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Background. Previous studies on the role of inflammation in the pathophysiology of sickle cell disease (SCD) suggested that the
CCR5A32 allele, which is responsible for the production of truncated C-C chemokine receptor type 5 (CCRS5), could confer a
selective advantage on patients with SCD because it leads to a less efficient Thl response. We determined the frequency of the
CCR5A32 polymorphism in 795 Afro-Brazilian SCD patients followed up at the Pernambuco Hematology and Hemotherapy Center,
in Northeastern Brazil, divided into a pediatric group (3 months-17 years, n = 483) and an adult group (18-70 years, n = 312). The
adult patients were also compared to a healthy control group (blood donors, 18-61 years, n = 247). Methods. The CCR5/CCR5A32
polymorphism was determined by allele-specific PCR. Results. No homozygous patient for the CCR5A32 allele was detected. The
frequency of heterozygotes in the study population (patients and controls) was 5.8%, in the total SCD patients 5.1%, in the children
5.4%, in the adults with SCD 4.8%, and in the adult controls 8.1%. These differences did not reach statistical significance. Conclusions.

Our findings failed to demonstrate an important role of the CCR5A32 allele in the population sample studied here.

1. Introduction

Sickle cell disease (SCD) is caused by either homozygosity
for the hemoglobin S (HbS) gene (sickle cell anemia, SCA)
or compound heterozygosity for HbS and another structural
hemoglobin variant or beta-thalassemia [1, 2].

HDbS results from a single nucleotide substitution
(GAG — GTG) at the sixth codon of the f3-globin gene
(HBB), which causes glutamic acid to be replaced by valine
at the sixth position of the polypeptide chain [3-5]. The
mutation originated in Africa and is therefore more common
in Brazilian populations where there is a greater proportion
of individuals of African descent [6]. The pathophysiology
of SCD is based on the polymerization of deoxygenated
HbS, leading to chronic hemolysis and vasoocclusive

episodes [6-8]. It has been suggested that these episodes
are associated with a chronic inflammatory condition
with abnormal endothelial function involving interactions
between the endothelium and sickle reticulocytes and white
blood cells and thrombocytes. SCD patients have elevated
levels of inflammatory mediators, such as IL-6 and TNF-q,
and adhesive molecules [9]. A growing number of studies
investigating the importance of the immune system in the
pathophysiology of SCD have suggested that inflammation
and morbidity are closely associated in this disease [10, 11].
The CCR5 gene, which encodes CCR5, a Thl-cell-associated
chemokine receptor, has been associated with chronic
inflammatory states [12]. The gene is located on chromosome
3 and has a mutant allele with a 32bp deletion known as
CCR5A32, which leads to truncation and loss of the receptor
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on the cell surface [13, 14]. As the Thl immune response
is associated with inflammation, it has been proposed that
the CCR5A32 allele could confer a selective advantage
on patients with SCD because it induces a less efficient
Thl response [15]. Therefore, our hypothesis is that the
prevalence of CCR5A32 allele would increase with advancing
patient age. Thus, in order to investigate if the CCR5A32
polymorphism could confer a selective advantage on its
carriers, we compared the frequencies of the CCR5A32 allele
between two groups of SCD patients (pediatric and adult),
seen at the Pernambuco Hematology and Hemotherapy
Center, HEMOPE, in Northeastern Brazil, as well as the SCD
adult group and a normal control group formed by blood
donors.

2. Methods

A total of 795 DNA samples from Afro-Brazilian SCD
patients between 3 months and 70 years of age (631 HbSS,
91 HbSC, 73 HbS/f thalassemia; 50.4% male) followed up
regularly at HEMOPE were analyzed. The HEMOPE Founda-
tion Ethics Committee approved this study (n” 017/06), and
informed consent was obtained from all participants or those
legally responsible for them.

The patients were split into a pediatric group (3 months
to 17 years old) with 483 individuals and an adult group (18
to 70 years old) with 312 individuals. An adult control group
of 247 DNA samples from healthy blood donors (18 to 61
years old; 82.2% males) from the same geographical region
and with ethnic background similar to those of the patients
was analyzed for the CCR5A32 polymorphism. The control
group was compared with the adult patients and the analyses
were adjusted for age and sex.

2.1. Analysis of the CCR5A32 Polymorphism. To analyze the
CCR5 polymorphism, genomic DNA was extracted from
leukocytes using a commercially available kit according to
the manufacturer’s instructions (GFX Genomic Blood DNA
Purification Kit, GE Healthcare, Little Chalfont, Bucking-
hamshire, UK). The CCR5A32 deletion was detected by poly-
merase chain reaction (PCR) adapted from Chies and Hutz
[15], using the following CCR5-specific primers: CCR5A32_F-
5" CTTGGGTGGTGGCTGTGTTT 3" and CCR5A32R-5'
AGTTTTTAGGATTCCCGATAGC 3'.

The PCR reactions were carried out in a Veriti Thermal
Cycler (Life Technologies) in a final volume of 30,0 uL
containing 0.05U Tag DNA polymerase; 0.l mM dNTPs;
100nM of each primer; 3.0mM of MgCl,; 1x Taq buffer;
200 ng of DNA and deionized water for 30 cycles (96°C for
30 seconds, 66°C for 30 seconds, and 72°C for 1 minute).
The amplified products were run on a 3% agarose gel stained
with ethidium bromide and visualized under UV light. The
amplification products are shown in Figure 1. Amplification
of the normal CCR5 allele produced a 206 bp fragment, while
amplification of the mutant allele (CCR5A32) produced a
174 bp fragment.

2.2. Statistical Analysis. The statistical analysis was carried
out with SAS 9.2 for Windows. The chi-square test (XZ)
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FIGURE 1: Agarose gel showing the CCR5 gene products in samples
from a population of SCD patients in the state of Pernambuco. M:
100 bp ladder; P1 and P5: CCR5A32 heterozygotes (patients); P2—
P4 and P6-P8: patients without the deletion (normal alleles); C:
CCR5A32 heterozygotes (controls); B: reaction blank.

was used to determine whether the gene distribution in the
individuals studied was in Hardy-Weinberg equilibrium. To
compare proportions, the chi-square test and Fisher exact test
were used. A significance level of 5% was used for all the
statistical tests.

3. Results

The CCR5 gene was in Hardy-Weinberg equilibrium in both
patient groups and controls (P = 0.46 and P = 0.49, resp.).
None of the patients or controls was homozygous for the
CCR5A32 allele. The frequency of heterozygotes in the study
population (patients and controls) was 5.8% (61 individuals),
corresponding to an allelic frequency of 2.9%. Of the 795
SCD patients, 41 (5.1%) were heterozygous (allelic frequency
of 2.55%), with 26 (5.4%) being in the pediatric group and 15
(4.8%) in the adult group. In the control group, 20 individuals
(8.1%) had the CCR5A32 polymorphism, corresponding to an
allelic frequency of 4.05%.

Statistical comparisons of the pediatric and adult groups
(5.4% versus 4.8%, resp.; P = 0.72) and of the adult group
and the respective controls (4.8% versus 8.1% resp.; P = 0.09)
failed to identify any statistically significant differences.

4. Discussion

The CCR5A32 allele is considered to be associated with
Caucasians and to have originated in Europe around 7000
years ago [16]. Its frequency varies widely around the world,
but it is much lower in populations of American, African,
and East Asian origin [17-23]. Its presence seems to confer
an advantage on certain populations in the face of envi-
ronmental changes [20] or, in contrast, be a risk factor
for developing certain infections [21]. According to some
authors, the distribution of the CCR5A32 allele therefore
depends on genetic and environmental interactions that
result in an advantage or disadvantage for its carriers [22].
In Brazil, the contributions of Amerindian, African,
European, and, later, Asian genes are reflected in distinct
genetic patterns in the different regions of the country. In our
study, the total frequency of heterozygous individuals for the
CCR5A32 deletion in the region of Brazil, where the pattern
of migration involves intense flows of European and African
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populations, as well as significant miscegenation between
these populations, was 5.8%, corresponding to an allelic
frequency of 2.9%. Other studies show that this frequency
is dependent on the population and geographical region
studied [15, 24-32].

The role of the CCR5A32 polymorphism as a protective
factor against disease is subject of controversy. Initially,
the polymorphism was associated with resistance to HIV
infection in individuals who were homozygous for the poly-
morphism and to slower progression of HIV infection in
heterozygotes [33]. Clinical trials with CCR5 inhibitor in
AIDS patients are in progress, showing that the receptor has
gained clinical importance [34, 35].

Because it modulates the inflammatory response, the
CCR5A32 allele has also been studied as a genetic marker
related to pathologies where the inflammatory component is
important, as coronary artery disease, myocardial infarction,
atherosclerosis, rheumatoid arthritis, primary Sjogren’s syn-
drome, and asthma [36-41].

Regarding SCD, there are few studies investigating if
the mutant CCR5 allele could confer a selective advantage
on patients. Chies and Hutz, studying 79 SCA patients (53
from the Northeast and 26 from the South of Brazil), found
a relatively high prevalence of the CCR5A32 allele (5.1%)
compared with healthy controls from the same ethnic group
(1.3%) [15]. Vargas et al. [42] reported a frequency of 5.0% for
CCR5A32 heterozygotes in SCA patients from the Southern
Brazil compared with only 2% in normal controls. Differently,
our results did not show any significant difference between
the frequencies of CCR5A32 heterozygotes of the adult and
the pediatric populations (5.4% versus 4.8%; P = 0.72), as
well as adult patients and adult controls (4.8% versus 8.1%;
P = 0.09). However, the sample size analyzed here (795 SCD
patients), besides a less heterogeneous ethnic origin (since all
patients came from the same Brazilian state, Pernambuco),
confers consistency on these results.

5. Conclusions

In conclusion, our data show once more that the frequency
of the CCR5A32 allele varies in the Brazilian population,
reflecting the history of immigration from very varied ethnic
backgrounds. However, after studying 795 patients, from the
Northeastern region of the country, we failed to find any
significant result which could suggest that the presence of the
CCR5A32 mutant allele contributes to the development of a
less aggressive spectrum of SCD and confers an important
selective advantage on its carriers in this population.
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