tumor progression in mice, along with a significant increase in

the antitumor response mediated by CD8+ T cells and a

consequent reduction in the number of immunosuppressive

cells, such as Tregs, and MDSCs, in the HNSCC mouse

model. In addition, preclinical studies by Mishra et al. (2016)

also suggested that there may be synergistic effects between LAG-

3 and the PD-1/PD-L1 pathway and that dual blockade of PD-1

and LAG-3 may enhance the antitumor effects. To date, LAG-3

inhibitors have been tested in phase I/IIa studies in patients with

recurrent melanoma, and effective results have been obtained

(Atkinson et al., 2020; Tawbi et al., 2022). Eftilagimod (IMP321)

and relatlimab (BMS-986016) are currently available inhibitors

against LAG-3. Clinical studies of eftilagimod for HNSCC are

underway. The TACTI-002 study combines eftilagimod with

pembrolizumab in R/M HNSCC to assess safety and efficacy,

with objective response rate (ORR) as the primary outcome

indicator, and is expected to be completed in May 2023. Two

clinical studies on relatlimab are also ongoing.

NCT04080804 will treat locally advanced HNSCC with

relatlimab adjuvant to nivolumab. Another phase II study,

NCT04326257, randomized patients to either the nivolumab +

relatlimab or nivolumab + ipilimunmab arm to assess the ORR of

both treatment regimens in patients with R/M HNSCC. It is

expected that the addition of LAG-3 inhibitors will bring further

survival benefits to HNSCC patients.

3.5 T cell immunoglobulin and ITIM
domain antibody

TIGIT exhibits high expression on tumor-infiltrating

lymphocytes (TILs) and mediates the suppression of effector

T cells and NK cells upon binding to their ligands CD155 and

CD112 (Harjunpää and Guillerey, 2020). The TIGIT inhibitor

tiragolumab is currently being used primarily in combination

with anti-PD-L1 drugs in clinical trials in HNSCC, with two

phase II studies (NCT03708224 and NCT04665843) underway.

The former will determine the effect of tiragolumab in

combination with atezolizumab on T-cell infiltration in

advanced HNSCC. The latter will assess the safety and

therapeutic efficacy of tiragolumab and atezolizumab in the

treatment of R/M PD-L1-positive HNSCC. In addition, phase

I clinical trials of various novel anti-TIGIT humanized

monoclonal antibodies in combination with anti-PD-1 agents

for the treatment of advanced solid tumors have been conducted,

including MK-7684 in combination with pembrolizumab

(NCT05007106), ASP8374 in combination with

pembrolizumab (NCT03260322) and BMS-986207 in

combination with nivolumab (NCT02913313).

3.6 Mucin domain-3 antibody

TIM-3 was shown to be coexpressed with PD-1 on the

surface of TILs. A preclinical study by Shayan et al. (2017)

observed compensatory upregulation of TIM-3 expression in a

murine HNSCC model treated with anti-PD-1. Moreover, Jie

et al. (2017) reported that simultaneous blockade of TIM-3 and

PD-1 during cetuximab treatment may improve the survival

benefit of HNSCC patients. A phase Ia/Ib study presented at

the 2019 ASCO-SITC Clinical Immuno-Oncology Symposium

reported good tolerability of anti-TIM-3 antibody (LY3321367)

monotherapy or in combination with anti-PD-1 antibody

(LY3300054) in advanced solid tumors, including HNSCC

(Harding et al., 2019). A phase I dose-escalation study

(NCT03708328) is ongoing to evaluate the safety and

preliminary antitumor activity of a PD-1/TIM-3 bispecific

antibody (RO7121661) in patients with advanced or

metastatic solid tumors, including HNSCC.

4 Costimulatory agonists for HNSCC

Despite the efficacy of ICBs, most HNSCC patients still

develop progressive disease necessitating additional treatment

options. One approach is the application of costimulatory

agonists, which promote T-cell activation, and the generation

of long-lived memory T cells. Common costimulatory agonists

include 4-1BB, OX40, CD40 and GITR agonists (Figure 4).

4.1 4-1BB (CD137) agonist

4-1BB (CD137) is a member of the tumor necrosis factor

receptor (TNFR) family, a costimulatory receptor expressed on

activated T cells, NK cells, and DC cells (Liao et al., 2019).

Activated by its ligand 4-1BBL, 4-1BB promotes the

differentiation of effector T cells and suppresses the function

of Tregs. In addition, activated 4-1BB can coordinate IL-15 and

IL-21 to drive NK-cell proliferation and enhance ADCC effects,

thus exerting antitumor immune effects (Vidard et al., 2019).

Vahle et al. (2016) developed a murine head and neck tumor

model and confirmed the antitumor effects of CD137 agonists by

performing fluorodeoxyglucose (FDG)-positron emission

tomography (PET)-CT and FDG-PET-MRI assessments.

Another study demonstrated that the use of CD137 agonists

in HNSCC patients promoted cetuximab-induced DC

maturation and enhanced the cross-presentation of HNSCC

antigens by DCs (Srivastava et al., 2017). Urelumab (BMS-

663513) and utomilumab (PF-05082566) are two immune-

activating antibodies against the 4-1BB target. The use of

urelumab alone has been shown to cause severe

hepatotoxicity, thought to be associated with doses

of >1 mg/kg (Segal et al., 2017). However, urelumab may
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enhance the efficacy of other monoclonal antibodies in patients

with advanced HNSCC, such as cetuximab (Srivastava et al.,

2017). Furthermore, a phase Ib study (NCT02179918) confirmed

the safety and clinical activity of utomilumab in combination

with pembrolizumab in the treatment of patients with advanced

solid tumors, including HNSCC (Tolcher et al., 2017). Therefore,

it can be speculated that when a 4-1BB agonist is used in

combination with other monoclonal antibodies, it may have

an enhanced antitumor effect in the treatment of HNSCC.

Additionally, hepatotoxicity could be attenuated by reducing

the 4-1BB agonist dose. More clinical studies are still needed

to support this hypothesis.

4.2 OX40 (CD134) agonist

OX40 (CD134) is one of the TNFRs and is present on T cells,

especially CD4+ T cells. When activated with its ligand OX40L,

OX40 enhances effector T cell-mediated killing of tumor cells

(Loick et al., 2022). OX40 levels on the surface of CD4+ T cells

were found to be significantly lower in patients with HNSCC and

more pronounced in advanced HNSCC (Baruah et al., 2012).

OX40 target-related drugs for the treatment of HNSCC are still in

early clinical trials. MEDI0562, an agonist of OX40, was safely

administered to patients with advanced solid tumors (47%

HNSCC) in a phase I dose-escalation study (NCT02318394)

at doses up to 10 mg/kg (Glisson et al., 2020). Another phase Ib

clinical trial (NCT02274155) tested a murine anti-human

OX40 agonist antibody (MEDI6469). In this trial, 17 patients

with locally advanced HNSCC received MEDI6469 prior to

surgery, and the results showed that the application of

OX40 agonist increased the activity of CD4+ and CD8+ T cells

in blood and tumors, while its safety was confirmed (Duhen et al.,

2021). In addition, it has been demonstrated that the antitumor

activity of OX40 agonist therapy is further enhanced when

combined with anti-PD-1, anti-CTLA-4, cytokines,

chemotherapy, or radiotherapy (Fu et al., 2020). These results

provide a new combination treatment option for patients with

HNSCC, and further clinical trials are still required to confirm

this strategy.

4.3 CD40 agonist

CD40 is a costimulatory receptor molecule expressed on the

surface of antigen presenting cells (APCs), monocytes, and

tumor cells. It exerts immunomodulatory effects through

binding to its ligand CD40-L (CD154). Sathawane et al.

(2013) found that CD40 expression gradually decreased as

HNSCC progressed from stage I to IV and was elevated again

when the tumor was surgically resected. This finding suggests

that the expression level of CD40 may be regulated by tumor

load. A recent study investigated a murine model of homologous

tongue cancer. The tumor was resected by partial glossectomy,

and CD40 agonist and/or PD-1 antagonist therapy was

administered postoperatively. Ultimately, the increased

survival rate in mice suggests that the combination of the two

is probably an effective postoperative adjuvant therapy (Ahn

et al., 2020). Labiano et al. (2021) developed a novel fibroblast

activation protein (FAP)-targeted CD40 agonist (FAP-CD40). In

this work, the investigators established a homologous HPV-

HNSCC murine model. They treated tumor-bearing mice with

FIGURE 4
Schematic diagram of costimulatory agonists for HNSCC.
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local hypofractionated radiotherapy (2 × 6 Gy) alone or in

combination with a systemic administration of the FAP-CD40

antibody. The results showed that combination therapy induces

durable and effective responses in 80% of tumor-bearing mice.

Another study by Monteiro de Oliveira Novaes et al. (2021)

reported that in a carcinogen-induced murine model of OSCC,

activation of the CD40 pathway, as well as PD-1/PD-L1 pathway

blockade, was able to prevent oral premalignant lesion (OPL)

progression into invasive OSCC. CD40 agonist antibodies

currently have limited application in the treatment of HNSCC

due to the side effects exhibited by systemic administration

(Stone et al., 2021). In the latest phase I study

(NCT02955251), Jason et al. evaluated ABBV-428, a

mesothelin-CD40 bispecific antibody that interacts with the

tumor antigen mesothelin, and achieved CD40 activation in

the tumor microenvironment, resulting in localized,

nonsystemic immune activation. In this study, 59 patients

with advanced solid tumors, including HNSCC, were treated

at doses ranging from 0.01 to 3.60 mg/kg. The results showed that

ABBV-428 monotherapy exerted an acceptable safety profile,

confirming that tumor-targeting bispecific antibodies can

improve the safety of CD40 agonists as a therapeutic

approach (Luke et al., 2021).

4.4 GITR agonist

Glucocorticoid-induced TNFR family-related gene (GITR)

is a new costimulatory molecule whose activation reduces the

recruitment of Tregs in the HNSCC TME and increases T cell

proliferation, thereby enhancing the antitumor effect (Buzzatti

et al., 2020). A preclinical animal model trial found that

simultaneous targeting of PD-1 and GITR synergistically

enhanced CD8+ T cell memory and antitumor function, and

these encouraging results may provide a new direction for the

clinical treatment of HNSCC (Wang et al., 2018). A phase I

study (NCT02437916) of AMG228, a stimulatory human

IgG1 monoclonal antibody conjugated to GITR, was

completed in 2018. Thirty patients with advanced solid

tumors (including 10 with HNSCC) were treated with

AMG228 monotherapy. AMG228 demonstrated a good

safety profile. Unfortunately, the investigators were unable to

observe reliable clinical effects and antitumor activity in the

trial and therefore were unable to initiate a phase two dose

expansion study (Tran et al., 2018). Clinical trials are ongoing

in the investigation of INCAGN01876 (another GITR agonist)

in the treatment of HNSCC. A completed phase I/II clinical

study (NCT03126110) combined INCAGN01876, nivolumab,

and ipilimumab in advanced or metastatic malignancies,

including HNSCC. Unfortunately, there were no positive

results to demonstrate the efficacy of INCAGN01876. An

ongoing clinical trial (NCT03088059) will treat R/M HNSCC

with INCAGN01876 in combination with anti-PD-1/anti-PD-

L1 antibody. In addition, INCAGN01876 is also being used in

combination in a phase Ib study (NCT04470024) of a

multivalent autophagosomal vaccine (DPV-001) for the

treatment of R/M HNSCC. The outcomes of these clinical

trials remain to be seen.

5 Antigenic vaccines for HNSCC

In cancer cells, many neoantigens are produced and

expressed by nonsynonymous gene mutations. Their lack of

expression in normal tissues and strong immunogenicity make

these neoantigens ideal targets for immunotherapy (Peng et al.,

2019). Antigenic vaccines are designed to activate the immune

response by increasing antigen-specific CD4+ and CD8+ T cells

after vaccination, ultimately mediating the regression of tumor

cells.

5.1 HPV-related antigenic vaccines for
HNSCC

The incidence of HPV-associated HNSCC has increased

dramatically over the last two decades, and HPV-associated

oncoproteins such as E6 and E7 are ideal targets for

therapeutic vaccines due to their consistency and uniqueness

(Gillison et al., 2000; Tan et al., 2018). HPV-related antigenic

vaccines are available in many forms, such as peptide and DNA

vaccines.

5.1.1 HPV-related peptide-based vaccines
Peptide-based vaccines are composed of amino acid

sequences containing epitopes that cause the immune system

to respond. When patients are vaccinated with synthetic tumor-

specific or tumor-associated peptides or combinations of

peptides, these peptides are presented on human leukocyte

antigen (HLA) molecules on the cell surface, inducing and

activating CD4+ and CD8+ T cells, resulting in powerful

therapeutic effects.

In an earlier phase I study, Dan et al. used a panel of peptide

immunomodulatory vaccines GL-0810 (targeting HPV16 E7)

and GL-0817 (targeting the melanoma-associated antigen A3,

MAGE-A3) to treat HPV16- and MAGE-A3-positive R/M

HNSCC patients. They were split into two groups, with nine

on GL-0810 and seven on GL-0817. Ultimately, 80% of the

HPV16 E7 cohort and 67% of the MAGE-A3 cohort

developed a significant antibody response to the vaccine.

Moreover, in patients with R/M HNSCC, GL-0810 and GL-

0817 were found to be well tolerated (Zandberg et al., 2015).

Researchers also recently evaluated the role of an optimized

nanoparticle-conjugated E7 long-peptide vaccine (NP-E7LP) in a

mouse model of HPV-associated HNSCC. Fifteen mice were

vaccinated with NP-E7LP prior to surgical resection of primary
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tumors. The results showed that NP-E7LP-vaccinated mice had

no postsurgical tumor recurrence (0/15), whereas the CpG and

PBS controls had a high recurrence rate (3/13 and 5/8,

respectively). The researchers concluded that combining

vaccination with tumor resection exposed residual tumor cells

to preexisting vaccine-induced T cells, preventing local tumor

recurrence. Patients with HPV-associated HNSCCmay expect to

benefit from future clinical trials combining E7 vaccination and

surgical resection (Domingos-Pereira et al., 2021).

Next, a multipeptide vaccine targeting both HPV16 E6

and/or E7 was tested. Multipeptide vaccines are expected to

provide better disease control by preventing antigen loss and

lowering the risk of immune escape. PDS0101 is a therapeutic

peptide vaccine against HPV16 E6/E7. Claire et al. reported that

monotherapy with PDS0101 produced HPV-specific T cells and

antitumor activity in mice bearing HPV-expressing mEER

oropharyngeal carcinoma. Additionally, maximum antitumor

effects were achieved when PDS0101 was combined with

bintrafusp alfa, a bifunctional fusion protein targeting TGF-β
and PD-L1, and NHS-IL12, an immune cytokine targeting tumors

and designed to deliver IL-12 to the TME (Smalley Rumfield et al.,

2020). A recent phase I/II study (NCT04287868) further expanded

the use of PDS0101 by testing a triple combination therapy of

PDS0101, bintrafusp alfa, and M9241 (a tumor-targeting

immunocytokine composed of IL-12 heterodimers fused to a

monoclonal antibody targeting free DNA in necrotic tumor

regions). Interim results of the trial were reported at the

2021 ASCO meeting: 14 patients with advanced HPV-positive

cancer were enrolled in the study (including 3 cases of

oropharyngeal cancer), and of these, 5/6 (83%) patients with

checkpoint-insensitive disease and 5/8 (63%) patients with

checkpoint-refractory disease had objective responses. Further

analysis of the clinical immune response is ongoing, and more

positive results are expected (Strauss et al., 2021).

In addition, there are peptide vaccines targeting HPV-

associated TAAs. The cyclin-dependent kinase inhibitor p16

(INK4a) is upregulated in all HPV-associated cancers. In a

phase I/IIa study by Miriam et al., 24 patients with advanced

HPV-associated cancer, including 6 with HNSCC, received

vaccination with the p16(INK4a)-derived peptide P16_37-63.

Fourteen of 20 patients had specific CD4+ T cells, five of

20 patients had specific CD8+ T cells, and 14 of 20 patients

had antibodies directed against the targeted protein. The results

demonstrated that the p16 (INK4a) peptide vaccine induced

cellular and humoral immune responses and had an acceptable

safety profile (Reuschenbach et al., 2016).

5.1.2 HPV-related DNA vaccines
DNA vaccines are made from bacterial plasmids that can

integrate multiple genes to encode multiple tumor antigens,

allowing for more precise and efficient immune responses.

MEDI0457 is a DNA vaccine that targets HPV16/18 E6/

E7 with IL 12-encoding plasmids. Charu et al. reported positive

results in a phase Ib/II clinical trial involving 22 patients with

HPV-associated locally advanced HNSCC who received

MEDI0457, with 18 of the 21 evaluable patients harboring

elevated levels of antigen-specific T cells. All five of the post

immunotherapy tumor samples had more perforin-expressing

immune infiltrates, with four of them having higher CD8/

Foxp3 ratios (Aggarwal et al., 2019). Another phase Ib/IIa

study (NCT03162224) examined the safety and efficacy of

MEDI0457 in combination with anti-PD-L1 durvalumab for

HPV+ R/M HNSCC. The results showed an ORR of 22.2%

with three CRs and three PRs. There was also an increase in

tumor-infiltrating CD8+ T cells and HPV-specific T cells in the

peripheral blood (Aggarwal et al., 2020). In addition, Chandra

et al. (2021) have developed an alternative therapeutic HPVDNA

vaccine (AMV002). In the phase I dose-escalation study

(ACTRN12618000140257), AMV002 was used to assess the

tolerability and immunogenicity in the treatment of HPV-

associated HNSCC. The escalating AMV002 dose was

administered intradermally (ID) to the forearm (from

0.25 mg/dose to 4 mg/dose). The final 12 subjects showed

good tolerability at all dose levels, and 83.3% displayed

HPV16 E6/E7-specific T cell immune responses after

vaccination.

Overall, the use of therapeutic vaccines in HPV-associated

HNSCC is currently limited to animal studies and phase I/II

clinical trials. Both peptide and DNA vaccines have been shown

to have promising application potential. However, no relevant

phase III studies are currently available.

5.2 DC-based vaccines

Dendritic cells (DCs) are the most important APCs, and DC-

based vaccines play an important role in antitumor biotherapy

(Dong et al., 2018a; Liu et al., 2018; Chen et al., 2019). The safety

of DC-based immunotherapy has been well documented in many

phase I and II clinical trials. The side effects seen with the

majority of DC vaccination protocols were minimal and self-

limiting. Current approaches for DC-based vaccination rely

primarily on antigen loading on in vitro-generated DCs

derived from monocytes or CD34+ cells, activating them with

various TLR ligands and cytokine combinations (Dong et al.,

2018b). Activated DCs could be injected back into HNSCC

patients to promote a cytotoxic T cell response (Figure 5).

DC vaccination in HNSCC patients aims to induce or

augment an effective antitumor immune response against

HNSCC tumor antigens. Ex vivo culture of DCs involves

natural DCs from precursor cells, which are obtained from

peripheral blood. Immature DCs can be obtained and induced

to mature DCs. Subsequently, mDCs are administered to

HNSCC patients.

TP53 encodes p53, which is the most common genomically

altered gene in HPV-negative tumors and a valuable target for
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HPV-negative HNSCC vaccines (Chung et al., 2015). A vaccine

based on autologous monocyte-derived DCs loaded with selected

wild-type p53 peptides was reported by Patrick et al. in a phase I

clinical trial (NCT00798655) published in 2014 (Schuler et al.,

2014). In this trial, 69% of HNSCC patients (11 out of 16) had

increased levels of p53-specific T cells after vaccination. In

addition, Treg levels continued to decrease after vaccination in

all patients. The two-year disease-free survival rate was 88%.

Apart from this, no II-IV adverse events were observed in any of

the subjects. The results demonstrated the feasibility of a p53-

specific adjuvant vaccine in the treatment of HNSCC. The

authors also suggested that DCs in HNSCC patients require

stronger maturation stimuli to reverse immunosuppression and

improve vaccine efficacy (Schuler et al., 2014).

In 2016, Theresa et al. described a DC vaccine made from

DCs derived from monocytes loaded with apoptotic tumor cells

(ATCs). Although the study was suspended because not enough

subjects were recruited, it demonstrated potential safety and

immunogenicity in all four subjects receiving the vaccination

for stage III/IV HNSCC. Together with the low sensitivity of the

DC vaccine production technique, this provides an optimistic

direction for the development of a clinical HNSCC vaccine

(Whiteside et al., 2016). A recent I/II pilot study (UMIN

000027279) described another vaccination with Wilms’ tumor

1 (WT1) peptide-loaded DCs. When combined with

conventional chemotherapy in 11 patients with R/M HNSCC,

no serious adverse events associated with vaccination were

observed. The median progression-free survival and overall

survival were 6.4 and 12.1 months, respectively. It was also

observed that DC vaccination enhanced WT1-specific

immunity (Ogasawara et al., 2019).

5.3 Tumor-associated antigen vaccines

Several vaccines based on different tumor antigens have been

developed. The first is cancer vaccines against TAAs, a type of

vaccine that provides off-the-shelf treatment for most patients

with HPV-negative HNSCC. The most recent study involved

DNA-based vaccines (pDom-M/F) targeting MAGED4B and

FJX1 (two TAAs), which were expressed at higher levels in

HNSCC tumor samples than in normal tissue. Additionally,

MAGED4B- and FJX1-specific T cells can be detected at high

frequencies in HNSCC patients. pDom-M/F is made from full-

length sequences of MAGED4B or FJX1 linked to 3′Dom
sequences and inserted into pcDNA3 plasmids. The results in

FIGURE 5
Schematic diagram of applying DC-based vaccination in HNSCC.
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preclinical models were promising, with inoculation of pDom-

M/F increasing T-cell infiltration and mediating delayed tumor

growth in murine tumor models. Furthermore, when prom-M/F

was combined with anti-PD-1 treatment, it demonstrated

excellent antitumor effects, with complete tumor suppression

achieved in six (75%) of the eight mice (75%) treated with the

combination (Wang et al., 2021c).

Germline antigens are another target of TAAs. In an early

phase II clinical trial (CTR-8379), Yoshihiro et al. innovatively

used peptides derived from cancerous testicular antigens,

including lymphocyte antigen six complex locus K (LY6K),

cell division cycle associated gene 1 (CDCA1), and insulin-like

growth factor-II mRNA-binding protein 3 (IMP3), to synthesize

a peptide vaccine for the treatment of patients with advanced

HNSCC. Based on good tolerability, 37 vaccinated subjects

demonstrated significantly longer median survival time than

18 negative controls (MST: 4.9 months vs. 3.5 months). In the

vaccination group, LY6K-, CDCA1-and IMP3-specific CTL

responses were identified in 85.7%, 64.3%, and 42.9% of

patients, respectively. At the same time, patients exhibiting a

CTL response against three and two peptides demonstrated an

extended OS (Yoshitake et al., 2015).

There have also been advances in vaccines targeting other

TSAs. Mucin 1 (MUC1) is overexpressed in most T2-T3

HNSCCs and lacks complete glycosylation in HNSCC

compared to normal tissue (Gao et al., 2020; Liao et al., 2021),

making it another promising target for HNSCC. MUC1 is

another promising target for HNSCC. In an interim analysis

of a phase I trial (NCT02544880), Donald et al. reported an

MUC1 vaccine with poly ICLC as an adjuvant. In combination

with tadalafil, a PDE5 inhibitor, it was shown to be well tolerated

in patients with recurrent HNSCC. Moreover, tadalafil and the

MUC1 vaccine reduced both MDSCs and Tregs in peripheral

blood and tumor sites, reversing immune rejection (Weed et al.,

2019).

5.4 Personalized antigen vaccines

A recent animal study investigated a class of tumor

membrane-based vaccines using tumors grown

subcutaneously in mice to prepare tumor membrane vesicles

(TMVs). These TMVs bound to immunoaffinity-purified

mouse GPI-B7-1 and GPI-IL-12 molecules (GPI-ISMs) via

protein transfer to produce the vaccine. In a murine model

of HNSCC, the TMV vaccine induced an antitumor immune-

memory response and showed antitumor synergy in

combination with an anti-PD-1 monoclonal antibody. The

findings suggest the prospect of a personalized therapeutic

vaccine for HNSCC. The application of surgically removed

tumor tissue to prepare TMV for the production of a

personalized vaccine for individual patients in future clinical

practice (Bommireddy et al., 2020).

At the recent 2021 ASCO meeting, MVX-ONCO-1, a new

personalized vaccine, was announced. This vaccine is made from

irradiated autologous tumor cells combined with genetically

engineered allogeneic cells. In two clinical trials

(NCT02193503 and NCT02999646), MVX-ONCO-1 was used

to evaluate the treatment of 11 patients with locally advanced/

metastatic HNSCC who had relapsed after receiving first-line

systemic therapy. All patients received at least five doses of MVX-

ONCO-1 over 8 weeks. Ten patients who had been followed up

for at least 6 months were analyzed. All experienced no

treatment-related adverse events (AEs) greater than grade two.

On this basis, eight (80%) patients experienced varying degrees of

tumor control, including four with stable disease (SD), two with

partial response (PR), and two with complete response (CR), and

the two patients who demonstrated CR did not continue with

anticancer therapy for 24 and 6 months. The final results are

exciting, and the clinical trial of MVX-ONCO-1 reveals the

future promise of personalized vaccines in the treatment of

HNSCC (Fernandez et al., 2021).

6 Oncolytic viral therapy

Oncolytic viral therapy is a revolutionary new therapy that

uses attenuated strains of various viruses to directly kill tumor

cells while inducing antitumor immune effects in the body

(Goradel et al., 2021). Oncolytic viruses have a multimodal

mechanism of action with both direct and indirect toxic

effects on tumor cells, including autolysis, immune cell

homing, destruction of vascular supply and potentiation of

other adjunctive anticancer therapies (Figure 6). Talimogene

laherparepvec (T-VEC) is a herpes simplex virus (HSV)-based

oncolytic virus that was approved for clinical use by the US Food

and Drug Administration (FDA) in 2015 after showing

promising therapeutic results in phase I, II, and III clinical

trials for the treatment of advanced melanoma (Andtbacka

et al., 2015). A recent Ib study (NCT02626000) in R/M

HNSCC used T-VEC in combination with pembrolizumab in

36 patients with R/M HNSCC, and the combination treatment

was safely tolerated in the subjects. However, unfortunately, the

addition of T-VEC did not improve efficacy compared to

pembrolizumab monotherapy (Harrington et al., 2020).

Intratumoral inoculation of an oncolytic virus with

transfection, oncolytic virus induced tumor autolysis, direct

cell lysis of HNSCC tumor and immune cell recruitment, then

result in tumor killing. Oncorine (H101) is an adenovirus-based

tumor lysis virus. In an earlier phase III clinical trial by Xia et al.

(2004), H101 intratumor injection was shown to be safe and

effective in patients with HNSCC. Recent studies have revealed

high expression of the oncogene SNHG1 in OSCC. More

importantly, Wang et al. (2020) also found that H101 could

exert better antitumor effects in OSCC with high

SNHG1 expression. Onyx-015 is an adenovirus with the E1B
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(55 kDa) gene deleted. Several phase II clinical trials involving

Onyx-015 in the therapy of HNSCC have yielded promising

results (Lamont et al., 2000; Nemunaitis et al., 2000; Nemunaitis

et al., 2001). However, phase III trials are still needed for

confirmation. Lysozyme measles virus is also a potential

treatment for HNSCC. A phase I trial (NCT01846091),

currently underway, is designed to evaluate the safety and

immunological effects of MV-NIS (an oncolytic measles virus

encoding thyroidal sodium iodide symporter) in R/M HNSCC.

Other naturally occurring lytic viruses, such as Newcastle disease

virus (NDV), have been shown to have a potent lytic effect on

HNSCC in early studies. However, further confirmations in

clinical trials are needed (Li et al., 2011).

The current application of oncolytic viruses in the treatment

of HNSCC faces two challenges. The first is to explore optimal

treatment regimens for immunotherapeutic agents used in

combination with oncolytic viruses. The second is to improve

the delivery of the virus to the tumor and to mediate the

antitumor effects precisely and effectively (Mondal et al., 2020).

7 Adoptive T cell therapy

Adoptive T cell therapy (ACT) represents a personalized

oncology treatment option. The principle is to exploit the

specificity and antitumor effects of T cells by expanding

tumor-specific T cells in vitro and finally transfusing them

back to the patient to kill the tumor cells (Figure 7). To

precisely target antigens expressed on tumors without

damaging normal tissue cells, endogenous tumor-

infiltrating lymphocytes (TILs) can be obtained and

expanded from autologous tumor resection specimens or

biopsies, or peripheral blood T cells can be genetically

engineered in vitro with antitumor T cell receptors (TCRs)

or chimeric antigen receptors (CARs) (Rosenberg and

Restifo, 2015). ACT with TIL has been shown to exhibit

curative cancer regression in metastatic melanoma

(Rosenberg and Restifo, 2015). The application of ACT in

HNSCC has also progressed.

An early study applied ACT to a murine HNSCC model

and observed that ACT synergistically enhanced IL-2

cytokine gene therapy and mediated tumor regression

(Ambade and Mulherkar, 2008). Another study analyzed

43 patients with HNSCC who received chemotherapy after

radical tumor surgery, 21 of whom were included in the

experimental group treated with ACT achieved a higher

survival benefit (Jiang et al., 2015). Wei et al. (2021)

isolated and cultured TILs from fresh tumor tissue of eight

HNSCC patients and demonstrated the feasibility of isolating

neoantigen-specific T cells from TILs. Moreover, researchers

FIGURE 6
Immunomodulatory mechanisms of oncolytic viral therapy.

Frontiers in Cell and Developmental Biology frontiersin.org14

Yu et al. 10.3389/fcell.2022.941750

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.941750


determined their TCR sequences and constructed TCR-

engineered T cells, which eventually confirmed their

protumor regression ability in a mouse model. Several

clinical studies related to HNSCC are currently ongoing.

NCT03083873 is evaluating the efficacy of autologous TILs

(LN-145/LN-145-S1) in R/M HNSCC. NCT03645928,

another phase II trial, is still in the recruitment phase

aimed at treating patients with solid tumors, including

HNSCC, with autologous TIL [LN144 (Lifileucel)/LN-145/

LN-145-S1] in combination with or without a checkpoint

inhibitor. Research related to TCR-engineered T cells in

HNSCC is also in progress (NCT03247309). In addition,

three clinical trials, NCT05117138, NCT03740256, and

NCT05239143, will evaluate the safety and efficacy of

AMT-116 CAR-T cells, HER2 chimeric antigen receptor-

specific cytotoxic T lymphocytes (HER2-specific CAR

T cells), and P-MUC1C-ALLO1 CAR-T cells, respectively,

in the treatment of HNSCC. In the future, an increasing

number of clinical trials are needed.

Although TILs are usually safe, there are potential clinical

risks such as on-target off-tumor toxicity, off-target reactivity,

and cytokine-release syndrome (Casucci et al., 2015; Rapoport

et al., 2015). Therefore, more attention should be given to the

safety of its clinical application to avoid complications.

8 Epidermal growth factor receptor-
targeted therapies for HNSCC

Epidermal growth factor receptor (EGFR) is a prototypical

receptor tyrosine kinase that is overexpressed in HNSCC and

affects the proliferation, apoptosis, angiogenesis, and metastasis of

tumor cells (Nair et al., 2022). Many studies have shown that the

overexpression of EGFR in HNSCC directly correlates with worse

outcomes (Temam et al., 2007; Agulnik, 2012; Bossi and Platini,

2017). To date, EGFR blockades are attractive targets in HNSCC

patients and anti-EGFR strategies such as IgG-based monoclonal

antibodies (mAbs), have shown acceptable clinical benefits.

EGFR-targeted mAbs can induce ADCC through Fc receptor-

bearing immune cells (Goel et al., 2022). Commonly used mAbs

include the following: cetuximab, panitumumab, zalutumumab,

and nimotuzumab. Cetuximab is a chimeric monoclonal antibody

that binds to domain III of the extracellular region of EGFR and

results in apoptosis induction and cancer proliferation and

angiogenesis inhibition (Matta and Ralhan, 2009). Cetuximab

can inhibit the phosphorylation of EGFR and prevent signals

from being transmitted to the cell (Huang and Harari, 2000). In

addition, cetuximab can activate NK cells to induce ADCC (Baysal

et al., 2021). Panitumumab is a fully human anti-EGFR mAb

(Vermorken et al., 2013). Several ongoing phase II studies are

FIGURE 7
Preparation of ACT to treat HNSCC. (A) Adoptive transfer of antitumor T cells isolated from within the HNSCC tumor of the patient. (B) Tumor-
infiltrating T cells (TILs) are extracted from surgically resected tumor samples and then expanded in vitro, followed by reinfusion intoHNSCCpatients.
(C) T cells from patient peripheral blood are isolated and expanded in culture and genetically modified to express either a T cell receptor (TCR) or a
chimeric antigen receptor (CAR). (D) The modified T cell confers the ability to specifically recognize and killing HNSCC tumor cells.
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currently evaluating panitumumab in locally advanced HNSCC

(NCT00547157, NCT00500760, and NCT00798655) or

metastatic/recurrent HNSCC (NCT00454779). An ongoing

phase III trial is evaluating treatments (panitumumab +

radiotherapy vs. cisplatin + radiotherapy) for locally advanced

HNSCC (NCT00820248). Zalutumumab is a fully human high-

affinity anti-EGFR mAb for advanced, metastatic, and/or

unresectable HNSCC (Bleeker et al., 2004). In a phase I/II

study in 28 patients with metastatic/recurrent HNSCC, patients

treated with zalutumumab were associated with an ORR of 7.1%

(Bastholt et al., 2007). Nimotuzumab, as a humanized anti-EGFR

mAb, has been granted approval in HNSCC. In a phase I/II trial,

nimotuzumab plus radiotherapy was evaluated in 24 patients with

locally advanced HNSCC (Crombet et al., 2004). The ORR was

81%, and the three-year OS rate was 66.7% with 200–400 mg

nimotuzumab. A double-blind trial involving 17 patients with

locally advanced HNSCC was conducted to evaluate the

combination of nimotuzumab and concurrent chemotherapy

(Rodríguez et al., 2010). Complete ORRs were 59.5% for

patients receiving nimotuzumab and radiotherapy versus 34.2%

of patients receiving radiotherapy alone.

Recently, there has been significant interest in assessing

treatment efficacy with dual inhibition. EGFR inhibition has a

large impact on the TME through activation of ADCC via NK

cells, promoting cross-talk between NK cells and DCs, and

priming CTLs (Ferris et al., 2018b). However, these immune

related mechanisms lead to negative feedback loops which

may limit the efficacy of anti-EGFR mAbs. For example,

cetuximab-induced ADCC can stimulate IFN-γ secretion

from NK cells, improving NK and DC crosstalk, but it also

induces PD-L1 expression and therefore inhibits active T and

NK cells, which assists tumor immune escape of HNSCC

(Bauman and Ferris, 2014). Thus, simultaneous application

of cetuximab and immune checkpoint inhibitors may have

synergistic effects to improve patient outcomes. It is worth

noting that NK-cell immunity is important for HNSCC

immunotherapy and depends on the balance of the

interaction of activating and inhibitory receptors on their

surface (Carotta, 2016; Bunting et al., 2022). Tumor cells

usually decrease the expression of MHC-I to evade T-cell

recognition of tumor antigens, and the applicability of T-

cell-based immunotherapies needs to gain neoantigens for the

induction of adequate responses. By comparison, NK cells can

recognize tumor cells independent of their MHC status and

require no presentation of neoantigens. Moreover, NK-cell

responses can further shape the TME toward activation of the

adaptive immunity. Therefore, NK-cell-based

immunotherapy combined with anti-EGFR mAbs

reestablishes functional NK-cell responses, which can

generate more durable antitumor responses.

9 Conclusion and outlook

In this paradigm shift in the treatment of HNSCC, the

therapeutic potential of immunotherapy is beginning to be

recognized in clinical care, but more attention and research

are still needed:

(1) Although HNSCC is generally characterized by a high tumor

mutational burden, HNSCC is an “immune desert” tumor

that can hijack multiple parts of the tumor immunity cycle to

evade immune recognition and suppress immune system

activation. How to overcome immune escape to maximize

HNSCC treatment is an important issue.

(2) The effectiveness of single immunotherapy is limited, and

the combination of multiple immunotherapy strategies

should be considered. Novel combinations of

immunotherapy strategies are critical for improving

patient response and combating immune resistance that

may occur during treatment. The simultaneous use of

multiple immune-targeted agents as a therapeutic strategy

has shown promise. Nowadays, identifying appropriate

regimens with minimal toxicity and durable responses is

the goal of immunotherapy clinical trials. In addition, the

combination with conventional radiotherapy and

chemotherapy has good prospects. For example,

chemotherapy can trigger ICD, which has a synergistic

effect with immunotherapy.

(3) The biosafety of immunotherapy requires attention. The

toxicities associated with immunotherapy differ from

those associated with traditional systemic therapy. Many

of these side effects are autoimmune compared to renal

failure and anemia, which are seen with standard

cytotoxic therapy. Once autoimmune rejection occurs,

more serious consequences can occur. Therefore, more

preclinical studies are needed to ensure the safety of

immunotherapy.

(4) Since few studies have attempted to investigate whether

immunotherapy is safe and effective in treating rare

subclasses of HNSCC, more evidence is needed to confirm

whether patients with these rare subclasses should be treated

with immunotherapy.

(5) Vigilant patient evaluation, monitoring, and management

strategies are crucial when administering immunotherapies.

There are also many management considerations, including

biomarker testing prior to immunotherapy administration,

when to halt or delay treatment in the event of an immune-

related adverse event, and for how long to continue

treatment. In addition, the potential quality of life issues

pertaining to treating HNSCC with immunotherapies need

to be considered.
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