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The mean amplitude of glycemic excursions (MAGE) is an essential index for glycemic variability assessment, which is treated as a
key reference for blood glucose controlling at clinic. However, the traditional “ruler and pencil” manual method for the calculation
of MAGE is time-consuming and prone to error due to the huge data size, making the development of robust computer-aided
program an urgent requirement. Although several software products are available instead of manual calculation, poor agreement
among them is reported. Therefore, more studies are required in this field. In this paper, we developed a mathematical algorithm
based on integer nonlinear programming. Following the proposedmathematical method, an open-code computer program named
MAGECAA v1.0 was developed and validated. The results of the statistical analysis indicated that the developed program was
robust compared to the manual method. The agreement among the developed program and currently available popular software
is satisfied, indicating that the worry about the disagreement among different software products is not necessary. The open-code
programmable algorithm is an extra resource for those peers who are interested in the related study on methodology in the future.

1. Introduction

Clinical researches have suggested that high glycemic vari-
ability may cause more serious damage to the body than
high level stable blood glucose [1], which relates to the
development of diabetic complication [2–6] and the increase
of mortality in critically serious patients without diabetes
[7, 8]. In such circumstances, how to quantitatively evaluate
the glycemic variability in diabetic blood glucose monitor
is essential for the clinical diagnosis and treatment. Several
indexes have been proposed for the quantitative evaluation
of the glycemic variability, such as MBG, SDBG, IQR, LAGE,
M-value, %CV, J-index, IGC, GRADE,MODD, LBGI, HBGI,
ADRR, TI, LI, PGS, CONGA, and MAGE [9–16]. Presently,
clinicians and researchers trend to choose MAGE as the
preferred index [17, 18], making it a “popular standard”

in the quantitative evaluation of the within-day glycemic
variability.

MAGE is an arithmetic average of either the upward or
downward of all glycemic excursions exceeding the threshold
(standard deviation of blood glucose (SDBG) obtained from
all blood glucose concentrations within 24-hour period); the
direction of the calculation is determined by the first count-
able excursion [19–21]. Following the original definition by
Service et al. [19], clinicians and researchers applied the “ruler
and pencil” graphical approach to calculateMAGE.However,
this kind of manual approach is time-consuming and error-
prone, when dealing with huge amount of data typically char-
acterized by 288 observations in 5 minutes apart over a 24-
hour period, generated from continuous glucose monitoring
(CGM).Thus, the development of computer-aided programs
to calculate MAGE becomes an urgently needed task.
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To address the urgent need above, several automatic
programs have been developed [22–25], making great con-
tribution to the automatic calculation of MAGE. However, it
was pointed out that the agreement among them is poor [26].
Therefore, more studies are required to explore the automatic
calculation of MAGE. Currently available programs can be
roughly divided into two groups. One group has detailed
descriptions about algorithm with graphical display, such as
the automated algorithm described by Baghurst [22] and the
computer software described by Fritzsche et al. (Fritzsche)
[23]. The other group only provides executable software
for automatic calculation, without detailed descriptions of
the algorithms used in the software, such as the web-based
application “GlyCulator” [24] and the Excel-based workbook
“EasyGV” [25]. However, to the best of our knowledge,
all of these methods did not provide programmable open
codes, which are important resources required for peers to
implement more studies on methodology in this field.

Therefore, in this report, we developed a mathematical
algorithm based on integer nonlinear programming method.
Following the proposed mathematical method, a computer-
aided program named MAGECAA v1.0 was developed. The
code of our program is open; if peers are interested in
it, please contact xuefeiyu@smu.edu.cn for downloading.
To validate the developed program, comparison study was
implemented using blood glucose CGM datasets obtained
from T1D, T2D, and gestational diabetes patients against
the manual method (MAGEo) and other currently popular
software products.

2. Materials and Methods

2.1. The Proposed Mathematical Algorithm. Let 𝑓(𝑡) (𝑡 =𝑡1, 𝑡2, . . . , 𝑡𝐿) represent the discrete blood glucose values
obtained in CGM; then 𝑓 is a discrete function defined in
time set {𝑡1, 𝑡2, . . . , 𝑡𝐿}. Let SDBG be the standard deviation
of 𝑓(𝑡) (𝑡 = 𝑡1, 𝑡2, . . . , 𝑡𝐿). A graph depicting the glycemic
variability can be formed by connecting all the discrete values
of function 𝑓. When the difference of a peak and an adjacent
nadir exceeds SDBG, the corresponding peak is labeled as a
valid peak. The key point for the calculation of MAGE is to
correctly count the valid peak or nadir.

Amplitude is the difference of functional values in a peak
and a nadir of the function graph. A valid amplitude is
labeled and countedwhen it is bigger than SDBG.To compute
MAGE, these valid amplitudes of function 𝑓 should be firstly
searched. From themathematical perspective, a peak or nadir
should be an extreme point of the function. These extreme
points related to valid amplitudes are called valid extreme
points. The MAGE computation problem can be solved by
calculating all valid extreme points.

Suppose that {𝑡𝑙1 , 𝑡𝑙2 , . . . , 𝑡𝑙𝑁} is the sequence of all extreme
points of function 𝑓. We know that the local maximum
points and local minimum points of function 𝑓 should
be arranged as follows: interleaved between a maximum
point and a minimum point. For simplicity, {𝑡𝑙1 , 𝑡𝑙2 , . . . , 𝑡𝑙𝑁}
is denoted as {1, 2, . . . , 𝑁}, and {𝑛1, 𝑛2, . . . , 𝑛𝐾} is an arbitrary
valid subsequence of sequence {1, 2, . . . , 𝑁}. These local

maximumpoints and localminimumpoints can be staggered
in subsequence {𝑛1, 𝑛2, . . . , 𝑛𝐾}. Then

1 ≤ 𝑛1 < 𝑛2 < ⋅ ⋅ ⋅ < 𝑛𝐾 ≤ 𝑁,
(−1)𝑛𝑘+1−𝑛𝑘 = −1, 𝑘 = 1, 2, . . . , 𝐾 − 1, (1)

where 2 ≤ 𝐾 ≤ 𝑁. This equation ensures that the selected
extreme points are staggered.

Thus, the above MAGE computation problem can be
transformed to an integer nonlinear programming (INLP)
problem.

argmax
𝐾,𝑛1 ,𝑛2,...,𝑛𝐾

𝑍𝐾 (𝑛1, 𝑛2, . . . , 𝑛𝐾)

= argmax
𝐾,𝑛1 ,𝑛2,...,𝑛𝐾

𝐾−1∑
𝑘=1

𝑓 (𝑡𝑛𝑘+1) − 𝑓 (𝑡𝑛𝑘) ,
(2)

subject to 𝑓 (𝑡𝑛𝑘+1) − 𝑓 (𝑡𝑛𝑘) ≥ SDBG,
𝑘 = 1, 2, . . . , 𝐾 − 1,

1 ≤ 𝑛1 < 𝑛2 < ⋅ ⋅ ⋅ < 𝑛𝐾 ≤ 𝑁,
(−1)𝑛𝑘+1−𝑛𝑘 = −1, 𝑘 = 1, 2, . . . , 𝐾 − 1.

(3)

According to the principle of INLP problem, function
(2) should have an optimum solution {𝑛∗1 , 𝑛∗2 , . . . , 𝑛∗𝐾} and an
optimumvalue 𝑍∗𝐾with respect to a constant𝐾; it should also
have an optimum value 𝑍∗𝐾−1 for constant𝐾 − 1, and

𝑍∗𝐾−1 ≤ 𝑍∗𝐾. (4)

Suppose that 𝐾∗ is the maximal 𝐾 with respect to
the optimal solution of function (2), and then the optimal
solution {𝑛∗1 , 𝑛∗2 , . . . , 𝑛∗𝐾∗} represents the valid extreme points
to compute MAGE.

If the extreme point 𝑛∗1 is the local minimum point, then

MAGE+ = 1[𝐾∗/2]
[𝐾∗/2]∑
𝑘=1

𝑓𝑛(𝑘−1)∗2+2 − 𝑓𝑛(𝑘−1)∗2+1  .

MAGE− = 1[(𝐾∗ − 1) /2]
[(𝐾∗−1)/2]∑
𝑘=2

𝑓𝑛(𝑘−1)∗2+1 − 𝑓𝑛(𝑘−1)∗2  ,
MAGE = MAGE+,
MAGEa = MAGE+ +MAGE−2 ,

(5)

If the extreme point 𝑛∗1 is the local maximum point, then

MAGE+ = 1[(𝐾∗ − 1) /2]
[(𝐾∗−1)/2]∑
𝑘=2

𝑓𝑛(𝑘−1)∗2+1 − 𝑓𝑛(𝑘−1)∗2  ,

MAGE− = 1[𝐾∗/2]
[𝐾∗/2]∑
𝑘=1

𝑓𝑛(𝑘−1)∗2+2 − 𝑓𝑛(𝑘−1)∗2+1  ,
MAGE = MAGE−,
MAGEa = MAGE+ +MAGE−2 .

(6)
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Now, our object is to get the optimal solution {𝑛∗1 ,𝑛∗2 , . . . , 𝑛∗𝐾∗} of function (2). If the INLP problem is solved
by enumeration algorithm, the amounts of different subse-
quences {𝑛1, 𝑛2, . . . , 𝑛𝐾} should be (𝑁𝐾 ). For 3 ≤ 𝐾 ≤ 𝑁, the
amounts of all subsequences are

(𝑁𝑁) + ( 𝑁
𝑁 − 1) + ⋅ ⋅ ⋅ + (𝑁3) ≈ 2𝑁, (7)

It is difficult to directly solve function (2) when 𝑁 is
large. A faster optimization algorithm is usually used to solve
the above INLP problem. For example, a penalty function

algorithm [27, 28] was used here to transform the above INLP
problem (2) to an unconstrained optimization problem as
follows.

Set

𝑔𝑘 (𝑛1, 𝑛2, . . . , 𝑛𝐾) = SDBG − 𝑓𝑛𝑘+1 − 𝑓𝑛𝑘  ,
ℎ𝑘 (𝑛1, 𝑛2, . . . , 𝑛𝐾) = (−1)𝑛𝑘+1−𝑛𝑘 + 1,

𝑘 = 1, 2, . . . , 𝐾 − 1.
(8)

The new unconstrained integer optimization problem
becomes

argmin
𝑛1,𝑛2 ,...,𝑛𝐾

𝑌𝐾 (𝑛1, 𝑛2, . . . , 𝑛𝐾) = argmin
𝐾,𝑛1 ,𝑛2,...,𝑛𝐾

[−𝐾−1∑
𝑘=1

𝑓𝑛𝑘+1 − 𝑓𝑛𝑘  +
𝐾−1∑
𝑘=1

𝜇max {0, 𝑔𝑘}2 + 𝐾−1∑
𝑘=1

𝜆ℎ2𝑘] , (9)

where 3 ≤ 𝐾 ≤ 𝑁 and𝜇𝑘 and 𝜆𝑘 (𝑘 = 1, . . . , 𝐾−1) are penalty
coefficients and tend to be +∞.

When the optimum value 𝑌∗𝐾 > 0, problem (9) has no
optimal solution.

Differential evolution (DE) algorithm, a faster opti-
mization algorithm proposed by Storn and Price [29], is
a simple but powerful population-based stochastic search
technique to solve global optimization problems over con-
tinuous domains. Many researchers modified DE algorithm
to improve its performance when it was applied to a specific
problem [30–33]. The idea of a modified DE algorithm
proposed by Lin [34] to solve mixed-integer nonlinear
programming problem is used here.

DE searches for a global optimal point in an 𝑛-
dimensional hyperspace. Let 𝑆 be the 𝐾-dimensional search
space of the INLP problem under consideration. The DE
evolves a population ofNP 𝑛-dimensional individual vectors,
that is, solution candidates,N𝑖𝐾 = (𝑛𝑖1, . . . , 𝑛𝑖𝐾) ∈ 𝑆, 𝑖 = 1, . . . ,
NP, from one generation to the next. The evolution begins
with a randomly initialized population of 𝑛-dimensional
integer parameter vectors in space {1, 2, . . . , 𝑁}𝐾. In each
vector, integer parameters are sorted in an ascending order.
Each vector forms a candidate solution to the unconstrained
optimization problem. At each generation𝐺, DE employs the
mutation and crossover operations to produce a trial vector
U𝐺𝑖𝐾 for each individual vector N𝐺𝑖𝐾, also called target vector,
in the current population.

The details of the employment of the DE algorithm to
solve the above INLP problem are as follows from (a) to (d).

(a) Initialization.A randomly initialized population is created
to cover the entire search space uniformly as in the following
form:

N0𝑖𝐾 = (1, 1, . . . , 1)
+ NINT [(𝜌𝑖1, 𝜌𝑖2, . . . , 𝜌𝑖𝐾) × (𝑁 − 1)] , (10)

where 𝜌𝑖𝑗 is a random number in the range [0, 1] and NINT[B]
is expressed as the nearest integer vector to real vector B.

(b) Mutation Operation. For each target vectorN𝐺𝑖𝐾 at genera-
tion 𝐺, randomly sample three other individuals N𝐺𝑟1𝐾, N

𝐺
𝑟2𝐾

,
and N𝐺𝑟3𝐾 from the same generation, where 𝑟1, 𝑟2, and 𝑟3 are
random and mutually different integers generated over the
range [1,𝑁𝑃], which should be different from the current
trial vector’s index 𝑖. Then an associated mutant vector V𝐺𝑖𝐾 =(V𝐺𝑖1, . . . , V𝐺𝑖𝐾) can be generated by using strategy:

V𝐺𝑖𝐾 = N𝐺𝑟1𝐾 +NINT [𝐹 × (N𝐺𝑟2𝐾 −N𝐺𝑟3𝐾)] , (11)

where 𝐹 is a factor in [0, 1] for scaling differential vectors.
(c) Crossover Operation. The crossover operation is applied
to each pair of the generated mutant vector V𝐺𝑖𝐾 and its
corresponding target vector N𝐺𝑖𝐾 to generate a trial vector
U𝐺𝑖𝐾 = (𝑢𝐺𝑖1, 𝑢𝐺𝑖2, . . . , 𝑢𝐺𝑖𝐾).
𝑢𝐺𝑖𝑗 = {{{

V𝐺𝑖𝑗 , rand [0, 1] ≤ CR or 𝑗 = 𝑗rand,
𝑛𝐺𝑖𝑗 , otherwise,

𝑗 = 1, 2, . . . , 𝐾,
(12)

where CR ∈ [0, 1] is a crossover constant that is determined
by users. 𝑗rand is a randomly chosen index in [1, 𝐾] which
ensures that 𝑢𝐺𝑖𝑗 gets at least one parameter from V𝐺𝑖𝑗 . The
integer parameters of target vector N𝐺𝑖𝐾 are also sorted from
small to big.

(d) Selection Operation.The trial vectorU𝐺𝑖𝐾 is compared to its
corresponding target vectorN𝐺𝑖𝐾 using the greedy criterion to
decide whether a member of generation 𝐺 + 1 existed or not.
If vectorU𝐺𝑖𝐾 yields a smaller cost function value 𝑌(U𝐺𝑖𝐾) than𝑌(N𝐺𝑖𝐾), then N𝐺+1𝑖𝐾 is set to U𝐺𝑖𝐾; otherwise, the old vector is
retained. The operation is expressed as follows:

N𝐺+1𝑖𝐾 = {{{
U𝐺𝑖𝐾, if 𝑌 (U𝐺𝑖𝐾) < 𝑌 (N𝐺𝑖𝐾) ,
N𝐺𝑖𝐾, otherwise. (13)
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Figure 1: Flow of the algorithm of the program of MAGECAA v1.0.

The above (b) to (d) steps are repeated till the evolution
times arrived to certain number (general 𝐺 = 200); from
the last evolutionary generation, the individual vector N𝐺𝑖𝐾
with the smallest value of the objective function 𝑌 is the
optimal solution of the problemof the current𝐾-dimensional
extremepoint combination.The algorithmwill search𝐾 from
3 to 𝑁 till the objective function 𝑌 obtains the minimum

value so as to obtain the optimal extreme point combination{𝑛∗1 , 𝑛∗2 , . . . , 𝑛∗𝐾∗} and then use formulas (5)∼(6) to calculate
the MAGE value. Figure 1 shows the entire algorithm.

2.2.TheDeveloped ProgramBased on the ProposedMathemat-
ical Method. Based on the proposed mathematical method,
a computer automated program named MAGECAA v1.0
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Figure 2: (a) shows turning points 𝑡 and 𝑡 + 1 to be equal in values (not being extreme points) but there is an amplitude from peak point 𝑡 − 1
to nadir point 𝑡. (b) shows the combination of points 𝑡 and 𝑡 + 1 as one point 𝑡 + 1 or remove point 𝑡; then let point 𝑡 + 1 be a local maximum
point.

was developed. The MAGE calculation program can be
described as a process that selects valid extreme points from
a time-ordered set of glucose concentrations whose adjacent
differences are all greater than the threshold (typically 1 SDBG
obtained from24-hour period blood glucose concentrations).
It can be summarized as finding the optimum vector combi-
nation solution of the valid extreme points and using INLP
to establish the mathematic method, which can be solved by
differential evolution (DE) algorithm. Once all valid extreme
points of countable excursions have been identified, the
MAGE is determined by MAGE+ or by MAGE−, depending
on the direction of the first countable excursion. For more
in-depth understanding, it depends on the first valid extreme
point of the vector combination, because that point indicates
the direction. In addition, the average of both MAGE+ and
MAGE−, designated as MAGEa, is also calculated. MAGE-
CAA v1.0 is based on INLP and has several different outputs:
SDBG, MAGE+, MAGE−, MAGE, MAGEa, and so forth.
Besides it also needs plot to show all valid extreme points
joined by straight lines; MATLAB (MathWorks�, USA) is
chosen as the programming environment accordingly. Gen-
erally, some data points could not be extreme point according
to the mathematical definition, like points shown in Figure 2,
which shows turning points 𝑡 and 𝑡 + 1 which are equal in
values (not being extreme points) but there is an amplitude
from peak point 𝑡 − 1 to nadir point 𝑡, so we combine points𝑡 and 𝑡 + 1 as one point 𝑡 + 1 or remove point 𝑡 and then let
point 𝑡 + 1 be a local maximum point. If the points appear to
be opposite, then point 𝑡+1 should be a localminimumpoint.

MAGECAA v1.0 consists of the followingmajormodules:
(1) import CGM data and calculate the SDBG as the thresh-
old; (2) identify all extreme points; (3) find the optimum
vector combination solution of valid extreme points; and (4)
display the calculated parameters and plots.

2.3. Collection of CGM Data. The CGM datasets obtained
by using CGMS� Gold� (Medtronic�, USA), collected from
clinical treatment, are used to evaluate the proposed program.
All CGM datasets were provided by the Third Affiliated
Hospital of Southern Medical University. Only complete
24-hour CGM data were selected for comparison study.
All patients have provided their written informed consent.
5 CGM recordings from 3 T1D patients, 116 CGM mea-
surements contributed by 58 T2D patients, and 127 CGM

measurements based on gestational diabetes patients have
been collected. Outpatients had been treated with either
diet, oral hypoglycemic agents, oral hypoglycemic agents plus
insulin, or insulin alone, depending on their glycemic control.

2.4. Data Analysis. The validation of MAGECAA v1.0 was
implemented by comparison againstMAGEo andMAGEc. A
doctorwho has beenwell trained in using the originalmanual
method to analyze CGM data was invited from Department
of Endocrinology of theThird AffiliatedHospital of Southern
Medical University, and he did not know the effect ofMAGE-
CAA v1.0. Our research team analyzed the complete patient
population (𝑛 = 248)CGMmeasurements usingMAGECAA
v1.0 and two other popular software products, EasyGV and
Fritzsche,whereas the doctor performed amanual analysis on
a randomly drawn sample (𝑛 = 60). As calculator, Fritzsche
allows the analyzer to choose whether or not to consider the
first and/or the final glucose value of the CGM trace as a
start or end point of a glucose excursion; it will result in four
differentMAGE values per CGM trace. To keep following the
original description of the calculation of MAGE and for the
comparison of the different software products, the first and
final glucose values were both taken into account.

2.5. Statistical Analyses. Spearman’s correlation analysis was
applied in evaluating the relationship between the MAGE
values obtained by different methods with respect to the
same patients. Bland-Altman plots were used to represent the
agreement of the methods [35, 36]. 𝑃 < 0.01 was considered
significant.

3. Results

Figure 3 presents the screenshot of the graphical user inter-
face of the developed software named MAGECAA v1.0.

3.1. Comparison of MAGECAA v1.0 with the Original Man-
ual Method. As shown in Figure 4, Spearman’s correlation
analysis identified that there is a highly significant linear
correlation between MAGEc and MAGEo (𝑟 = 0.998, resp.;𝑃 < 0.01), and the mean difference found in Bland-Altman
plot was −0.03 ± 0.21, which was statistically significantly
small. This result indicated that the developed program was
robust compared with the manual method.
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Table 1: The correlation coefficient and difference of the results separately calculated using MAGEc, Fritzsche, and EasyGV software.

MAGEc Fritzsche

𝑟 mean ± SD 𝑟 mean ± SD
(mmoles/L−1) (mmoles/L−1)

MAGEc — — — —
Fritzsche 0.987 0.14 ± 0.55 — —
EasyGV 0.926 0.52 ± 1.17 0.926 0.38 ± 1.12
Note. 𝑃 < 0.01.
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Figure 3: Screenshot of the graphical user interface of the MAGE-
CAA v1.0 based on the MATLAB5 programming environment for
the mean amplitude of glycemic excursions (MAGE) calculation.
After computation, 24-hour continuous glucose monitoring profiles
are shown in the plots with all valid extreme points joined by straight
lines. Besides the calculation of MAGE, it also calculates the stan-
dard deviation of blood glucose (SDBG), the average of all upward
valid excursions (MAGE+), the average of all downward valid excur-
sions (MAGE−), and the average of all valid excursions (MAGEa).
The CGM data were collected from patients with type 1 diabetes.
After calculation, the results are as follows: SDBG = 1.63mmoles/L,
MAGE+ = 4.43mmoles/L, MAGE− = 4.63mmoles/L, MAGEc =
4.43mmoles/L (the first account excursion is from nadir to peak),
and MAGEa = 4.53mmoles/L.

3.2. Agreement ofMAGECAA v1.0 with Fritzsche and EasyGV.
To evaluate the agreement of MAGECAA v1.0 with two cur-
rently available popular software products, that is, Fritzsche
and EasyGV, we did pairwise comparison of MAGE among
them. Table 1 shows the correlation coefficients for MAGE
calculation between the calculators, which ranged from 0.926
to 0.987 (𝑃 < 0.01 for all). Figure 5 shows the Bland-Altman
plot among the three software products; the dashed lines rep-
resent the 95% confidence limit of the differences between the
two methods, and the solid line demonstrates that the mean
difference between the methods is close to 0, indicating that
little difference existed among them.Themean differences are0.14 ± 0.55 (MAGEc versus Fritzsche), 0.52 ± 1.17 (MAGEc
versus EasyGV), and 0.38 ± 1.12 (Fritzsche versus EasyGV),
showing the good agreement between these three software
products.

3.3. Comparison of MAGEc with MAGEa. In the original
definition of MAGE, its direction of the calculation is deter-
mined by the first countable excursion. SoMAGEc=MAGE+
or MAGEc = MAGE−; it is somewhat arbitrary and ignores
half of the valid excursions. However, MAGEa represents the
average of MAGE+ and MAGE−; it does not consider the
direction, thus involving all the valid excursions.

To explore whether MAGEa may be a more useful
index than MAGEc which depends on MAGE+ or MAGE−,
the relationship between MAGEc and MAGEa was tested
by using all the 248 CGM measurements via Spearman’s
correlation analysis and Bland-Altman analysis. As shown in
Figure 6, the correlation coefficient was 𝑟 = 0.993 (𝑃 < 0.01)
and themean difference was −0.05±0.48.The results showed
that little difference was observed between usingMAGEa and
MAGEc, indicating that MAGEa may be a useful index for
evaluating glycemic variability.

4. Discussions

We developed a computer-aided open-code program named
MAGECAA v1.0 based on INLP algorithm for automatic
calculation of MAGE. Compared with the existing methods,
the proposed novel method turns to search the optimal
solution of the combination of extreme points from overall
CGM measurements instead of searching adjacent extreme
points from the beginning to the end step by step. As for
the computational time, if used for one person, the proposed
method is comparable with currently available methods; if
used for batch calculation, the proposed method is more
powerful. The programmable open codes are useful for the
study of methodology for automatic calculation of MAGE.
The comparison study usingMAGECAA v1.0 against manual
method indicated that the agreement is satisfied.Thepairwise
comparison study between MAGECAA v1.0 and two other
available software products, Fritzsche and EasyGV, based
on Spearman’s correlation analysis and Bland-Altman plots,
demonstrated that the agreements between them met the
requirement. Our study showed that the worry about the
disagreement among the currently available popular software
products is not necessary, which is different from the proposal
by Sechterberger et al. [26]. The reason may be the increased
amount of CGM data used in our research.

TheMAGEvalue depends onMAGE+ orMAGE−, follow-
ing the direction of the first accountable glucose excursion.
Considering the fact that only one direction of glucose excur-
sion is adopted in current popular software, unavoidably
resulting in the omission of the other directions of valid
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Figure 4: (a) Correlation of the mean amplitude of glycemic excursions values (MAGE) obtained from the proposed program (MAGEc)
and the original manual methods (MAGEo). The data of 60 continuous glucose monitoring (CGM) measurements were randomly chosen
from all collected CGM data. (b) Bland-Altman plot shows the difference between MAGEc and MAGEo on 𝑦-axis and the mean of the two
computed indices on 𝑥-axis. The dashed lines represent the 95% confidence limit of the differences between the two methods, and the solid
line indicates that the mean difference between the methods is close to 0.
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Figure 5: Bland-Altman plots showing the mean difference between MAGEc, EasyGV, and Fritzsche when applied to the same continuous
glucose monitoring datasets.
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Figure 6: (a) Correlation between the mean amplitudes of glycemic excursions computerized (MAGEc) and the average of all valid glycemic
excursions (MAGEa) for the total collected 248 continuous glucose monitoring measurements. (b) Bland-Altman plot shows the mean
difference between MAGEc and MAGEa.
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excursions, we implemented an extra experiment in which
data from both directions of the valid glycemic excursions are
utilized. MAGEa was used to represent the mean of MAGE+
and MAGE− for the calculation of MAGE. As shown by our
data, a close linear correlation between MAGEa and MAGEc
was observed, indicating that the difference betweenMAGE+
and MAGE− is significantly small. Therefore, we proposed
thatMAGEamight be another suitable parameter to quantify
glycemic variability.

To conclude, an open-code software program named
MAGECAA v1.0 for automatic calculation of MAGE based
on a mathematical algorithm has been proposed and eval-
uated. The programmable open codes are useful for further
methodology study in the future. The comparison study
indicated that the agreement among the proposed software
and existing software is satisfied, and the worry about the
disagreement among currently available different popular
software products is not necessary.
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SDBG: Standard deviation of blood glucose
CGM: Continuous glucose monitoring
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