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MVsim is a toolset for quantifying and
designing multivalent interactions

Bence Bruncsics1,3, Wesley J. Errington 2,3 & Casim A. Sarkar 2

Arising through multiple binding elements, multivalency can specify the
avidity, duration, cooperativity, and selectivity of biomolecular interactions,
but quantitative prediction and design of these properties has remained
challenging. Here we present MVsim, an application suite built around a con-
figurational network model of multivalency to facilitate the quantification,
design, and mechanistic evaluation of multivalent binding phenomena
through a simple graphical user interface. To demonstrate the utility and
versatility of MVsim, we first show that both monospecific and multispecific
multivalent ligand-receptor interactions, with their noncanonical binding
kinetics, can be accurately simulated. Further, to illustrate the conceptual
insights into multivalent systems that MVsim can provide, we apply it to
quantitatively predict the ultrasensitivity and performance of multivalent-
encoded protein logic gates, evaluate the inherent programmability of multi-
specificity for selective receptor targeting, and extract rate constants of con-
formational switching for the SARS-CoV-2 spike protein andmodel its binding
to ACE2 as well as multivalent inhibitors of this interaction. MVsim and
instructional tutorials are freely available at https://sarkarlab.github.io/
MVsim/.

Multivalent interactions are fundamental building blocks of supra-
molecular systems. Deriving from multiple binding elements within
sets of interacting molecules, multivalency is used to regulate intra-
cellular compartmentalization1–5, high-avidity interactions6–9,
ultrasensitivity10, and dynamics and selectivity of molecular
recognition11–13. The expansive utility of multivalency has driven
multiple computational approaches to describe aspects of multi-
valent interactions14–22. These models range from fundamental treat-
ments of linker-driven bivalent interactions14,16, to system-specific
descriptions of complex ligand recognition17–19, to coarse-grained
approaches that model multisite engagement at surfaces20–22. Given
that multivalency is a powerful design element of natural and syn-
thetic systems that is easy to implement yet difficult to predict, there
is a need for holistic, quantitative molecular frameworks that can
integrate existing approaches in the literature, that are extensible
across the multivalency design landscape, that render molecular

inputs and kinetic outputs in experimentally testable formats, and
that can be presented as simple interactive tools for researchers
performingmodel-guided experimentation.We previously developed
a conceptualization of multivalency that described the noncanonical
signatures of multivalent receptor–ligand interactions as the flux
through an interconnected network of configurational microstates23.
This approach provided highly resolved mechanistic insights into the
dynamical events that underlie simple multivalent interactions and
indicated a means with which to extend existing experimental tech-
niques—such as surface plasmon resonance (SPR)—to macro-
molecular systems previously beyond the scope of quantitative
analysis due to their complexity and heterogeneity24,25. However, this
conceptual framework was limited to monospecific multivalent
interactions between proteins of certain topologies and was also not
practically implementable to quickly analyze and design a wide range
of molecular systems26–29.
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Here, we have developed an expanded computational method
based on the original conceptual framework, which we present as
MVsim, an interactive toolset with a simple graphical user interface
(GUI) for the design, prediction, multidimensional parameter
exploration, and quantification of multivalent binding phenomena.
MVsim enables users to simulate multivalent binding through an
expansive implementation of configurational multivalent networks
within the MATLAB software environment30. With user-specified
kinetic, topological, and structural parameters, MVsim simulates the
conformational dynamics and binding responses for multivalent
interactions that canbe composed ofmultimeric,multidomain, and/or
multi-ligand systems of interacting biomolecules. Further, MVsim
synthesizes its outputs as sets of interactive kinetic traces to facilitate
visualization, inspection, quantification, curve fitting, and experi-
mental implementation of the structure–activity relationships and the
information-coding intrinsic to multivalency.

We first validate the ability ofMVsim to accurately simulate both
monospecific multivalent interactions (i.e., a single repeated ligand
domain ononebindingpartner and a single repeated target domain on
the other) and multispecific multivalent interactions (i.e., more than
one ligand domain and/or target domain in the interacting protein
pair), the latter of which was not possible in our earlier model of
multivalency23. To then demonstrate the application ofMVsim, we use
experiment-guided modeling to quantify switch-like signaling of syn-
thetically designed systems31, uncover design rules and predict the
response dynamics of multivalent logic gates31, and leverage multi-
specific ligand architectures to enable selective receptor targeting for
therapeutic development10. Further, we apply MVsim toward the
inspection and quantification of viral spike protein dynamics. At pre-
sent, the importance of multivalency is assertively highlighted in the
mechanics of infection and therapeutic targeting of the config-
urationally dynamic, trimeric SARS-CoV-2 S protein32,33, its dimeric
ACE2 receptor34,35, and a growing library of designedmonospecific and
multispecific multivalent neutralizing inhibitors36–40. Here, we use
MVsim to derive an effective concentration for the ACE2 interaction,
quantify intramolecular rate constants of SARS-CoV-2 S protein
receptor binding domain (RBD) conformational switching that enable
host-cell engagement, and probe the consequences of variants with
altered conformational stability of the S protein. This series of multi-
valent and multi-ligand simulations served as a means to quantify the
relationships between macromolecular topology and SARS-CoV-2 S
protein response dynamics, infectivity, and therapeutic targeting.

In sum, MVsim offers an intuitive and facile molecular design
toolset, bringing enhanced quantification and predictive design of
multicomponent and multivalent systems to protein engineering,
molecular and cellular analysis, and therapeutic design.

Results
Development of MVsim
MVsim is a multivalent interaction toolset built upon our configura-
tional microstate network model23, which expanded upon prior mod-
eling efforts in the literature by explicitly treating multivalency as a
dynamic ensemble of binding configurations driven through local,
topology-derived effective concentrations. MVsim represents a
reconceptualization and application of the initial, more limited net-
work model to now provide mechanistic descriptions of an array of
biologically and therapeutically relevant multivalent systems and to
quantitatively predict binding responses and conformational dynam-
ics across a breadth of parameter space31,37,40.

The creation of the MVsim toolset translated the fundamental
concepts of the networkmodel into the MATLAB coding environment
through a series of implementations that represent significant advan-
ces in its ability to easily simulate a broad range of multivalent inter-
actions. First, to describe a user-specified multi-ligand, multivalent
interaction system, we developed a rule-based modeling routine to

automatically enumerate all possible binding microstates and config-
uration transitions between them in order to generate a descriptive
kinetic model (Extended Methods, Supplementary Information). For
example, extended to its furthest, MVsim simulates competitive
interactions among three topologically-varied trivalent ligands for a
trivalent receptor, described with a system of 1538 differential rate
equations.

Second, MVsim effectively and rapidly parameterizes the system
of rate equations with computed topology-derived first-order rate
constants of association. Here, MVsim uses dimensionally-reduced
polar coordinate integrations of the molecular interaction volumes.
With this approach, the frequency of all pairwise combinations of
multivalent interaction between a ligand and receptor binding domain
are calculated with joint probability density functions to yield a set of
effective concentrations. This routine enables efficient calculations to
be performedwith high spatial resolution for nanoscale andmesoscale
multivalent species with domain diameters, linkages, and persistence
lengths exceeding 1000Å.

Third,MVsim has an extensive multiparameter description of the
molecular multivalent landscape that allows for zero-fit prediction of
the response dynamics of fully parameterized systems where
experimental multivalent data are absent. Conversely,MVsim enables
parameter estimation for topologically under-characterized systems
where multivalent binding kinetics have been measured. MVsim
facilitates quantification of multivalent binding responses in terms of
effective rate constants of association (keff

on ) and dissociation (keff
off ),

equilibrium dissociation constants (Keff
D ), competitive inhibitor

potency ðIC50Þ, and Hill coefficients (nH) describing ultrasensitive
switch-like behavior.

Parameter inputs
Interfacing MVsim with MATLAB’s app design environment enabled
the creation of a tabbed GUI to guide the specification of biologically
important manifestations of multivalency via multiparameter inputs.
TheMVsim GUI enables full input parameterization of the domain and
linkage topologies of the ligand(s) (Fig. 1a) and receptor (Fig. 1c), the
monovalent kinetics between each pairwise combination of ligand-
receptor binding domains (Fig. 1a), the temporal ligand concentration
dynamics (Fig. 1b), and the set of parameters that govern SPR and
related kinetic studies, including the association and dissociation
times, flow rate, and level of the immobilized receptor. In addition, for
instances where detailed topological information is known, MVsim
allows users to directly input effective ligand concentrations and end-
to-end probability density functions for the multivalent system of
interest (Supplementary Fig. 1). Finally, once a multivalent design has
been inputted, the user can initiate MVsim and subsequently survey a
range of non-topological parameter variants in quick succession
(Fig. 1d). Tutorials for navigating the GUI and inputting parameters are
available in the Supplementary Information and on theMVsim GitHub
page (https://sarkarlab.github.io/MVsim/). Supporting figures that
detail the parameter inputs used for each simulation in this study are
also provided in the Supplementary Information.

Simulation outputs
Following the initiation of a simulation,MVsim provides users a variety
ofmeans to visualize, interact with, and export the simulated response
kinetics. Most simply, the simulation results are displayed within the
output field as an interactive plot of the binding response signal as a
function of the specified association and dissociation time (Fig. 2).
Here, users can choose between twographical outputs of the response
kinetics. First, as is typical of experimental kinetic binding data, a plot
of a user-specified ligand concentration is displayed (Fig. 2a). Alter-
natively, users can select a plot of all composite microstate config-
urations underlying the response signal (Fig. 2b), binned according to
valency class (Fig. 2c) or by ligand class to observe the competitive
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bindingdynamics amongmultiple ligands (Fig. 2d).MVsim additionally
enables users to visualize the dynamic evolution of the microstate
network via an interactive map (Fig. 2e) and to export the response
kinetics as a set of tab-delineated text files to facilitate deeper analysis
through offline plotting and curve fitting, and through microstate
network analysis within the Cytoscape software environment41.MVsim
also allows users to directly inspect both the computed probability
density functions and effective concentrations (Supplementary Fig. 2).

Assessing performance against experimental model systems
To evaluate the accuracy of simulating complex topologies, MVsim
was used to predict the binding response dynamics for three multi-
valent systems (Fig. 3). First, we evaluated our previously con-
structed monospecific multivalent interaction (i.e., composed of a
single pair of protein interaction domains; Fig. 3b). Then, we eval-
uated two additional experimental systems: a multispecific multi-
valent interaction (i.e., composed of two sets of interaction domains;

Fig. 1 | The MVsim input design interface provides interactive parameter spe-
cification for systems of multivalent, multi-molecular interaction. a A point-
and-click interface enables the user to select the number of ligands (up to three)
and valencies of the ligand(s) and receptor (up to trivalent) that compose the
multivalent system. Based upon the chosen design, the user specifies the struc-
ture of each of the ligands by entering the applicable molecular weight (MW);
the binding domain diameters (Ø); the contour lengths (lc) of the linkers (i.e., the
maximum end-to-end distance; e.g., 3.5 Å and 1.5 Å per amino acid for a random
coil and alpha helix, respectively); and the persistence lengths (lp) of the linkers.
Further, the applicable combinatorial interactions (numbered 1 to 9) unique to
each receptor–ligand pairing are highlighted. Parameter fields allow the input of
monovalent rate constants for each pairwise interaction. Non-binding interac-
tions can be indicated with kon and koff values of zero (e.g., as illustrated with
Ligand B in yellow for interactions “1” and “5”). b An input field allows the user to
specify patterns of the total, bulk ligand concentrations. An association phase

occurs during periods of non-zero bulk ligand concentration (e.g., 90–270 s for
Ligand B). Dissociation phases occur when the ligand is removed from the bulk
solution (e.g., 360–720 s for Ligand A). Here, Ligand C is specified as continuously
present in solution during the 720 s of the interaction timecourse. The graphical
display allows visualization of the specified bulk concentration pulse pattern.
c User input parameters for the receptor. Receptor concentration can be speci-
fied as either an SPR-mimicking surface density (measured in RU; where 1 RU
equals ~1 pg/mm2) or a molar concentration. Receptor topology is specified in the
same form as described above for the ligands. d TheMVsim controller tab enables
initiation, iteration, and export of binding simulations. “Initiate” executes a
simulation. “Re-run” executes an abbreviated simulation used when no changes
were made to the valency or topology of the system. “Reset” relaunches the
app and clears user input parameters from all fields. Tutorials illustrating
the input interfaces are available in the Supplementary Information and at
https://sarkarlab.github.io/MVsim.
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Fig. 3d) and a combined multispecific/multi-ligand interaction
(Fig. 3g). To directly compare MVsim to our previous studies, we
evaluated a monospecific interaction composed of a kinetically and
structurally parameterized pair of protein–protein interaction
domains (SH3 and SH3-binding peptide (SBP); our experimental
parameterization by SPR is shown in Fig. 3a)42, rendered multivalent
with polypeptide linkages parameterized using literature-derived
topological values (Fig. 3b)43–46. Here, MVsim predicts monospecific
multivalent binding (Fig. 3c) but now also shows improved sensitivity
to the topological constraints that can impede certain configura-
tions, such as those that requiring contorted twisting of interdomain
linkages, resulting in model-experiment agreement with a root-
mean-square error (RMSE) of 2.1 RU (7% of the average signal;
Fig. 3c). Moreover, by extending these simulations through sys-
tematic parameter variation, MVsim identified ligand concentration
as the parameter with the most sensitive effect on the simulated
binding response of this system. By increasing the simulated ligand
concentration just twofold, an improved overall model-experiment
agreement was observed in both the low concentration ligand con-
ditions and in the magnitude of the biphasic association. This
improvement in fit, however, is at the expense of capturing the
modest kinetic burst at early times (Supplementary Fig. 3a),

underscoring the complex, interconnected relationships between a
single parameter value and multiple descriptive noncanonical fea-
tures of multivalent binding responses.

We further used MVsim to make predictions of multispecific and
multi-ligand interaction systems. In the first validation, a multispecific
receptor–ligand architecture was designed through incorporation of a
second set of protein–protein interaction domains (Prb and Pdar;
Fig. 3a). Again, in addition to the experimentally determined mono-
valent kinetic rate constants (Fig. 3a), literature-derived properties of
the molecular structures and topologies were used to parameterize
the model (Fig. 3d)43–46 and to generate a simulated dataset (Fig. 3e).
Comparing simulation with the corresponding SPR dataset (Fig. 3f)
demonstrates good agreement with regard to the ability of MVsim to
predict a priori the magnitude and multiphasic character of the
experimental binding responses. Further,MVsim providesmechanistic
explanations for these binding responses, showing, for example, the
contribution of high-stoichiometric configurations to the microstate
ensemble driven by the use of rigid, α-helical linkers (Supplementary
Fig. 4a–c). The quantitative RMSE between model and experiment of
1.6 RU (6% of the average signal) indicates that the simulations effec-
tively captured the experimental binding responses to a significant
degree. Moving beyond zero-fit predictions, MVsim identifies

Fig. 2 |MVsimgeneratesa series ofoutputs thatenable interactive visualization
of binding responses, configurationalmicrostates, andmulti-ligand dynamics.
a A simulated SPR sensorgram displays the overall response dynamics (i.e.,
summation of all ligands and binding microstates) for specified ligand con-
centration(s). Indicated here are the binding responses for a serial dilution of a
single ligand binding to a receptor with association (0–300 s) and dissociation
(300–600 s) phases. For a simple quantitative comparison between simula-
tions, an overall effective KD can be calculated by the equilibrium method.
b For a specified ligand concentration, all composite microstates are displayed.

c, d To facilitate analyses of the binding responses, the microstates can be
binned according to either c valency or d ligand class. e For visual analysis of
the evolution of a network of microstates in b, an interactive graph shows
population changes in microstate classes over a timecourse of association and
dissociation. The simulations in these figure panels are not related to one
another; they are for illustrative purposes to highlight the distinctive features
in each view. Tutorials illustrating the output interfaces and features are
available in the Supplementary Information and at https://sarkarlab.github.
io/MVsim.
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parameters that most sensitively affect the multivalent binding
response. Here, for example, the persistence lengths of the ligand
linkages present as themost sensitive system parameters. Increases to
the rigidity of the ligand linkers in this system served to place the
ligand-receptor binding domains slightly out of optimal register,
modestly enhancing the presence of high-stoichiometric binding
states in the association phase and increasing the rate of dissociation
(Supplementary Fig. 3b).

As a secondmodel-experiment validation, the monospecific and
multispecific designs (Fig. 3a, b, d) were combined to create a kine-
tically and topologically parameterized dual ligand interaction sys-
tem (Fig. 3g). The simulated binding responses (Fig. 3h) succeed in
capturing the multiphasic association and dissociation dynamics
present in the experimental SPR data (Fig. 3i). Moreover, beyond
simply predicting the overall kinetics of the system, MVsim provides
insights into the mechanics of multiple multivalent and multispecific
ligands competing for a receptor, and attributes these molecular
properties back to the macroscopically observable features of the
multiphasic binding responses. Here, for example, MVsim captures
how effective rate constants of dissociation can be dictated by
valency and can be used to effect the temporal ordering of

interactions between a rapidly, but more transiently, binding
monovalent ligand and a slower, but more avid, multivalent ligand
(Supplementary Fig. 4d–f). Further, as in the multispecific validation,
parameter variation can again be used to assess model-experiment
agreement. Here, for example, our zero-fit simulation of this multi-
valent, bispecific, and multi-ligand interaction system agreed with
the experiment with an RMSE of 2.0 RU (9% of the average binding
signal). While the zero-fit simulation again captured the biphasic
features of the association and dissociation phases of the binding
response, the relative proportions of the fast and slow phases were
less well predicted. Through parameter variation, MVsim identified
kon for Ligand B as a parameter that sensitively affects these multi-
phasic binding responses (Supplementary Fig. 3c). Here, for exam-
ple, a twofold increase in the Ligand B kon in themodel yielded better
quantitative agreement to the fastest phase of the experimental
association curve at the highest ligand concentration (Supplemen-
tary Fig. 3c; 0–2 s of the association phase) and the slowest phase of
the experimental dissociation curve (Supplementary Fig. 3c;
125–250 s). However, these two improvements in model-experiment
agreement came at the expense of over-representing the amount of
Ligand B that remains bound to the receptor at equilibrium

Fig. 3 | MVsim accurately simulates beads-on-a-string multivalent, multi-
specific, and multi-ligand interactions. a Monovalent SPR kinetic rate constants
were experimentally determined for the SH3-binding peptide (SBP)-SH3 (a, left
panel) and Prb-Pdar (a, right panel) interactions that were used to build the mul-
tivalent systems. Kinetic fits with a “rapidmixing” 1:1 Langmuirmodel showedgood
agreement since the experimental conditions were not significantly mass-transfer
limited (see Supplementary Experimental Methods). b A trivalent, monospecific
receptor–ligand interactionwas engineered andparameterizedwithinMVsimusing
values for the kinetic rate constants of association (kon) and dissociation (koff),
domain diameters (Ø), and contour (lc) and persistence (lp) lengths for the linkers.
c Simulated (c, left panel) and experimental (c, right panel) binding response
dynamics for the trivalent,monospecific interaction at seven ligand concentrations
(0.98, 3.9, 15.6, 62.5, 250, 1000, and 2000nM). Model-experiment RMSE is 2.1 RU.
d A trivalent, bispecific receptor–ligand interaction was engineered and para-
meterized using values for the kinetic rate constants of association (kon) and

dissociation (koff), diameters (Ø) for the protein–protein binding domains, and
contour (lc) and persistence (lp) lengths for the alpha-helical linkers. Arrows indi-
cate compatible interactions between receptor and ligand binding domains.
e Simulated binding responses for the parameterized trivalent, bispecific interac-
tion at four simulated ligand concentrations (0.1, 1, 10, and 1000nM).
f Experimental SPR binding response dynamics for the trivalent, bispecific inter-
action at the same four ligand concentrations as in e. Model-experiment RMSE is 1.6
RU. g The Pdar-Prb and SBP-SH3 protein–protein binding domains were used to
create a multi-ligand system. h Simulated binding response dynamics modeled by
MVsim for the parameterized dual ligand system. An overlay is shown of binding
responses for three simulated mixtures of ligands A and B (1 nMA+ 2.5 nM B;
1 nMA+ 50nM B; and 1 nMA+ 250 nM B). i Experimental SPR binding response
dynamics for the same three dual ligandmixtures as in h. Model-experiment RMSE
is 2.0 RU. The input parameters for these simulations are provided in Supple-
mentary Fig. 5. Source data are provided as a Source Data file.
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(Supplementary Fig. 3c; ~125 s). Again, this analysis of parameter
sensitivity highlights the complex relationship between a single
parameter value and the descriptive features of the binding
response, here specifically in regard to the competitive dynamics
between the ligands for the receptor.

Applications to multivalent system design and quantification
MVsim was established to both guide the design and implementation
of multivalent properties and to facilitate parameter estimation for
existing and incompletely characterized natural and synthetic multi-
valent systems. Here, the model’s lack of reliance upon fitted para-
meters enables MVsim to better describe the additive, competitive,
and cooperative relationships implicit among kinetic, topological, and
valency parameters and to apply these to the quantification of multi-
valent properties, such as effective concentration, avidity, and binding
selectivity. To evaluate the performance of MVsim as a molecular
design and quantification tool, we assessed its ability to design and
predict binding response dynamics in four different instances and
applications of multivalency.

MVsim predicts ultrasensitive behavior in engineered protein
switches and logic gates
The effective concentration that drives multivalent binding gives
these systems the inherent ability to produce nonlinear input/output
response dynamics. It has been previously demonstrated, for exam-
ple, that ultrasensitive toggling can be driven through the intro-
duction of monovalent counterparts into a multivalent system31.
Dueber et al. showed that cooperative competitive dissociation of
multivalent protein–protein complexes effects switch-like transi-
tions that can be leveraged to control the fractional saturation of
receptor–ligand interactions and enzymatic activity. Here, we apply
MVsim to study the activation dynamics of engineered bivalent and
trivalent protein switches and identify critical parameters for optimal
system performance. MVsim quantitatively predicts the relationship
between the valency of the system and the magnitude of its coop-
erative transition to an active state (Fig. 4a). The functional range of
multivalent switches can be extended through the incorporation of
multispecific interactions. This design approach enables the creation
of AND logic gates in which a switch response is elicited only by a
programmed combination ofmolecular inputs. Even though catalytic
activity (and not SPR) was used to measure output in this experi-
mental system, MVsim could still qualitatively capture the three-
input gating function for the available experimental data (Fig. 4b). In
addition, our simulations suggested likely spurious two-input acti-
vation of the system (Supplementary Fig. 6a, b; bars v–vii), as a
consequence of the nontrivial activation that is observed computa-
tionally by single inputs (Supplementary Fig. 6b; red bars ii–iii) and
that is even more prominent in the experiments, due to significant
basal activation and single-input PDZ activation (Supplementary
Fig. 6b; gray bars i and iv, respectively). The simulations failed to
predict these latter two instances, which were the mildest activators
(i.e., no input or the lowest-affinity input), suggesting that the steri-
cally constrained experimental system produces basal activation
beyond the idealized topological treatment in the simulations.
Finally, through parameter exploration, MVsim guided the identifi-
cation of key steric constraints within the system that could con-
tribute to the observed basal and single-input activations and
indicated an optimized molecular design (Supplementary Fig. 6c)
that could minimize these impediments within the auto-inhibited
conformation with extended flexible linkages and equalized the
interdomain binding kinetics to improve the dose-responsiveness of
the agonists. The result was a more tightly controlled simulated
system that better maintains an inhibited state in the presence of
zero-, one-, and two-input conditions (Supplementary Fig. 6c; bars i,
ii–iv, and v–vii, respectively).

MVsim informs the use of multispecificity for molecular recog-
nition and therapeutic targeting
Multispecificity is a potent molecular design element that is widely
used in drug discovery and cell engineering. By leveraging two or
more distinct binding epitopes, multispecific interactions are
employed to engineer highly avid and selective molecular recogni-
tion for use in such applications as bispecific therapeutic
antibodies10,27 and chimeric antigen receptor T cells47. Multisite
recognition additionally enables higher-order information proces-
sing, allowing these multispecific systems to generate differential
outputs to varying combinations of inputs11,12. Because the network
model of multivalency computes multivalent binding as the coop-
erative sum of its composite interactions,MVsim is well-suited to the
study of such multipartite interactions.

For example, multispecific interactions can be designed to maxi-
mally exploit any degree of variation in the type and number of surface
receptors and antigens within a population for the purposes of selec-
tive targeting10. In this regard, we directed MVsim to address a design
question: given a population of three distinct types of antigenic cell
surfaces (Fig. 4c), what are the optimal ligand designs that can singly,
doubly, and triply interrogate the population? MVsim demonstrates
that the composition of the target receptor serves as a generally useful
guide for ligand design, as seen, for example, in the relative selectivites
of mono-, bi-, and trispecific Ligands 1, 3, and 7, respectively, for
Receptor 3 (Fig. 4c). Moreover, selective recognition can be further
tuned using designed linkages that leverage the spatial proximity
between receptor target surfaces; Ligand 2b (rigid linkage) has greater
selectivity than Ligand 2a (flexible linkage) for Receptor 2 (Fig. 4c).

The information-coding capacity of multivalent interactions can
also effect the temporal ordering of ligand binding to a single receptor
target when multiple multivalent ligands are introduced simulta-
neously (Supplementary Fig. 7a–c), a phenomenon that is not possible
in a comparable monovalent system (Supplementary Fig. 7d–f).
Exploration of the simulated parameter space in this system revealed a
multivalent design leveraging kinetics, avidity, and stoichiometry that
enables serial phases of dominant ligandengagement by exploiting the
cumulative effects of concurrent binding afforded by multispecificity,
the cooperative, competitive binding of multi-ligand dynamics, and
the generation of effective dissociation rate constants viamultivalency
(Supplementary Fig. 7c).

MVsim models the multivalency and avidity of SARS-CoV-2 S
protein interactions
At present, one of the most prominent and consequential displays of
multivalent binding involves the surface spike (S protein) of SARS-CoV-
2. The S protein is a sophisticated, conformationally activated mole-
cular system that mediates selective recognition of target cells and
generates the driving force needed to overcome the energy barrier of
membrane fusion, thus enabling viral entry into the host32,33. The
multimeric and multivalent configuration of the S protein is central to
these functions48. Trimeric assembly serves to stabilize the S protein
against erroneous fusogenic conformational changes, establish allos-
teric control, and potentially present multiple receptor binding
domains (RBDs) that bind multivalently with a host-cell surface
populated with dimeric ACE2 receptor proteins48. In response to these
natural displays of multivalency, this same principle has been mobi-
lized in therapeutic designs intended to neutralize, inhibit, or other-
wise uncouple the structure–activity relationship of the S protein35–40.

Despite the significantly more complex multivalent architecture
of the S protein compared with our previously described applications,
MVsim can be effectively parameterized to model and quantify critical
structural properties of the S protein-ACE2 interaction (Supplemen-
tary Fig. 8a, b). For example, it remains an open question the extent to
which the trimeric S protein can multivalently engage a bivalent ACE2
receptor. This is of considerable importance for our understanding of
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how the affinity and avidity of S protein binding relate to infectivity,
and what consequences this poses for therapeutic inhibition40,49. In
synthetically engineered multivalent instances of the RBD-ACE2
interaction, MVsim quantitatively predicts the relative lack of steric
hindrance that affords the ultra-high-avidity binding observed in a
study by Chan et al.40 (Fig. 5a, b). In contrast, experiments performed
on more biologically mimetic S protein-ACE2 interactions indicate a
significant impediment toward high-avidity binding40. UsingMVsim to
fit therapeutic neutralization datasets reveals an effective ligand con-
centration, ½Leff �, for the second engagement event between S protein
and ACE2 that is 2000-fold less potent than that observed in the
sterically unimpeded system (Fig. 5c, d)40. This inability to achieve
high-avidity binding (e.g., a network in which >95% of the populated
microstates are bound with maximal valency, as is the case for the
“High” simulation in Fig. 5d) can be explained by the combination of
the rigidity of the ACE2 dimer and the apparently constrained,

directional motion of the linkage tethering the RBD. Quantitative
modeling approaches such as these indicate a significant potential for
therapeutic designs that can potently outcompete the RBD-ACE2
interaction by leveraging multivalent binding in ways inaccessible to
the S protein (Fig. 5e, f). Specifically, MVsim predicts that up to 1000-
fold enhancements in IC50 values can be achieved through the use of
topologically precise and constrained linkages within a designed, tri-
valent multispecific neutralizing therapeutic (Fig. 5e, f). Reciprocally,
MVsim further demonstrates how bivalency can be effectively lever-
aged with appropriate linkages to avidly block the RBD binding sur-
faces of the ACE2 dimer (Supplementary Fig. 8c, d).

MVsim quantifies the dynamics of SARS-CoV-2 S protein con-
formational switching
In addition to the sterically impeding immobility of the S protein-ACE2
interaction (Fig. 5c, d), multivalent engagement is limited by the

Fig. 4 | MVsim predicts and informs the design of switch-like dynamics, logic
operations, and target-receptor selectivity implicit to multivalent systems.
a Experimental response dynamics of synthetic monovalent and trivalent
switches from ref. 31 were used to benchmark the predictive performance of
MVsim simulations described by the reported structural, topological, and kinetic
parameters. Ultrasensitivity of each simulated response is reported with a cal-
culated Hill coefficient (nH) for direct comparison with the reported literature
values. b Experimental output responses for a trispecific AND logic gate, also
from ref. 31, benchmarked against an identically parameterized system inMVsim.
For clarity, the AND gate is depicted (diagram, top left) in its originally designed
twisted configuration (detailed in Supplementary Fig. 6). Simultaneous addition

of the three inputs (SH3, PDZ, and GBD-binding peptides; colored purple, yellow,
and blue, respectively) flips the AND gate into an active conformation. To ensure
optimal system performance, it is desirable to prevent activation of the AND gate
with subthreshold inputs, though this is difficult to achieve through ad hoc
experimentation. Here, nontrivial subthreshold activation is indeed observed
(bars i–iv). c MVsim specifies optimal design of multivalent and multispecific
ligands to yield desired patterns of selective interactions within a pool of three
receptors with common binding domains. The affinities for the receptor–ligand
binding domains (colored blue, yellow, and purple) are as described in b. The
MVsim input parameters for the simulations in a–c are further detailed in Sup-
plementary Fig. 6.
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accessibility of the RBDs, as they dynamically sample configurations
ranging from the occluded yet stabilized “RBD-down” conformation to
the labile yet ACE2-binding competent “RBD-up” conformation33,48.
The dynamics of this range of RBD motion are a significant target of
selective pressure as the benefits of maximizing host-cell binding are

countered by the need to stabilize the S protein against spontaneous
fusogenic conformational change and immune surveillance of
exposed critical surfaces48. To examine intramolecular conformational
changes that yieldmultivalent binding, we appliedMVsim to simulate a
multicomponent experimental system consisting of a stabilized

Fig. 5 | MVsim models the multivalency of the SARS-CoV-2 S protein RBD and
ACE2 interaction and suggests therapeutic design strategy. a An idealized,
flexible synthetic design of an ACE2–RBD bivalent architecture. Here, the synthetic
design removes the RBD from the biologically relevant and constrained context of
the rest of the S protein. b The flexible RBD linkers afford a high-avidity bivalent
interaction with the dimeric ACE2 that was beyond the quantification limits of the
experimental SPR. Here, MVsim was parameterized with the features of the
experimental systems and offers prediction and quantification of the ultra-high-
avidity interaction. c Application ofMVsim to a biologically relevant instance of the
SARS-CoV-2 S protein RBD and ACE2 interaction. Here, the therapeutic neutralizing
activity of soluble, dimeric ACE2 (purple) was quantified in a SARS-CoV-2 pseudo-
virus-host-cell system40. d The resulting IC50 datasets were applied to MVsim in
order to fit for a more biologically relevant determination of the multivalent
binding capacity of the S protein-ACE2 interaction. The experimental data (purple

traces) are adapted from ref. 40 The best fit from MVsim gave an [Leff] of 100nM
(curve outlined in black), falling between the “Low” and “Medium” standard curves
(shades of red), which represent no capacity and a modest steric capacity for
bivalent binding, respectively. These simulations indicate that the RBDs in the full
context of the S protein are significantly impeded for direct bivalent binding to
ACE2. e This steric impediment can be exploited to maximize neutralizing potency
by fully leveraging therapeutic multivalency. f MVsim can test the design of neu-
tralizing inhibitors that maximally outcompete the ACE2 interaction. Designs
leveraging monospecific bivalency (top panel) and trivalent bispecificity (bottom
panel) are computationally modeled for their neutralizing strengths and off-rate
dependentpharmacokinetic half-lives in thepresenceof constant S protein (orange
bar above plot) and decaying concentration of therapeutic (blue bar). The input
parameters for these simulations are given in the MVsim user tutorial in the Sup-
plementary Information.
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trivalent S-protein, a set of first-order rate constants (kup and kdown)
describing RBD conformational change, and a trivalent ligand specific
for the RBD-down conformation (Fig. 6a). MVsim, constructed and
parameterized in this way, succeeded not only in recapitulating the
experimental multiphasic kinetic traces obtained in a study by Schoof
et al.37 (Fig. 6b, c), but also in relating these response dynamics to the
rates of RBD conformational switching. MVsim was used to derive the
best-fit parameter values that describe the conformational switching:
kup = 0.017 s−1 and kdown = 0.008 s−1 (Fig. 6d, e). These correspond to
individual RBD half-lives of ~1.4min in the RBD-up configuration and
~0.7min in the RBD-down configuration for this stabilized, in vitro S
protein system. The data-richness of multiphasic SPR sensorgrams is
underscored by the fact that the S protein binding response dynamics
are uniquely determined by a single set of kinetic constants (Fig. 6d, e).
For example, variations in kup and kdown that maintain the equilibrium
constant (i.e., constant kup=kdown ratio) nonetheless result in diag-
nostically different response dynamics (Supplementary Fig. 9). To
further assess the accuracy of the MVsim-derived values of kup and
kdown, these rate constants were used to parameterize a simulated SPR
experiment probing the lifetime of the stabilized RBD-all-up state.
Here, good agreement was observed between model and experiment
(Fig. 6f, g)37.

Given the uniqueness of the fitted parameters in this system,
MVsim should be similarly capable of uncovering the conformational
dynamics of other S proteins. Notably, the half-lives for the syntheti-
cally stabilized S protein examined in this study are ~35-fold slower
than those recently measured for the native S protein using FRET
sensors50. In addition, S protein conformational dynamics are of par-
ticular importance for understanding the mechanisms through which
emerging SARS-CoV-2 mutational variants of concern (VOCs) increase
infectiousness51. Mechanistically, S protein VOCs can function to
stealth this protein from host immune surveillance, enhance the
binding kinetics/affinity of the RBD-ACE2 interaction, stabilize the
RBD-up configuration to increase the avidity of virion-host-cell
engagement, and/or augment conformational allostery that enables
RBD binding to prime activation of membrane fusion51. To further
applyMVsim to study S protein conformational dynamics, simulations
were performed with the parameterized S protein RBD ensemble
(Supplementary Fig. 10a) to probe the effects of kup and kdown on the
ensemble of RBD configurations (Supplementary Fig. 10b–d). Stabili-
zation of the RBD-up state leads to commensurately stronger ACE2
receptor binding (Supplementary Fig. 10e–g).

Discussion
MVsim is a toolset created for the design, prediction, quantification,
and mechanistic analysis of multivalent molecular interactions. It
empowers users to explore topologically complex multicomponent
systems with an interactive GUI and to probe the relationships among
configurational dynamics, cooperativity, effective concentration, and
competitive binding that underlie the programmability of multivalent
behavior. MVsim offers a considerable range of user inputs to para-
meterize the composition, kinetics, structure and topology, con-
formational flexibility, and component concentrations to simulate
various disparate instances of multivalency in natural systems and
synthetic designs.

Effectively simulating complex instances ofmultivalencyhas been
hindered by the inherent combinatorial and spatial complexities that
arise from binding domains sampling increasingly large, sterically
constrained volumes to engage in a multitude of transient, pairwise
interactions with unique energetic permissibilities7,8,10. MVsim addres-
ses this challenge by combining rule-based modeling and multi-
dimensional integrations to rapidly simulate system behavior by
effectively tracking the evolution of hundreds of configurational
binding state transitions throughout the lifetime of the molecular
interaction. This generalized and extensible computational approach

provided a means to create a consolidated modeling routine that
yielded accurate and meaningful predictions of systems including
simplistic beads-on-a-string topologies, intramolecular switches, and
conformationally-regulated multicomponent assemblies.

Here specifically, we demonstrate the ability ofMVsim to capture
the unique multiphasic kinetics characteristic of multi-ligand, multi-
specific, and multivalent systems. We further show howMVsim can be
used to predict and refine the design of systems that leverage multi-
valency to achieve nonlinear and ultrasensitive outputs, as well as the
additional layering of multispecificity to create AND gate input/output
operations. Further, we showuseofMVsim in the advanced application
of multispecificity toward the design of multivalent ligands capable of
maximally distinguishing among pools of receptor targets. Finally, to
demonstrate the features andmultiparameter inputs ofMVsim applied
to their fullest extent, a variety of therapeutically relevant structural
features were computed for the SARS-CoV-2 S protein. Notably,MVsim
was used to extract the effective concentration for the ACE2 interac-
tion, quantifying the sterically unfavorable interaction that had pre-
viously been inferred from structural modeling, and to devise
therapeutic designs thatmore effectively leveragemultivalent binding.
In addition,MVsimwas readily applied tobulkkineticmeasurements to
extract conformational rates of RBD switching, a biophysical property
of the S protein and other viral spike proteins that are typically mea-
sured using single-molecule FRET50,52. In contrast to these sophisti-
cated probe-based techniques, MVsim can more easily provide
mechanistic insights into the relationship between S protein sequence
and its structural dynamics. For example, with meaningful para-
meterization,MVsim could aid in mechanistically parsing the multiple
virulence-enhancing features that comprise most VOCs and to quan-
tify the consequences of amutational profile that simultaneously alters
theRBDensemble, enhances the kinetics of ACE2binding, and reduces
the potency of a neutralizing therapeutic.

The modular construction of MVsim also enables its straightfor-
ward extension to additional instances of multivalency. For example,
additional configurational network tables can be applied to the source
code to enable simulations of higher valencies and supramolecular
topologies. Moreover, MVsim treats the calculation of effective con-
centration as an additional, modular mathematical step, enabling
customization with any polymer end-to-end density function. Finally,
the source code is further compatible with the MATLAB curve fitting
toolbox to enable parameter estimation for incompletely character-
ized multivalent systems.

As presented here,MVsim simulates interactions between systems
of receptors and ligands with valencies of up to three. The choice of
trivalent interactions was chosen to balance the number of computa-
tional steps needed to map the complete configurational network,
which scales factorially with valency, with the ability tomodel complex
and important instances of multivalency, such as those that occur in
bispecific antibodies and the trimeric architecture of the SARS-CoV-2 S
protein. Even so, the configuration nomenclature, rule-based model-
ing, and combinatorial computation of effective concentrations that
underlie the simulations are written in the source code to accom-
modate all valencies and numbers of competing ligands.

While the predictive power ofMVsim lies in its structured treatment
of multivalent binding as a dynamic ensemble of microstates, this fra-
mework can create impediments toward extending the model to
describe even more complex instances of multivalency. For example,
the size of the configurational network increases factorially with the
valency and number of molecules in the system, easily comprising
thousands of rate equations and dozens of computationally-demanding
PDF convolutions. Interestingly, for most multivalent systems, only a
small fraction of the total network would ever be significantly popu-
lated, and thus required to accurately describe the response dynamics.
To take advantage of this fact, however, requires knowing a priori the
composition of this subset of the configurational network. This could be
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accomplished, for example, by incorporating additional rules in the rule-
based modeling routine to allow for sparse matrix sampling of the
configurational microstate network and probability density functions to
significantly decrease the computational time. Further, with a suitably
sized set of training data, machine learning algorithms could be applied
to identify input/output relationships between the structure of a given
multivalent interaction system and the minimal set of rate equations

required to describe its kinetic behavior, though this data-driven
approach may come at the expense of mechanistic insights. The fra-
mework ofMVsim can also be sensitive to caseswhere rate equations are
biased or cannot be deterministically applied due to non-random events
or low numbers of molecules, especially if these factors substantially
influence the dynamics of key response-determining nodes in the con-
figurational network.

Fig. 6 |MVsim quantitatively predicts multiphasic binding response dynamics
of S protein therapeutic neutralization and fits for rate constants of con-
formational switching. a MVsim models the conformational change as an intra-
molecular ligand binding event (colored in gray) that toggles the trivalent S protein
between “RBD-up” and “RBD-down” conformations. The conformational change is
defined by a pair of first-order kinetic rate constants kdown and kup. b, c The
experimental kinetics of conformation-specific nanobody binding, adapted from
ref. 37 (b), are qualitatively predicted by a zero-fit simulation with MVsim (c).
d, e Applying a gradient descent fitting routine to three of the six experimental
sensorgrams in b ([nanobody] = 3.13, 12.5, and 50 nM; the second, fourth, and sixth
curves from the bottom, respectively) that minimizes the root-mean-square error
(RMSE) betweenmodel and simulation across a broad range of values for kdown and

kup (d, top panel) converges on a unique solution for a single set of best-fit para-
meter values for kdown (d, bottom left panel) and kup (d, bottom right panel) for an
individual RBD (e). f Conformational switching half-life experiments also adapted
from ref. 37, alter the relative proportion of “slow phase” inhibitor dissociation
events (i.e., high-avidity bivalent and trivalent interactions) and “fast phase” inhi-
bitor dissociation events (i.e.,monovalent interactions).Here, due to relatively slow
RBD switching rates, longer association times enablemore S protein to be bound in
high-avidity interactions, and thus give rise to small percentages of “fast phase”
dissociation events.g To assessMVsim accuracy, the fitted parameters are used in a
modeling framework to simulate the experimental system and compare half-lives
(t1/2) of “RBD-up” S protein conformations. The input parameters for these simu-
lations are given in the MVsim user tutorial in the Supplementary Information.
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Nonetheless, MVsim offers insights into important binding
dynamics that are not fully represented in the current modeling land-
scape by quantifying all possible microstates and effective concentra-
tions inmultivalent,multispecific and/ormulti-ligand systems. A simple
graphical interface allows for facile simulation of user-defined systems
up to trivalent-trivalent interactions and provides mechanistic insights
that are not possible with more coarse-grained model descriptions. As
highlighted in the examples in this study, MVsim has a straightforward
adaptability that can address a number of important biological ques-
tions and biomedical problems involving multi-molecular interactions
and offers tools to better analyze and engineer them.

Methods
MVsim
The MVsim multivalent simulation application was built within the
MATLAB app development environment (version 2021a). Our pre-
viously reported microstate network model and odds-ratio-based
calculation of effective concentration served as the foundation for
creating a rule-based modeling routine for the enumeration of multi-
valent,multispecific, andmulti-ligand-receptorbinding states23.MVsim
generates a model structure and all possible microstates from rules
determined by the properties of the interacting molecules, including
the number of binding sites on the receptors and ligands and the
permissible binding configurations. All possible states and permissible
transitions among these states are enumeratedwith a systemofunique
identifiers, which is detailed in the Supplementary Information.

Of the four types of parameters that MVsim incorporates, the
association rate constant, the dissociation rate constant, and the bulk
ligand concentration are directlymeasuredordefined. The fourth type
of parameter, effective ligand concentration, is computed from the
three-dimensional probability density functions (PDFs) of the ligand
and receptor:

Ceff =

R
PDF ligand Vð Þ � PDF receptor Vð ÞdV

constantnormalization

where V is the accessible volume and the normalization constant
converts the probability into units of concentration. For a multivalent
ligand or receptor, its overall PDF is represented by the convolution of
PDFs of the individual binding domains and linkers that comprise it,
thus incorporating biophysical properties such as domain size and
linker length and rigidity. Full details of the convolution of PDFs, cal-
culation of effective ligand concentrations, and other technical con-
siderations inMVsim are provided in the Supplementary Information.

Experimental methods
Multivalent and multispecific receptors were constructed with the
C-terminal SH3 domain of the human adaptor protein Gads and the
synthetic protein Prb, as used in our earlier work23. Multivalent and
multispecific ligands incorporated the SH3-binding peptide (SBP) from
theGads cognate ligand SLP-7642, aswell as the synthetic designed Prb-
binding DARPin, Pdar53. The valency of SLP-76 ligands was tuned
without introducing significant changes in molecular weight by intro-
ducing binding-ablating alanine substitutions into individual SBP
motifs. Interdomain linkers were designed to be short or long, and
flexible (random coil) or rigid (alpha-helical). The DNA sequences of
the receptors and ligands were synthesized as gBlocks (Integrated
DNA Technologies). Receptors were introduced into pET28a (Nova-
gen) and ligands into pMal-c5x (New England Biolabs) using standard
DNA cloning methods. All proteins were recombinantly expressed in
Escherichia coli BL21 cells, with AviTagged receptors biotinylated
in vivo by co-transformation with GST-BirA. Detailed protein design
methods, including the full amino acid sequences of each experi-
mentally tested construct, are provided in the Supplementary Infor-
mation and in Supplementary Table 1.

Association anddissociationkinetics between ligand and receptor
constructs were quantified by surface plasmon resonance (SPR) mea-
surements on a Biacore S200 instrument. CM5 sensor chips were first
conjugated with NeutrAvidin and were then used to immobilize ~30
RUs of biotinylated receptor. In addition to this low receptor surface
density, a high ligand flow rate (75 µl/min) was used to minimize mass-
transfer effects. All binding measurements were performed at 25 °C in
a running buffer of HBS-EP+ (10mMHEPES, 150mMNaCl, 3mMEDTA,
0.05%Tween-20, pH7.4). Additionaldetails of the SPRexperiments are
provided in the Supplementary Information.

Documentation
A full set of version release notes, instructions, user tutorial, and
annotatedmodel source code are available on theMVsim homepage at
https://sarkarlab.github.io/MVsim/.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper.

Code availability
The code forMVsim is available at https://sarkarlab.github.io/MVsim/.
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