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We describe a case of limb-threatening osteomyelitis and met-
alware infection with carbapenemase-producing extensively 
drug-resistant Pseudomonas aeruginosa successfully cured with 
aggressive surgical debridement and combined intravenous 
fosfomycin and colistin. Real-time therapeutic drug monitoring 
was used to maximize probability of efficacy and minimize po-
tential for toxicity.
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CASE

A previously fit and active 75-year-old female presented to 
the Austin Hospital, Melbourne, Australia, with a discharging 
right ankle wound at the site of a previous internal fixation. 
Her medical history included osteoporosis and hypertension. 
The internal fixation was a result of an open right trimalleolar 
fracture sustained after a mechanical fall while holidaying at 
Victoria Falls in Zambia 6 months earlier. She was transferred 
to a tertiary hospital in Johannesburg, South Africa, where she 
underwent a right ankle open reduction with internal fixation 

and lateral external fixation. One month later, she was medi-
cally evacuated to a private hospital in Melbourne.

On admission to the private hospital, she underwent a rectal 
screening swab for multidrug-resistant (MDR) organisms, a 
routine practice for overseas medical repatriations, which iden-
tified a carbapenemase-producing Pseudomonas aeruginosa. 
A  small wound defect persisted over her right medial ankle, 
managed with a split graft. Subsequently, a wound swab of 
the right ankle graft site was also positive for carbapenemase-
producing P.  aeruginosa; however, there was no evidence of 
clinical infection and she received no antibiotics at this time. 
She underwent rehabilitation, made an excellent recovery, and 
was discharged without gait aids.

Six months after her initial injury, she presented to our hos-
pital outpatient clinic with 3 weeks of right ankle pain and a 
small sinus tract over the right ankle lateral malleolus external 
fixation site. She had no systemic symptoms. Swabs from the 
right ankle demonstrated the same carbapenemase-producing 
extensively drug-resistant (XDR) [1] P.  aeruginosa identi-
fied previously. The strain was resistant to amino-penicillins, 
third- and fourth-generation cephalosporins, carbapenems, 
aminoglycosides, and fluoroquinolones; additional drug sus-
ceptibility testing was undertaken for ceftolozane-tazobactam, 
aztreonam, tigecycline, fosfomycin, and colistin (Table 1; [2]). 
Cefiderocol was not available in Australia at the time.

Whole-genome sequencing (WGS) was performed on the 
right ankle swab using methods previously described [3]. 
Briefly, primary specimen cultures were subcultured onto horse 
blood agar and incubated overnight at 37°C. Genomic DNA 
was extracted from a single colony using a QIASymphony DSP 
DNA Mini Kit (Qiagen) according to the manufacturer’s in-
structions, and WGS performed on an Illumina NextSeq plat-
form to generate 150-bp paired-end reads. Raw sequencing 
reads were trimmed to clip Nextera adapters and low-quality 
sequence using Trimmomatic, version 0.38 [4], and assembled 
de novo into draft genome sequences using Shovill, version 1.0 
[5]. The multilocus sequence type and presence of antimicrobial 
resistance genes were determined in silico using BLAST-based 
tools [6, 7].

The isolate was ST-111 P. aeruginosa, with the genome con-
firmed to have a blaVIM-2 metallo-beta-lactamase (MBL) gene. 
In addition, the genome was found to have a blaOXA-395 
beta-lactamase gene, which is an OXA-50-like gene found in 
many P.  aeruginosa isolates and which can result in elevated 
meropenem minimum inhibitory concentration (MIC) but is 
regulated by other genes [8]. A  chromosomal fosA gene was 
also noted, known to be associated with fosfomycin resistance 
[9]. On further analysis, the fosA gene was truncated with a 
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premature stop codon inserted at codon 110, which would have 
led to a nonfunctional FosA protein.

The patient was admitted for management of the ankle infec-
tion, and initial laboratory results demonstrated the following: 
hemoglobin 127 g/L, white cell count 8.1 × 109/L, erythrocyte 
sedimentation rate 44  mm/h, C-reactive protein 62.3  mg/L, 
sodium 141  mmol/L, and potassium 4.3  mmol/L. Treatment 
commenced with aggressive surgical intervention, including 
3 surgical debridements, removal of all metalware, and place-
ment of a vacuum-assisted closure (VAC) device. MBL blaVIM-2 
P.  aeruginosa was isolated from tissue, bone, and metalware 
specimens from the initial surgery. Empiric antibiotic therapy 
was initiated after metalware removal; at the time, the patient’s 
serum creatinine was 79  µmol/L (creatinine clearance [CrCl] 
by Cockcroft-Gault 60 mL/min). An intravenous loading dose 
(225 mg of colistin base activity, based on ideal body weight) 
followed by 120 mg every 12 hours [10, 11] was administered, 
in combination with empiric piperacillin-tazobactam 3-hour 
extended infusion of 4.5  g every 6 hours and oral rifampicin 
600 mg every 12 hours for synergy (described in in vitro studies 
with colistin and rifampicin) [12, 13]. Aztreonam was con-
sidered; however, given that the MIC interpretation was in-
termediate and therapeutic drug monitoring (TDM) was not 
possible, there was concern about inadequate tissue penetration 
at the site of infection.

When fosfomycin MIC results were available 4  days later, 
piperacillin-tazobactam and rifampicin were ceased and 
fosfomycin was commenced in addition to colistin for de-
finitive treatment. This was initially administered 3  g orally 
every 24 hours for 4  days, and when intravenous fosfomycin 
became available, administration was changed to intravenous 
fosfomycin [9] 4 g infused over 60 minutes every 6 hours (total 
daily dose 16  g). One month later, fosfomycin dosing was 

changed to a continuous infusion of 8 g every 12 hours to facil-
itate outpatient parenteral antibiotic therapy. The total duration 
of intravenous fosfomycin and colistin treatment was 12 weeks.

The Clinical & Laboratory Standards Institute (CLSI) and 
European Committee on Antimicrobial Susceptibility Testing 
(EUCAST) breakpoint for colistin is ≤2 mg/L [2, 14]. TDM of 
plasma colistin concentrations was undertaken throughout the 
treatment course (Figure  1), as recommended and described 
[10, 11, 15]. Dose reduction of colistin was required due to renal 
dysfunction, and plasma colistin concentrations remained at or 
above the recommended target plasma colistin average steady-
state concentration of 2 mg/L [10, 11, 16].

There are no CLSI or EUCAST breakpoint criteria to guide 
fosfomycin use to treat P. aeruginosa infections [2, 14]. Given 
the wide dose range of intravenous fosfomycin both recom-
mended by the manufacturer [17] and in clinical practice [18], 
TDM of plasma fosfomycin levels was performed. There have 
been no descriptions of intravenous fosfomycin TDM to date. 
We used the description of a previous exploratory study of oral 
fosfomycin TDM at our institution [19] and our institutional 
experience through development of the fosfomycin assay to de-
termine sampling intervals. During the oral and intravenous 
intermittent phases of treatment, fosfomycin trough levels (30 
minutes predose) were obtained every 3–4  days, and a single 
peak level was measured to establish the upper levels of plasma 
concentration (Figure 1). Fosfomycin concentrations remained 
substantially above the MIC, up to ~60-fold higher, during both 
intermittent and continuous modes of intravenous dosing, with 
no adverse effects noted.

During the index admission, the patient also underwent 
change of the VAC device, a muscle flap repair to close the 
wound defect, and evacuation of a wound hematoma in addi-
tion to the medical therapy described. Progress of hematologic 
and biochemical parameters in relation to antibiotic therapy 
and surgical procedures is shown in Figure 2. Two months after 
antibiotic treatment was ceased, the patient presented with 
worsening ankle pain. Imaging demonstrated severe degener-
ative changes of the ankle joint. Bone biopsies taken for culture 
did not isolate any pathogens. Given the aggressive surgical de-
bridement and serum concentrations of colistin and fosfomycin 
during treatment, the etiology of the patient’s pain and imaging 
changes were thought mechanical rather than infective, and 
5  months later she underwent fusion of the ankle joint with 
metalware insertion. Intraoperative bone and tissue biopsies 
were also negative. She now walks unassisted.

Renal impairment was sustained during colistin treatment, 
with serum creatinine rising to 114  µmol/L (CrCl 41  mL/
min) on day 49 of admission (Figure 2); after dose reduction 
of colistin, her renal function improved, with a serum creati-
nine of 95 µmol/L (CrCl 49 mL/min) at completion of antibiotic 
therapy. Seven months after colistin therapy was completed, 
her serum creatinine essentially returned to baseline (serum 

Table 1. MICs of 14 Antibiotics for the Patient’s Pseudomonas aeruginosa 
Isolate Using CLSI Breakpoints [2]

Antimicrobial MIC, µg/mL Interpretation Susceptibility Method

Ceftazidime 32 Resistant Vitek2

Cefepime 32 Resistant Vitek2

Piperacillin-tazobactam 32 Intermediate Vitek2

Ticarcillin-clavulanate ≥128 Resistant Vitek2

Amikacin ≥64 Resistant Vitek2

Gentamicin 8 Intermediate Vitek2

Tobramycin >16 Resistant Vitek2

Ciprofloxacin ≥4 Resistant Vitek2

Meropenem ≥64 Resistant Vitek2 and Etest

Ceftolozane-tazobactam ≥256 Resistant Etest

Aztreonam 12 Intermediate Etest

Tigecycline 64 No break point Etest

Fosfomycin 4 No break point Agar dilution

Colistin 2 Susceptible Broth microdilution
Abbreviations: CLSI, Clinical & Laboratory Standards Institute; MIC, minimum inhibitory 
concentration.
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creatinine 89 µmol/L, CrCl 52 mL/min). Since treatment com-
pletion, the patient has not had clinical or microbiological re-
lapse of infection.

DISCUSSION

This case of limb-threatening osteomyelitis and metalware in-
fection with carbapenemase-producing XDR P.  aeruginosa 
was successfully cured with aggressive surgical debridement 
and combined intravenous fosfomycin and colistin, assisted 
by knowledge of the pathogen genotype and real-time TDM 
to maximize probability of efficacy and minimize potential for 
toxicity.

Fosfomycin has been used to treat MDR and XDR P. aeruginosa, 
largely in pulmonary infections in critically ill patients [20–22]; 
however, there have been some descriptions of success in treat-
ment of extrapulmonary infections [23]. Fosfomycin was used 
in this case for 3 reasons. First, it was chosen due to the low MIC 

and therefore high likelihood of achieving tissue concentrations 
above the MIC. In spite of the presence of the fosA gene, there is 
known dissociation between the presence of fosA and the MIC 
[24]. Genomic analysis suggested that the fosA gene may be 
truncated, potentially explaining the phenotypically susceptible 
isolate. To date, no studies have examined the correlation be-
tween the presence of fosA gene, the resistance phenotype, and 
clinical outcomes for XDR P. aeruginosa. Second, fosfomycin is 
known to have excellent bone penetration [25, 26], and mono-
therapy has previously achieved a cure rate of 78% of patients 
with osteomyelitis [27]. Third, preclinical studies have dem-
onstrated synergy of a combination of fosfomycin and colistin 
against gram-negative bacteria, including carbapenem-resistant 
P. aeruginosa [9, 28–31]. Published clinical outcomes of combi-
nation therapy with colistin and fosfomycin are rare; however, 
there is evidence that this combination therapy results in cure 
in MDR and XDR P. aeruginosa pneumonia [20, 23]. Clinical 
failure of monotherapy with fosfomycin against P.  aeruginosa 
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isolates deemed susceptible based on the MIC has been noted, 
and reservations have been expressed concerning the use of 
fosfomycin alone [9, 20, 21, 32, 33].

We previously reported on the use of oral fosfomycin in pros-
tatitis treatment, assisted by measurements of plasma fosfomycin 
concentration [19]. In the current case, intermittent intravenous 
bolus dosing and continuous infusion of fosfomycin (16 g per 
day) achieved plasma concentrations of ~80–250 mg/L, which 
is ~20–60 times the MIC (Figure  1). Based upon the plasma 
concentrations and previous studies demonstrating a bone-to-
plasma concentration ratio of fosfomycin ~0.2 [34], the bone 
concentration of fosfomycin in the current patient may have 
been ~16–50  mg/L across the period of intravenous therapy. 
While these projected bone concentrations are in excess of the 
MIC of the infecting pathogen, care is needed in use of concen-
trations of drugs in bone due to the heterogeneous nature of the 
bone matrix [35].

Against P.  aeruginosa in static concentration time-kill 
studies, fosfomycin demonstrated time-dependent killing 
[32], while in a dynamic in vitro model simulating phar-
macokinetic profiles that occur in patients, concentration-
dependent killing was observed and the area under the 

concentration-time curve to MIC ratio (AUC/MIC) was the 
most predictive pharmacokinetic/pharmacodynamic index 
[33]. Intermittent short-term infusions and continuous in-
fusion, both of which were used in the present case, are ap-
propriate modes of administration; however, administration 
by continuous infusion is more convenient in the outpatient 
setting. In the present patient in whom the drug was admin-
istered over almost 3  months, no serious adverse effects at-
tributable to fosfomycin were observed, in keeping with the 
reported good safety profile of this agent [18, 23]. Previous 
studies have noted gastrointestinal disorders and hypoka-
lemia to be the most common adverse events associated with 
fosfomycin [18, 36], the latter thought to be secondary to in-
creased loss of potassium in the distal renal tubules secondary 
to intravenous fosfomycin. Hypokalemia has been observed 
to be more common with short intravenous infusions [36], a 
feature we did not observe in our patient.

There is an emerging role for fosfomycin use in combination 
therapy for MDR and XDR gram-negative infections due to its 
excellent plasma drug concentrations, good safety profile, and 
synergistic nature in combination therapy [37]. This case adds 
to the evidence supporting its combination use and excellent 
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tolerability. Further studies are needed to verify the use of 
fosfomycin in the setting of the fosA gene.

For colistin, a target average steady-state plasma concentra-
tion of ≥2 mg/L has been recommended [10, 11]. In the current 
patient, this target informed the choice of the daily dose of in-
travenous colistin, and the resultant plasma colistin concentra-
tions were ~2–5 mg/L (Figure 1). The risk of colistin-associated 
nephrotoxicity increases as the concentration exceeds ~2 mg/L 
[10, 11, 38–40]. A 32% decline in kidney function was indeed 
observed in the current patient. The decrease in creatinine 
clearance corresponded to the “risk” category (≥25% decline) 
of the RIFLE classification scheme for acute renal failure [41]. 
In an earlier study, a reduction in creatinine clearance of at least 
25% was observed in 60% of critically ill patients with base-
line creatinine clearance <80 mL/min/1.73 m2 who had plasma 
colistin average steady-state concentrations in the range of 
1.88–9.79 mg/L, but the majority of those patients experienced 
reductions in creatinine clearance of ≥50% or ≥75%, corre-
sponding to RIFLE categories of “injury” or “failure” [39].

Several factors have been reported to increase the risk of colistin-
associated acute kidney injury, including the magnitude of the daily 
dose and the resulting plasma colistin concentration, the presence 
of comorbid conditions, baseline creatinine clearance >80  mL/
min/1.73 m2, and concomitant use of other potentially nephro-
toxic drugs [39, 42, 43]. The patient described here had a generally 
favorable profile in regard to such factors. She had no significant 
comorbidities, and her baseline Cockcroft-Gault creatinine clear-
ance was 60 mL/min; the only other potentially nephrotoxic agent 
she received during the treatment period was intravenous contrast 
medium on day 10, well before the reduction in creatinine clearance 
observed on day 49 of admission.

Although the reduction in creatinine clearance was relatively 
small in the current case, it was considered important to modify 
the dosage regimen because of the low therapeutic index of 
colistin in relation to nephrotoxicity. Intravenous colistin was 
continued with the aid of TDM, which informed a reduction 
in the daily dose of colistin (Figure 1); this approach is in ac-
cordance with consensus recommendations to decrease the 
daily dose to the appropriate renally adjusted dose for a plasma 
colistin concentration of 2 mg/L [11]. The TDM-guided reduc-
tion in daily dose likely contributed to the ability to continue 
therapy with colistin over a 12-week course.

This case demonstrates the successful treatment of a limb-
threatening infection with colistin and fosfomycin combination 
therapy together with surgical debridement. The case exempli-
fies the advantages of real-time antibiotic TDM for dose ad-
justment to maximize the probability of a favorable response 
and for mitigation of side effects. Although the patient did de-
velop transient worsening in renal function during treatment, 
we were able to use TDM to guide dose adjustment and avoid 
possible permanent renal injury. While there are a number of 
promising new antimicrobials available for treatment of MDR/

XDR Pseudomonas aeruginosa infection, these remain difficult 
to access in many countries across the world. Hence furthering 
our understanding of older drugs for treatment of these infec-
tions, such as fosfomycin and colistin, is critical.
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