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Lupus nephritis (LN) is a significant cause of various acute and chronic renal diseases,
which can eventually lead to end-stage renal disease. The pathogenic mechanisms of LN
are characterized by abnormal activation of the immune responses, increased cytokine
production, and dysregulation of inflammatory signaling pathways. LN treatment is an
important issue in the prevention and treatment of systemic lupus erythematosus.
Mesenchymal stem cells (MSCs) have the advantages of immunomodulation, anti-
inflammation, and anti-proliferation. These unique properties make MSCs a strong
candidate for cell therapy of autoimmune diseases. MSCs can suppress the
proliferation of innate and adaptive immune cells, such as natural killer cells (NKs),
dendritic cells (DCs), T cells, and B cells. Furthermore, MSCs suppress the functions of
various immune cells, such as the cytotoxicity of T cells and NKs, maturation and antibody
secretion of B cells, maturation and antigen presentation of DCs, and inhibition of cytokine
secretion, such as interleukins (ILs), tumor necrosis factor (TNF), and interferons (IFNs) by
a variety of immune cells. MSCs can exert immunomodulatory effects in LN through these
immune functions to suppress autoimmunity, improve renal pathology, and restore kidney
function in lupus mice and LN patients. Herein, we review the role of immune cells and
cytokines in the pathogenesis of LN and the mechanisms involved, as well as the progress
of research on the immunomodulatory role of MSCs in LN.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic autoimmune
inflammatory disease with manifestations of multi-organ damage
due to extensive deposition of immune complexes (IC). Kidney
involvement in SLE is lupus nephritis (LN), and approximately
20–60% of SLE cases eventually develop LN (1) and is the main
predictor of poor prognosis in SLE. The development of LN is
based on the loss of immune tolerance to self-nuclear antigens and
inflammation induced by the IC. Deposition of antigen-antibody
complexes in the kidney induces LN, which triggers an
inflammatory cascade that includes complement activation,
activation of Fc receptors, activation of renal lamina propria
cells and aggregation of inflammatory cells, and further
activation of the immune system by mediators released by tissue
injury, T cells, B cells, dendritic cells (DCs), macrophages, and the
cytokines they produce. This can ultimately lead to LN by
disrupting immune tolerance and inducing the onset of
inflammation (2, 3). Despite significant advances in the
diagnosis and treatment of SLE, its prevalence has increased
over time (4) In addition, the treatment of refractory LN has
become a subject of great interest as some refractory patients do
not achieve the expected efficacy with standard therapies
(hormones and immunosuppressants) and experience
considerable side effects (infections and secondary malignancies).

Mesenchymal stem cells (MSCs) are pluripotent stem cells
with abundant sources, such as bone marrow, umbilical cord,
umbilical blood, adipose tissue, and embryonic tissue (5). MSCs
have been shown to have immunomodulatory abilities and
reduce inflammatory responses (6). Mesenchymal stem cell
transplantation (MSCT) has been used to treat a variety of
autoimmune diseases, including SLE, and has benefited
patients who are resistant to conventional therapies (7, 8). In
recent years, research related to stem cell therapy for LN has been
rapidly developing. In this review, we focus on the role of various
immune cells and cytokines in LN and how MSCs exert
immunomodulatory activity in LN by regulating the
corresponding cells or cytokines, which provides a reference
for MSCs to target and regulate specific cells and cytokines.
DEFECTIVE MSCs IN SLE

One research study found that there was no treatment effect
within 14 days after autologous MSCT in two SLE patients (9).
Other numerous reports have suggested that MSCs in SLE are
defective and may be involved in the pathogenesis of SLE, and
therefore, SLE is assumed to be a “stem cell disease”. MSCs of
SLE patients grow more slowly than those of healthy individuals
and have a lower proliferative capacity; normal MSCs are
uniformly shuttle-shaped, but MSCs of SLE patients become
bulky and flattened from the third generation onwards (10).
MSCs from SLE patients show signs of senescence such as deep
staining of nuclei, disrupted F-actin cytoskeleton, increased
reactive oxygen species production, increased senescence
associated b-galactosidase staining, increased telomerase
activity, and increased DNA damage and repair (10–12).
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The endoplasmic reticulum stress response induces G1 cell
cycle arrest in bone marrow MSCs of SLE patients and is
involved in the senescence of MSCs in SLE patients (13). The
mitochondrial antiviral signaling protein (MAVS) is an
articulatory protein that induces IFN-b, and the MAVS-IFNb-
positive feedback loop mediates the senescence of MSCs in SLE
(12). Studies have shown that aberrant activation of several
signaling pathways, such as Wnt/b-catenin (14), p53/p21 (14),
PI3K/Akt (15), PTEN/Akt-p27 (16), and JAK-STAT (11), is
involved in the aging process of MSCs in SLE. At the same
time, MSCs in SLE exhibit impaired migration, differentiation,
and immunomodulation (17, 18). Expression levels of mRNA for
IL-6 and IL-17 are downregulated in MSCs from SLE patients
(10). Indoleamine 2,3 dioxygenase (IDO) is a tryptophan
metabolizing enzyme. The mRNA level of IDO secreted by
bone marrow MSCs from patients with active lupus was
significantly reduced, affecting its suppressive effect on T cells
(19). Decreased CCL2 expression in bone marrow MSCs of SLE
affects their inhibitory effect on B cells (17). These findings
suggest that MSCs from SLE are defective.
IMMUNOMODULATORY ACTIVITY OF
MSCs ON IMMUNE CELL SUBSETS IN LN

SLE is characterized by T-cell dysfunction and polyclonal B-cell
activation, and various immune cells and cytokines are involved in
the pathogenesis of LN (20). Owing to their unique
immunomodulatory properties (21), MSCs are strong candidates
for cell therapy and can be used in a wide range of immune-related
diseases. MSCs can polarize various immune cells to an inactive or
anti-inflammatory state (22), while inhibiting their proliferation
and attenuating cytotoxicity (Figure 1).

Immunomodulatory Activity of MSCs
on B Cells
B cells are a hallmark of the adaptive immune system.
Researchers have shown lupus-prone mice lacking B cells do
not develop nephritis (23). In contrast, lupus-like renal disease
occurs in wild-type mice injected with lupus-derived
autoantibodies (24). B cells can produce autoantibodies against
nuclear proteins and DNA, especially anti-double-stranded
DNA (anti-dsDNA) (25). Meanwhile, B cells can act as
antigen-presenting cells and promote the activation of T cells
in MRL-lpr/lpr mice (26), and different subpopulations of B cells
produce large amounts of cytokines involved in immune
regulation (27). Regulatory B cells (Breg) are a class of B cells
with immunomodulatory functions that play an important role
in maintaining immune tolerance and suppressing harmful
immune responses (28). Plasma cells are effector B cells and
are present in large numbers in the tubulointerstitium of SLE-
prone NZB/W mice, and the degree of infiltration correlates
positively with ds-DNA-IgG titer and the severity of LN
pathology (29). B cell activating factor (BAFF) is a TNF family
cytokine secreted mainly by DCs, macrophages, and neutrophils,
and the development and survival of B cells depend on BAFF
March 2022 | Volume 13 | Article 843192
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stimulation (30). CD4+ and CD8+ T cells from SLE patients
express BAFF mRNA, but not in normal subjects (31). Severe
proteinuria and mortality were shown to be significantly reduced
in BAFF-deficient 6–7-month-old NEM mice (32), in addition,
BAFF transgenic (Tg) mice showed a large increase in the
number of mature B cells and effector T cells, similar to
human SLE, anti-dsDNA antibodies, and immunoglobulin
deposits in the kidney (33).

MSCs can affect the proliferation and differentiation of B cells,
reduce plasma cell production, decrease the secretion of
immunoglobulins, and inhibit B cell chemotaxis (34). The MSC-
derived chemokine ligand 2 (CCL2) inhibits plasma cell production
of immunoglobulins by suppressing activation of transcription
factor 3 (STAT3) and inducing transcription factor PAX5 (17,
35). MSCs can downregulate chemokine receptor 4/5(CXCR4/
CXCR5) chemotactic receptors, thereby inhibiting B cell
chemotaxis (36). Ma et al. (37) showed that bone marrow MSCs
derived from BALB/c mice injected intravenously into MRL/lpr
mice inhibited B cell maturation and differentiation by suppressing
BAFF production, resulting in a significant reduction in proteinuria
and glomerular inflammation. Meanwhile, in vitro experiments
showed that bone marrow MSCs from BALB/c mice may inhibit
the decrease in BAFF levels secreted by DCs through
downregulation of IL-10 and upregulation of transforming growth
factor (TGF-b), leading to B cell activation and immunoglobulin
production. Transplantation of human-derived adipose MSCs into
Roquin san/san C57BL/6 mice via tail vein increased IL-10-producing
Frontiers in Immunology | www.frontiersin.org 3
Breg cells and significantly improved kidney tract proliferation and
interstitial inflammatory cell infiltration, as well as increased IL-10-
producing Breg cells in vitro (38). Human gingival-derived MSCs
inhibit B cell proliferation, activation, plasma cell differentiation,
and improve LN symptoms such as reduced proteinuria and
glomerulonephritis, which through the CD39-CD73 signaling axis
in vitro and in vivo (39). These studies suggest that MSCs can
improve LN symptoms by inhibiting the proliferation,
differentiation, and chemotaxis of B cells (Figure 2).

Immunomodulatory Activity of MSCs
on T Cells
T cells play a central and multiple role in LN and are another
type of adaptive immune cell. T cells amplify the inflammatory
response by secreting various proinflammatory cytokine
cascades and assist B cells to produce autoantibodies.
Imbalance of T cell subsets can affect the course of LN. Large
numbers of T cells infiltrate the LN kidney tissue through
cytotoxicity or by promoting the activation and recruitment of
macrophages and NKs, which directly or indirectly damage renal
parenchymal cells (40). Many functional defects of CD4+ T cells
in SLE patients (41, 42). Activated CD4+ T cells can differentiate
into various T helper (Th) subpopulations with different
functions, such as Th1, Th2, Th17, follicular helper T (Tfh)
cells, and regulatory T (Treg) cells (43, 44). TGF-b and
hepatocyte growth factor (HGF) mediate the inhibition of T
cell proliferation by MSCs, leading to a decrease in cyclin D2 and
FIGURE 1 | Immunomodulatory effects of MSCs on various immune cells and related mechanisms, red boxes represent elevated, green boxes represent decreased, blue
boxes represent pathways or signaling axes. The red up arrow represents an upward adjustment and the green down arrow a downward adjustment.
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an increase in p27 kip1z at the molecular level, resulting in
stagnation of T cell proliferation in G1 phase (45, 46). Plumas
et al. (47) showed that the conversion of tryptophan to
kynurenine by MSC-derived IDO in the presence of IFN-g
induces apoptosis in activated T cells. Bone marrow MSCs
mediate T cell apoptosis via the FAS ligand/FAS pathway in
the systemic sclerosis disease model (48). However, the lack of
functional Fas in B6.lpr mice leads to a defect in the T cell
apoptotic process, and it has been shown that umbilical cord
MSCs promote apoptosis of CD4+ T cells in B6.lpr mice and
have a significant effect in an in vitro setting, the mechanism of
which is not yet clear (49). MSCs induce a shift from a
proinflammatory to an anti-inflammatory state in T cells (50).
Collectively, these reports show that MSCs improve LN by
suppressing T cell proliferation, promoting apoptosis, and
improving inflammatory status (Figure 3).
IMMUNOMODULATORY ACTIVITY OF
MSCs ON TH1/TH2

An imbalance in T cell subsets severely affects the disease process
in LN. Elevated Th1/Th2 (IFN-g/IL-4) ratios in peripheral blood is
a characteristic feature of LN, and the balance of Th1/Th2 in
peripheral cells of LN patients shows a polarization toward the
Frontiers in Immunology | www.frontiersin.org 4
Th1 phenotype, and the expression level of IFN-g produced by
Th1 cells parallels the severity of renal injury (51). Sigdel et al. (52)
showed that Th1 phenotype cells predominate in peripheral blood
in SLE with diffuse proliferative LN. As in human diffuse
proliferative LN, MRL/lpr mouse nephritis was associated with a
polarized Th1 cell phenotype (53). Allogeneic chondrogenicMSCs
suppress the differentiation and proliferation of pro-inflammatory
Th1 cells and promote the differentiation of T cells into the anti-
inflammatory Th2 subpopulation (54). Choi et al. (55)
demonstrated that long-term continuous administration of
human adipose tissue-derived MSCs downregulated the Th1/
Th2 ratio in the spleen of C3.MRL-Fas lpr/J mice, significantly
reduced anti-dsDNA levels, and decreased renal inflammatory cell
infiltration and glomerular C3 deposition. Human umbilical cord-
derived MSCs reduced the Th1/Th2 ratio in the spleen of B6.lpr
mice, improved renal function, and reduced infiltration of renal
lesions and inflammatory cells (49). Thus, MSCs improve LN by
balancing the Th1/Th2 ratio.
IMMUNOMODULATORY ACTIVITY OF
MSCs ON TH17/TREG

Sakaguchi et al. (56) isolated a unique type of CD4+ CD25+ T
cells capable of suppressing immune responses and maintaining
FIGURE 2 | The mechanism of B cell action on LN and the immunomodulatory mechanism of MSCs on B cells in LN, red box represents elevation, green box represents
decrease, blue box represents pathway or signaling axis. The red up arrow represents an upward adjustment and the green down arrow a downward adjustment.
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immune tolerance, which were later named Treg cells. The
presence of a limited number and/or impaired function of
Treg cells in patients with SLE is associated with increased
disease activity (57, 58). The defective immune response of
Treg cells in SLE is characterized by reduced expression of
CD4, CD25, and Forkhead box P3 (Foxp3), known as
inducible Treg (iTreg) (59). Foxp3 is a transcription factor that
is important for Treg cell development, function, and
maintenance of immune homeostasis (60, 61). IL-17A and IL-
17F are the major cytokines secreted by Th17 cells (62), and their
receptors are expressed in most renal cells and are involved in
activating pro-inflammatory and pro-fibrotic pathways. Th17 is
involved in the pathogenesis of LN (63, 64); Th17/IL-17 axially
recruits Th17 cells in the kidney and is involved in pro-
inflammatory responses and pro-fibrotic actions in the kidney,
leading to renal fibrosis and loss of renal function (65). The
increase in peripheral Th17 cells in LN patients is accompanied
by a decrease in Tregs, suggesting that Th17/Treg imbalance is
involved in LN disease progression (64). In vitro, unstimulated
bone marrow MSCs from BALB/c mice secrete TGF-b to induce
Foxp3 expression to promote Treg cell development (66). As
with TGF-b1, PGE2 secreted by humanMSCs derived from bone
marrow induces Foxp3+ Treg cell differentiation in vitro (67).
Darlan et al. (59) showed that TGF-b1 released from human
umbilical cord MSCs promotes the production of iTreg cells in
peripheral blood mononuclear cells from lupus patients,
characterized by Foxp3 expression. In vitro experiments
showed that inhibition of CD4+ T cell differentiation to Th17
by MSCs derived from mouse bone marrow is triggered by cell-
cell contacts and mediated by prostaglandin E2 (PGE2) via
Frontiers in Immunology | www.frontiersin.org 5
receptor 4 (EP4) (68). Transplantation of human umbilical
cord MSCs into SLE patients decreased peripheral blood Th17
cells and elevated Treg cells, which were confirmed to be
mediated by PGE2 and TGF-b secreted by MSCs in in vitro
experiments (69). Makino et al. (70) showed that human
supernumerary tooth-derived stem cells upregulate Tregs and
downregulate Th17 activity and IL-17 in the kidney in MRL/lpr
mice, while improving renal function, reducing collagen and IgG
deposition in the glomerulus, and thinning the basement
membrane. These studies indicate that MSCs directly
upregulate Tregs or downregulate Th17 cells, thereby
improving SLE or LN via the regulation of the Th17/Treg ratio.
IMMUNOMODULATORY ACTIVITY OF
MSCs ON TFH CELLS

Tfh cells are a specialized subset of CD4+ T cells that are located
in B cell follicles. Studies have demonstrated that dysregulated
Tfh cells are present in both SLE patients and animal models
(71–74). Tfh cells can migrate into B cell follicles via CXCR5,
leading to germinal center formation, promote the differentiation
of B cells in the germinal centers into memory B cells or plasma
cells (75). Studies showed that upon the existence of a defective
checkpoint in the maintenance of peripheral B cell tolerance,
which appears to be specific to patients with SLE, Tfh cells
provide their cognate response B cells with the essential help
needed to survive and pass the tolerance checkpoint (76, 77).
Moreover, before B cells in the germinal center differentiate into
memory B cells or plasma cells, Tfh cells signal B cells to undergo
FIGURE 3 | The mechanism of T cell action on LN and the immunomodulatory mechanism of MSCs on T cells in LN, red box represents elevation, green box represents
decrease, blue box represents pathway or signaling axis. The red up arrow represents an upward adjustment and the green down arrow a downward adjustment.
March 2022 | Volume 13 | Article 843192
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Ab class switching and affinity maturation (76). Studies have
shown that in MRL/lpr mice, large numbers of Tfh cells are
closely associated with excessive germinal center formation, high
autoantibody titers, and damage from LN (78). IL-21 is a key
cytokine produced by Tfh cells, which promotes the
differentiation of Tfh. Bone marrow MSCs from C57BL/6
inhibit Tfh cell proliferation in vivo and in vitro, suppress Tfh
differentiation by inhibiting IL-21, inhibit Tfh differentiation in
the spleen of MRL/lpr mice, attenuate proteinuria and renal
pathology, and prolong the survival of mice (79). Human
umbilical cord MSCs inhibit Tfh proliferation by activating
inducible NOS (iNOS) in lupus-prone B6.MRL-Faslpr mice,
and improve the reduction of interstitial and peritubular
inflammatory cell infiltration and reducing glomerular IgG
deposition in mice (80). Human bone marrow MSCs can
improve renal function and pathological alterations by
inhibiting the emergence of Tfh in NZB/W mice, such as
reduced proteinuria, decreased immune complex deposition,
glomerular proliferation, and plasma cell infiltration, and in
vitro human bone marrow MSCs directly inhibit the
differentiation of nascent CD4+ T cells to Tfh cells in a
contact-dependent manner (81). In summary, MSCs improve
LN by inhibiting the proliferation and differentiation of Tfh cells.
IMMUNOMODULATORY ACTIVITY OF
MSCs ON DCs

DCs are the most functional and powerful antigen-presenting cells
in the body, linking innate and adaptive immunity (82).
Depending on the origin of DCs, they can be classified as
plasmacytoid dendritic cells (pDCs), myeloid dendritic cells
(mDCs), and peripheral blood monocyte-derived dendritic cells
(PBMDCs), which accumulate in the kidney of LN patients and
participate in the immune inflammatory response by expressing
multiple receptors, co-stimulatory molecules, and inflammatory
factors. pDCs are decreased in the peripheral blood and increased
in the renal tissue of patients with active LN (83). pDCs secrete a
large amount of type I interferons to trigger antiviral immune
responses, and they have been identified as an important source of
IFN-a production in SLE (84). Studies have shown that pDCs
highly express IL-18R, which interacts with the cytokine IL-18
secreted by monocytes/macrophages to induce Th homeostasis to
Th1 cell polarization (84). The main role of pDCs in SLE is to
recognize nuclear autoantigens (85).pDCs promote the
proliferation and cytotoxic effects of NKs and promote the renal
inflammatory response (84). IFN-a is a type I IFN, and type I IFNs
plays a key role in the pathogenesis of LN. IFN-a induces B cell
differentiation and activation (86), upregulates BAFF (87, 88),
promotes survival and maturation of DC cells (89), decreases Treg
cells, and enhances Th cell functions (90). Elevated serum IFN-a
levels in SLE patients correlate with disease activity and severity
(91). Injection of IFN-a adenovirus rapidly induces T cell
activation and extensive GC formation and produces large
numbers of short-lived plasma cells producing IgG2a and IgG3
autoantibodies, leading to glomerulonephritis in lupus-prone
Frontiers in Immunology | www.frontiersin.org 6
NZB/W mice (87). mDCs are activated by IC and upregulate
the expression of co-stimulatory molecules (CD86 and CD40),
MHC molecules, and inflammatory factors (IL-6, TNF-a, etc.) to
present antigens to T lymphocytes. Monocytes induced to
differentiate into DCs can effectively present nuclear antigens,
leading to cell proliferation, increasing secretion of inflammatory
factors, and upregulated expression of co-stimulatory molecules,
which play a vital part in maintaining a high level of an
inflammatory environment. They have enhanced chemotactic
properties that allow them to accumulate in secondary lymph
nodes and inflammatory sites (92). CD1c+ DCs may be a key DC
subtype for improving immune dysfunction and maintaining
immune homeostasis. CD1c+ DCs were markedly reduced in
SLE patients, especially LN patients, compared to that in healthy
individuals (93).

MSCs can impair the antigen-presenting function of DCs by
inhibiting their differentiation, maturation, and migration.
MSCs have been shown to inhibit the differentiation of
monocytes to DCs by reducing the expression of CD1-a,
CD80, CD83, CD86, and HLA-DR on the surface of DCs (94,
95). MSCs inhibit DC cell maturation by secreting IL-6 (96).
MSCs can also induce the production of regulatory DCs and
evade apoptosis, further enhancing phagocytosis and inhibiting
T cell activation and proliferation (97, 98). Bone marrow MSCs
derived from C57BL/6 mice abolished the generation of
functional IFN-a-producing pDCs, while they interfered with
the maturation of mDCs (99). Significantly increased CD1c+
DCs and decreased proteinuria levels in SLE patients after
human umbilical cord MSCT demonstrated that proliferation
of tolerogenic CD1c+ DCs and inhibition of their apoptosis
were promoted through IFNg-FLT3L-FLT3 interactions (93).
Human bone marrow-derived MSCs inhibit inflammatory
factor IFN- a expression in Adriamycin (ADR)-induced
nephropathy mice to suppress renal inflammation. In
addition, MSCT prevents podocyte injury and renal fibrosis
(100). In conclusion, MSCs can improve LN by inhibiting the
differentiation and maturation of DCs and by suppressing the
production of their cytokine, IFN-a.
IMMUNOMODULATORY ACTIVITY OF
MSCs ON MACROPHAGES

Macrophages are a prevalent infiltrative population in the kidney
of LN patients, and studies have shown that renal macrophage
infiltration is related to poor prognosis, and that macrophage
depletion improves LN, suggesting a key role for macrophages in
LN (101). Simultaneously, activated macrophages may be
involved in LN through TNF-a and IL-1b-mediated podocyte
injury (102, 103). Recently, new concepts of macrophage subsets
have emerged, including the classically activated pro-
inflammatory M1 type and the alternative activated anti-
inflammatory M2 type (104). CD206 is an important marker
of M2 type macrophages, and macrophage CD206 is expressed at
low levels in B6.MRL-Faslpr mice and SLE patients (105). The
balance between M1 and M2 macrophages is associated with the
March 2022 | Volume 13 | Article 843192
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pathogenesis of nephritis, and dysregulated M2 macrophages
play a pro-inflammatory part in LN (106). Iwata et al. (107)
showed that in lupus-susceptible MRL/lpr mice, abnormal
macrophages fail to shift from a “destructive” inflammatory
phenotype to a “healing” anti-inflammatory phenotype, which
triggers LN. Furthermore, certain cytokines produced by
macrophages such as IL-10 (108, 109), IL-12 (51), and TNF-a
(110, 111) play important roles in LN. Human placental MSCs
shift macrophage differentiation from M1 into M2 macrophages,
helping to aid in the regression of inflammation and further
tissue regeneration (112). Murine MSCs induce macrophage M2
polarization through secreted TGF-b to exert anti-inflammatory
effects and enhance phagocytosis via the Akt/FoxO1 pathway
(113). Human umbilical cord MSCs increase CD206 expression
in lupus-prone mice and SLE patients to promote M2 type
macrophages and their phagocytosis , and improve
inflammatory response and renal injury (105). Zhang et al.
(103) demonstrated that human umbilical cord MSCT into
B6.lpr mice polarize macrophages to the anti-inflammatory M2
type while reducing macrophage infiltration in the kidney of
B6.lpr mice to prevent podocyte injury and improve LN;
examples include reduction of proteinuria and glomerular
thylakoid cell proliferation, and thylakoid matrix deposition.
Thus, MSCs improve LN by promoting the M2-type
polarization of macrophages.
IMMUNOMODULATORY ACTIVITY OF
MSCs ON NKs

NKs are large granular lymphocytes which act as a bridge
between the innate and adaptive immune systems. NKs also
produce a variety of cytokines and chemokines, for instance
TNF-a, CCL3, and CCL4, which amplify and recruit
inflammatory responses through various mechanisms involved
in the LN disease process (114, 115). Several studies have shown
that the proportion of NKs and the total number of NKs in the
blood of SLE patients are significantly lower, especially in LN
patients; also, defective killing activity of NKs has been shown in
the peripheral blood of first-degree relatives of SLE patients
(116–118). Studies have shown that renal NKs from mice with
active disease produced more cytotoxic granules (perforin and
granzyme B) and IFN-gwhen stimulated with PMA+ ionomycin,
which contributed in part to the renal damage in SLE (119, 120).
Human bone marrow MSCs inhibit IL-12-induced proliferation
of NKs through the derived immunomodulatory factors IDO
and PGE2, andMSCs inhibit cytotoxic activity and their cytokine
IFN-g production (121, 122). When MSCs are exposed to
exogenous IFN-g, the expression of MHC-I molecules is
upregulated and NKs are insensitive to the killing ability of
MSCs (123). NKs can kill autologous or allogeneic MSCs when
activated by IL-12 and IL-15 (124, 125). In short, MSCs may
improve LN by inhibiting the proliferation and activity of NKs;
however, in an inflammatory environment, NKs may have
the potential to lyse MSCs and affect their immuno-
modulatory function.
Frontiers in Immunology | www.frontiersin.org 7
IMMUNOMODULATORY ACTIVITY OF
MSCs ON CYTOKINES IN LN

Large amounts of inflammatory mediators are produced in the
LN kidney, and as the disease progresses, the response spreads
(126). It is widely believed that ICs trigger the production of key
mediators of inflammation, including cytokines, chemokines,
and adhesion molecules, leading to glomerular infiltration of
individual nucleated cells, tissue damage, and renal failure in
mouse models of LN, and their absence or inhibition greatly
diminishes disease activity. MSCs can exert immune activity by
regulating the secretion of certain cytokines, for example IL-10,
IL-17, TGF-b, TNF-a, GM-CSF, and HMGB-1 (Table 1).
IMMUNOMODULATORY ACTIVITY OF
MSCs ON IL-10

IL-10 is a regulatory cytokineproducedbyBcells or certainCD+4T
cells and may have multiple roles in lupus, playing a major part in
the stability of cellular and humoral immunity, with
immunostimulatory and suppressive effects. Studies have
indicated high levels of IL-10 in SLE patients and mouse models
of lupus (108). IL-10 promotes B cell proliferation and
differentiation (109), and continuous administration of anti-
interleukin 10 antibody delays autoimmunity in NZB/W F1 mice
by upregulating TNF-a (129). In vitro experiments show that bone
marrowMSCs from BALB/c mice can reduce IL-10 secretion (37).
However, genetic defects in IL-10 lead to more severe
glomerulonephritis in mice with lupus in the MRL background,
and IL-10 downregulates IFN-g in the early stages of lupus to inhibit
the pathogenicity of Th1 cells and delay the progression of lupus
(127). Choi et al. (128) demonstrated that human adipose tissue-
derivedMSCs significantly increased the expression levels of IL-10
and IL-4 cytokines in the serum of (NZB ×NZW) F1mice and that
they had decreased serum urea nitrogen levels and increased
survival. In summary, MSCs improve LN by regulating IL-10
expression at different stages of LN.
IMMUNOMODULATORY ACTIVITY OF
MSCs ON IL-17

IL-17 is mainly produced by Th17 cells and other T cell subsets
and plays a central part in the pathogenesis of LN. IL-17 induces
the production of more inflammatory cytokines and chemokines,
and promotes the recruitment of inflammatory cells (monocytes
and neutrophils) to inflammatory organs (130, 131). IL-17
promotes T cell infiltration in tissues by stimulating the
expression of intercellular adhesion molecule (ICAM)-1 (132)
and promotes autoantibody production and renal inflammation
in SLE (133). IL-17 plays a vital part in the pathogenesis of SLE
and presents at high levels in the serum of SLE patients and lupus
mice (134). IL-17 was detected in damaged renal tissues of SLE
patients, and IL-17 in urine sediment was associated with LN
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activity (135). Sun et al. (136) showed that mouse bone marrow
MSCs inhibited IL-17 in the bone marrow and spleen of MRL/lpr
mice, improved kidney function, reduced circulating
immunoglobulins, IgG and IgM, and restored glomerular
structure. Adipose MSCs derived from C57BL/6 mice reduced
IL-17 expression in the serum of MRL/lpr mice and IL-17 mRNA
expression in renal tissues by inhibiting the mTORC1 pathway,
improving renal function, reducing glomerular tract
proliferation, inflammatory cell infiltration, and C3 deposition
(137). Therefore, MSCs prevent and ameliorate LN by
downregulating the expression of IL-17.
IMMUNOMODULATORY ACTIVITY OF
MSCs ON IL-12

IL-12 is a 70 kDa heterodimer (IL-12p70) produced by
macrophages and DCs, and together with IL-18, it promotes
the production of IFN-g and is involved in the differentiation and
activation of various Th cell subpopulations (51, 138). Tucci et al.
(51) demonstrated that serum IL-12 levels are higher in SLE
patients; IL-12 triggers an inflammatory response in the kidney
and promotes the conversion of Th cells to Th1, and that IL-12
responds to the severity of LN. IL-12 is upregulated in the kidney
and serum of MRL-Faslpr mice with LN and its expression
further increases with disease progression (139, 140). Human
umbilical cord blood MSCT reduces NZB/W F1 mouse IL-12 to
inhibit the inflammatory response, reduces the severity of
proteinuria, the progression of renal function deterioration,
and reduces glomerular tract proliferation and sclerosis (141).
Human adipose-derived MSCs reduce serum IL-12 levels in
MRL/lpr mice and decrease inflammatory cell infiltration, IgG
and C3 deposition in the kidney (142).
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IMMUNOMODULATORY ACTIVITY OF
MSCs ON IL-6

IL-6 is a multipotent cytokine. IL-6 promotes plasma cell survival
and proliferation (143), enhances IgG secretion (144), induces
differentiation of T cells into effector cells (145), and induces
differentiation of monocytes into macrophages (146, 147). IL-6 is
significantly elevated in the urine of LN patients, may be associated
with LN activity (148, 149), and has emerged as a potential
biomarker, with IL-6 deficiency reducing macrophages, CD4+
and CD8+ lymphocytes, along with reduced renal IgG and C3
deposition and delayed LN in MRL-Faslpr mice (150). Thiel et al.
(151) showed that human embryonic stem cell-derived MSCs
reduce serum IL-6 levels in BWF1 mice and have the ability to
prevent or slow down lupus-associated glomerular disease.
IMMUNOMODULATORY ACTIVITY OF
MSCs ON TNF-a

TNF-a is a multipotent cytokine, mainly produced by activated
macrophages and lymphocytes, that exerts pro-inflammatory
and immunomodulatory effects in LN. TNF-a has an
immunosuppressive effect at the onset of LN, and
administration of TNF-a to pre-onset NZB/W mice delayed
the onset of LN; TNF-amay exert a protective effect by inducing
tolerance (152). However, TNF-a causes end-organ damage in
late disease (152). Studies have demonstrated a major
involvement in the inflammatory cascade response in kidney
injury, such as the promotion of IL-1 b and IL-6 secretion
mediated by dsDNA antibodies (153), elevated TNF-a levels in
the kidney in LN, and correlation with disease activity (154, 155).
Chang et al. (141) showed experimentally that human umbilical
TABLE 1 | The role of cytokines in the pathogenesis of LN and the role of MSCs in the treatment of LN discussed in the text.

Cytokine type Mechanism of action in LN Synergistic
cytokines

MSC function References

IL IL-10 Early stage: immunosuppression IFN-g Promotion of
secretion

(37, 108, 109, 127–
129)

Late stage: promote B cells proliferation and differentiation, immunostimulatory effect TNF-a Suppression of
secretion

IL-17 Induce production of inflammatory factors and recruitment to inflamed organs ICAM-1 Suppression of
secretion

(130–137)

IL-12 Promote Th cell differentiation to Th1 IL-18, IFN-g Suppression of
secretion

(51, 138–142)

IL-6 Promote plasma cell proliferation, increases IgG secretion, and induces T and
monocyte differentiation

Suppression of
secretion

(143–151)

TNF TNF-a Early stage: induction of immune tolerance, immunosuppression (141, 152–156)
Late stage: promotes inflammation IL-1 b、IL-6 Suppression of

secretion
BAFF Promotes B cells development Suppression of

secretion
(30–33, 37)

IFN IFN-a Upregulation of BAFF, promote DCs maturation, reduce Treg cells and enhance
effector Th cells

Suppression of
secretion

(87–91, 99, 100)

IFN-g Promote macrophage and B cells activation and Th cells differentiation to Th1 cells Suppression of
secretion

(157–165)

HMGB-1 HMGB-1 Promotes activation of DCs, B cells, and cytokine secretion TNF-a、IL-1 Suppression of
secretion

(166, 167)
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cord blood MSCT could inhibit the production of the pro-
inflammatory factor TNF-a and improve LN. Liu et al. (156)
showed that human placenta-derived MSCT downregulated the
expression of the inflammatory marker TNF-a in the kidney and
improved renal function and pathology, such as reducing
proteinuria, glomerular inflammatory infiltrates, and immune
complex deposition.
IMMUNOMODULATORY ACTIVITY OF
MSCs ON IFN-g

IFN-g is a type II IFN, mainly produced by Th1 and NKs. IFN-g
promotes B cell activation and production of IgG2a, IgA, and
IgM (157, 158). IFN-g mediates the activation of macrophages
(159), induces differentiation of Th cells to Th1 cells, and inhibits
the proliferation of Th2 cells (160, 161). Glomerulonephritis is
severely reduced in IFN-gamma-/- mice and overproduction of
IFN-g is required for the development of lupus (162). Jacob et al.
(163) showed that treatment with IFN-g accelerated the
development of nephritis in (NZB × NZW) F1 mice and that
application of a specific IFN-g monoclonal antibody delayed the
development of LN. Ozmen et al. (164) showed that treatment of
NZB/W mice with soluble IFN-g receptors delayed the
development of glomerulonephritis. Significantly lower levels
of IFN-g were found in T lymphocytes from SLE patients co-
cultured with human umbilical cord-derived MSCs (165).
IMMUNOMODULATORY ACTIVITY OF
MSCs ON HMGB-1

HMGB-1 is an immunostimulatory cytokine mediator that
mediates IC to stimulate DC and B cell activation and
production of cytokines, such as TNF-a and IL-1, and plays a
main part in the development of LN (166). Gu et al. (167) found
that mRNA expression of HMGB-1 was reduced in the umbilical
cord MSC group compared with the control group by
transplanting human umbilical cord MSCs in MRL/lpr mice;
the rate of positive immunohistochemical staining for HMGB-1
was lower than that of the control group, also improved kidney
function and crescent reduction was demonstrated.
FAILURE OF MSC THERAPY AND
ANALYSIS OF CAUSES

Table 2 demonstrates several preclinical studies of MSCs in lupus-
susceptible mice, which have been extensively conducted and
yielded preliminary results, and these results have facilitated
current clinical studies. Many in vivo studies have shown
differences in the immunomodulatory activity of MSCs in LN,
and the previous section of this review described the
immunomodulatory activity and potential mechanisms of MSCs
in LN, which support the preclinical and clinical applications of
MSCs; however, the applications ofMSCs in regenerativemedicine
Frontiers in Immunology | www.frontiersin.org 9
are still challenging; hence, this section focuses on elucidating the
contradictory findings of preclinical and clinical studies and
analyzing the reasons for the conflicting results.

Most MSCTs have been shown to improve LN, including
improving renal function such as reducing proteinuria, serum
urea nitrogen, and creatinine levels, and improving renal
pathology such as reducing glomerular tract proliferation,
inflammatory cell infiltration, and immune complex deposition.
However, there are contradictory results, as Youd et al. showed in a
pilot study that bone marrow MSCs from BALB/c mice injected
intraperitoneally into NZB/W mice showed that MSCT-treated
mice exacerbated the disease instead of benefiting from it (168),
probably due to the intraperitoneal injection method, in which
MSCs injected intraperitoneally into mice could form aggregates
with B20 aggregates, lymphocytes, and macrophages, which then
attach to the peritoneal wall, thus limiting the entry of MSCs into
the body circulation (170). Che et al. (17) also found that
transplantation of bone marrow MSCs derived from MRL/lpr
mice into MRL/lpr mice did not improve renal immune complex
deposition and had no significant inhibitory effect on B
lymphocytes, due to the defective immune function of bone
marrow MSCs derived from lupus mice. Tani et al. (169) showed
that transplantation of bone marrow MSCs derived from C57BL/
6J-derived bone marrow MSCs transplanted into NZB/Wf1 mice
showed only delayed onset of proteinuria, no improvement in anti-
ds-DNA titers and renal function scores, more inflammatory cell
deposition, B cell overexpression and fewer Treg cells. This may be
due to different murine models of lupus and the multiplicity and
heterogeneity of MSCs, among other reasons.

Clinical cases of MSC-treated LN have accumulated through
a large number of preclinical trials. Most clinical trials used an
intravenous injection of 1 × 106 MSCs/kg, with good results in
LN patients. Wang et al. (8) observed the clinical performance of
40 SLE patients treated with human Umbilical Cord-MSCs. After
12 months of follow-up, the overall survival rate was 92.5%. In
the UC-MSC group, SLEDAI scores decreased, as also the levels
of serum creatinine, urea nitrogen, and proteinuria. Gu et al.
(171) showed that 81 patients with refractory or active LN
treated who had undergone allogeneic bone marrow MSCT for
LN had an overall survival rate of 95% at 12-month follow-up.
Patient survival had improved, and SLEDAI scores, serum
creatinine, and urine protein levels had decreased. The
observation of 87 patients with refractory SLE and receiving
intravenous human bone marrow/umbilical cord MSCs
demonstrated an overall survival rate of 94%, an improved
renal function, and the recovery of serum albumin and
complement C3 levels during 4 years of follow-up, suggesting
that allogeneic MSCT can lead to clinical remission and
improvement of renal dysfunction in patients with drug
resistant SLE (172). However, there are still a few reports of
adverse events associated with MSC transplantation. The disease
activity of two SLE patients failed to improve after autologous
MSCT, and the observed increase in Treg cells was not associated
with clinical benefits, mainly due to the possible presence of
defective MSCs in lupus patients (9). Deng et al. (173) used a
randomized two-way blinded approach to divide patients into
a human umbilical Cord-MSC group and a placebo group.
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There were two adverse events in each group: stroke and ascites
in the placebo group, and leukopenia and pneumonia in the
human umbilical Cord-MSC group, with one patient dying of
pneumonia. Allogeneic normal MSCT is more effective than
autologous MSCT in treating SLE (9, 174).

InSLE, thebody is ina chronic inflammatory state inwhichMSCs
can act to promote or suppress the immune system. High levels of
TGF-b production by umbilical cord MSCs, upregulation of Treg
cells and PGE2, and downregulation of Th17 cells are responses to
stimulation of the lupus microenvironment to induce immune
tolerance (69). Overexpression of IL-37 may enhance the
immunosuppressive effect of MSCs by suppressing the
inflammatory microenvironment, while transplanted MSCs may
improve the damaged microenvironment in SLE (175). However,
high levels of TNF-a in SLE patients significantly inhibit the
migration and homing ability of bone marrow MSCs (18). The
inflammatory environment promotes the secretion of inflammatory
cytokines such as IL-1b and TNF-a byMSCs, and in response to the
co-stimulation of IL-1b and TNF-a, MSCs promote inflammatory
responses andTh17 differentiation andparticipate in the progression
of SLE disease (176). MSCs with SLE are more susceptible to the
effects of thematrix proteins of the bonemarrowmicroenvironment
and cytokines and chemokines secreted by stromal cells during
culture, which accelerate senescence (10). The immunomodulatory
effects of MSCs are influenced by the tissue microenvironment, and
Frontiers in Immunology | www.frontiersin.org 10
modification of MSCs with cytokines or drugs to enhance their
therapeutic potential requires further exploration.
CONCLUSION AND OUTLOOK

With the development and application of stem cell technology,
the immunomodulatory activity of stem cells can be utilized to
improve LN, which has greatly contributed to the development of
LN treatment. We illustrate the defective MSCs in SLE and
describe the pathogenesis of LN in detail in terms of immune
cells and cytokines and discussed the immunomodulatory activity
and potential mechanisms of MSCs in LN, all of which support
the preclinical and clinical applications of MSCs. Although MSCs
are promising in the treatment of LN, the application of MSCs in
regenerative medicine remains challenging, as there are many
differences in the immunomodulatory activity of MSCs due to
multiple factors, for example, differences in the source of MSCs,
injection routes, and the amount of injected dose. Also, the
immunomodulatory effect of MSCs may be influenced by the
layout microenvironment, so there is a need to find standardized
ways or pretreatment of MSCs to avoid these situations. In the
future, we will fully exploit the immunomodulatory activity of
MSCs and use it to optimize their therapeutic effects. We are
optimistic that MSCs will be valued as immunomodulators of
TABLE 2 | Preclinical study of MSCs in LN.

MSC types Experimental models Injection methods Dose and Frequency Reference

Bone marrow MSC-derived from Balb/c mice MRL/lpr
mice

intravenous 1× 106MSCs,
at 18 weeks of age

Ma et al. (37)

Human adipose-derived MSCs Roquin san/san C57BL/6
mice

tail vein 1×10 6 MSCs,
at age 17 weeks,
once weekly for 5 weeks

Park et al. (38)

Human gingiva-derived MSCs NZM2838 mice intravenous 2 × 10 6 MSCs,
at 10 or 20 weeks of age

Dang et al. (39)

Human umbilical cord-derived MSCs B6.MRL-Faslpr (B6.lpr) mice tail vein 1 × 106 MSCs,
at twenty-eight-week old

Huang et al. (49)

Human supernumerary tooth-derived stem cells MRL/lpr mice intravenous 0.1 x 106/10 g body weight,
at the age of 16 weeks

Makino et al.
(70)

C57BL/6 (B6) mice
bone marrow MSCs

MRL/lpr mice tail vein 2× 106 MSCs,
twice (at the age of 18 and 20 weeks)

Yang et al. (79)

Human Umbilical Cord MSCs B6.lpr mice tail vein 1 × 106 MSCs,
at the age of 6 months

Zhang et al. (80)

Human bone marrow MSCs NZB/W mice retro-orbital injection 1 × 106 MSCs,
at 17, 19, and 21 weeks of age

Jang et al. (81)

Human Placenta-Derived Mesenchymal Stem
Cells

MRL/lpr mice tail vein 1 × 10 6MSCs,
at the 16th, 18th, and 20th week of age

Liu et al. (156)

Human adipose tissue-derived MSCs C3.MRL-Faslpr/J mice intravenous 1 × 10 6MSCs,
every two weeks at 5 weeks
a total of 18 times

Choi et al. (55)

Human adipose tissue–derived mesenchymal
stem cell

(NZB × NZW)F 1 mice intravenous 1× 106 MSCs, every 2 weeks from age 5
weeks until age 23 weeks

Choi et al. (128)

Mice adipose-derived MSCs MRL/lpr mice intravenous 2×105/10g MSCs, from age 28 to 31 weeks,
for a total of four injections

Wei et al. (137)

Human embryonic stem cell-derived MSCs NZBxNZW F1 (BWF1) intravenous 5 × 105 MSCs,
from 23–33 weeks of age
in a bi-weekly

Thiel et al. (151)

Bone marrow MSCs from BALB/c mice NZB/W mice intraperitoneal
injection

1× 106 MSCs,
at 21 or 32 weeks of age

Youd et al. (168)

Bone marrow MSCs from MRL/lpr mice MRL/lpr mice intravenous 0.1 × 106/10 g MSCs, at 18 weeks of age Che et al. (17)
Bone marrow MSCs derived from C57BL/6J NZB/Wf1 mice tail Vein 1×106 MSCs/kg, at 18 or 22 weeks of age Tani et al. (169)
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autoimmune responses, as there is ample proof of principle for
conducting preclinical and clinical experiments.
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