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ABSTRACT
◥

Background: In recent years, biologically motivated continuous
tumor growth models have been introduced for breast cancer
screening data. These provide a novel framework from which
mammography screening effectiveness can be studied.

Methods: We use a newly developed natural history model,
which is unique in that it includes a carcinogenesis model for tumor
onset, to analyze data from a large Swedish mammography cohort
consisting of 65,536 participants, followed for periods of up to
6.5 years. Using patient data on age at diagnosis, tumor size, and
mode of detection, as well as screening histories, we estimate
distributions of patient’s age at onset, (inverse) tumor growth rates,
symptomatic detection rates, and screening sensitivities. We also
allow the growth rate distribution to depend on the age at onset.

Results:We estimate that by the age of 75, 13.4% of women have
experienced onset. On the basis of amodel that accounts for the role
of mammographic density in screening sensitivity, we estimated
median tumor doubling times of 167 days for tumors with onset
occurring at age 40, and 207 days for tumors with onset occurring at
age 60.

Conclusions: With breast cancer natural history models and
population screening data, we can estimate latent processes of
tumor onset, tumor growth, and mammography screening sensi-
tivity. We can also study the relationship between the age at onset
and tumor growth rates.

Impact: Quantifying the underlying processes of breast cancer
progression is important in the era of individualized screening.

Introduction
Researchers have attempted to quantify the natural history of breast

cancer. Often, these attempts have been based on multi-state Markov
models (1–3). Recent years, however, have seen the development of
more biologically motivated continuous tumor growth models (4–7).
These models allow the possibility to study a number of unobservable
processes involved in tumor progression, such as tumor onset and
growth, symptomatic detection, and spread. Abrahamsson and col-
leagues (8) have, for example, studied screening sensitivity as a
function of mammographic density, growth rate as a function of body
mass index, and symptomatic detection as a function of breast size. In
this article, we place our focus on the model for tumor onset. We
present the first application of a continuous growth model, which
includes together the processes of tumor onset (carcinogenesis), tumor
growth and detection, through mammography screening or symp-
toms, to a detailed mammography screening cohort.

It has been observed that younger women have, on average, faster
growing tumors than older women, based on observed age at diag-
nosis (1, 4, 9, 10). This does not necessarily translate to an equivalent
relationship between age at onset (carcinogenesis) and tumor growth
rate, as has been demonstrated in ref. 11. Here, we study directly the
relationship between these latent processes.

We use a large, ongoing Swedish breast cancer mammography
cohort to jointly estimate key parameter values in our comprehensive

natural history model for invasive breast cancer. As well as using
our model for the first time on empirical data, we also present an
extension to the model described in ref. 11, which allows the tumor
growth rate to depend on the age at onset. We study the dependency
between the two unobserved processes of onset and growth, and we
show that, under modeling assumptions, it can be quantified on the
basis of observational data. We model screening sensitivity as a
function of tumor size and mammographic density. Mammographic
density is the amount of radio-dense tissue in the breast (predomi-
nantly the epithelial tissue and the stroma), and high density has been
shown to reduce mammography screening sensitivity (7, 12). Younger
women are known to have, on average, higher mammographic density
than older women (13, 14).

Materials and Methods
Data

We use data from the KARolinska MAmmography Project for Risk
Prediction of Breast Cancer (KARMA; ref. 15). KARMA is an ongoing
Swedish prospective screening cohort which includes 70,877 women
who were recruited between January 2011 andMarch 2013, when they
attended mammography screening at one of four hospitals in Sweden.
In Sweden, all women are invited to screening every 18–24 months
between the ages 40 and 75 years.

Participants gave blood samples, and filled in a web-based ques-
tionnaire. Both raw and processed digital mammograms were stored.
Breast cancer cases were identified through the Swedish national
quality register INCA (Swedish Information Network for CAncer
treatment). Follow-up for our study ended on August 12, 2017, and
the median follow-up time was 5.4 years from entry. The tumor sizes
were reported as the largest diameter measured during histopathology
(in millimeters).

We included only women without a breast cancer diagnosis prior to
study entry (left truncation, in statistical terms). The type of model we
use in this study requires information on each woman’s individual
screening history—both before and after study entry.We therefore also
excluded women without any records of previous mammograms or
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screening dates. Any woman without a recorded measurement of
mammographic density (measured as the percentage of radio-dense
tissue in the breast using STRATUS; ref. 16) was also excluded. From
the 1,303 breast cancer cases recorded during the study period, we
included those with invasive breast cancer, and with a recorded date of
diagnosis, mode of detection (through mammography screening or
through symptoms), and with measurements of primary tumor size at
diagnosis. Out of the 70,877 KARMAparticipants, after applying these
criteria, we included a total of 65,536 women in our study, of which
1,032 were diagnosed with invasive breast cancer during follow-up.
See Fig. 1 for a flowchart of the data selection.

Statistical analysis
We use a continuous growth natural history model which jointly

models the likelihood of tumor size, age at detection, and mode of
detection in invasive breast cancer. Themodel consists of four different
submodels, each representing a latent process in the natural history of
breast cancer. These processes are (i) the onset of invasive breast cancer
(carcinogenesis); (ii) the continuous growth of the tumor; (iii) the
manifestation of symptoms which cause the tumor to be spontane-
ously detected; and (iv) the mammography screening test sensitivity
for early detection of asymptomatic tumors.

These four submodels are combined to produce a timeline for
an invasive breast cancer tumor, from the patient’s birth to tumor

detection. The three possible endpoints of these timelines in our study
are: (i) symptomatically detected cancer; (ii) screen-detected cancer;
(iii) censored, or no detected cancer. We calculate the model likeli-
hood, by using available data from each individual on age at detection,
tumor size at detection, mode of detection, and individual screening
histories for the cases; or age at the end of follow-up and the individual
screening history for the censored. The likelihood is then maximized
with respect to the total of 10 parameters from the submodels, to jointly
estimate them, and to produce fitted distributions/functions of these
submodels.

Age at onset
The first process of the model covers the time from birth to breast

cancer carcinogenesis.We refer to this as the onset of tumor,measured
in terms of a woman’s age in years. This should not be confused with
the detection or diagnosis of the tumor. The other three submodels
(below), in combination, represent the time from onset to detection.

We use the established Moolgavkar–Venson–Knudson (MVK)
two-stage model of carcinogenesis (17) to model the age at tumor
onset T. This model supposes that a malignant cancer cell is formed
from a normal cell that has undergone two separate mutations. The
model combines four Poisson processes corresponding to the cell
division rate (with rate ~a), thefirstmutation (initiationwith rate~n), cell

death (rate ~b), and the second mutation for initiated cells (malignant
transformation with rate ~m). The age at onset (carcinogenesis) is
usually defined as the time of the first malignant cell. However, for
this study, we assume that the starting tumor diameter at onset is
0.5 mm. From that point on, we assume that the tumor growth is
largely deterministic. It is also from this size that we assume that
tumors are detectable (with nonzero probability).

Heidenreich and colleagues (18) showed, however, that the four
parameters in the MVK model are not jointly identifiable using only
time-to-event data. Instead, we can use the following identifiable three
parameters:

A ¼ 1
2

~bþ ~m� ~a
� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~bþ ~m� ~a
� �þ 4~a~m

q� �
; ðAÞ

B ¼ 1
2

~bþ ~m� ~a
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~bþ ~m� ~a
� �þ 4~a~m

q� �
; ðBÞ

d ¼ ~n

~a
: ðCÞ

Using this parameterization, the hazard function for age at onset
hTðtÞ is

hT tð Þ ¼ dAB 1� e B�Að Þt� �
Be B�Að Þt � A

: ðDÞ

From this, the survival function can be derived as

GT tð Þ ¼ P T > tð Þ ¼ B� Að ÞeBt
Be B�Að Þt � A

� �d
; ðEÞ

and the probability density function (PDF) is

fT tð Þ ¼ � dG tð Þ
dt

¼ dAB B� Að Þd edBt 1� e B�Að Þt� �
Be B�Að Þt � Að Þdþ1 : ðFÞ

The new parameters A and B control the shape of the function but
are difficult to interpret. The parameter d is proportional to the rate of
the first mutation, ~n:

Figure 1.

Flowchart describing the inclusion criteria for our study, starting from all
participants in the KARMA cohort. After removing the women with prior
diagnosis, missing screening histories or mammographic density measure-
ments, and diagnosed cases without date, detection mode, or tumor size, we
ended up with 65,536 women, 1,032 of whom were diagnosed with invasive
breast cancer by end of follow-up.
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Tumor growth
Once the onset of breast cancer has occurred, we assume that the

tumor grows exponentially. If the onset occurred at age T ¼ t, the
tumor volume (mm3) at age x is

V xð Þ ¼ v0e
x�t
r : ðGÞ

for an inverse growth rate r, which relates to the tumor volume
doubling time through ln 2 � r. The tumor size is usually measured
by its diameter (in mm). In our model, we assume that the tumor is
spherical. This way, we can easily convert from the measured diameter
to a corresponding volume. We note that Talkington and Durrett (19)
have shown the exponential growth model to give a good fit, in
comparison to other growth functions, to breast cancer in vivo data.

To account for the vast variability in tumor growth between
individual tumors, previous continuous growth models have used
random effects to model the tumor growth rates as a random variable
R (6, 7, 20), where an individual tumor’s (inverse) growth rate is a
random draw R ¼ r from this variable. The goal of the model is then
to estimate the parameters of this random variable, representing the
tumor growth rates on a population level.

As an extension, we propose to allow the inverse growth rate
distribution to depend on the age at onset T, as defined above. We
assume, given the age at tumor onset T ¼ t, that the inverse growth
rate R is drawn from a gamma distribution with PDF

fRjT¼t rð Þ ¼ 1

rG 1
�

� � r
mt�

	 
1
�

exp
�r
mt�

	 

; ðHÞ

where E½RjT ¼ t� ¼ mt , VarðRjT ¼ tÞ ¼ �m2
t , and lnmt ¼

�0 þ �1t:
The extension for the inverse growth rate to depend on an observed

covariate has been done before (8), but the strategy to allow growth rate
to depend on a latent variable (from another submodel) is novel. Note
that in the special case �1 ¼ 0, the inverse growth rate is independent
of the age at onset and follows the same assumptions as in (7, 6, 11),
with mean expð�0Þ.

Symptomatic detection
Given enough time after breast cancer onset, symptomswill emerge,

and the breast cancer will be detected due to these symptoms. We call
the time from onset to symptomatic detection U0. We assume that U0

follows a continuous hazard function which is, at time z after onset,
proportional to the latent tumor volume VðzÞ, i.e.,

P U0 2 z; zþ Dzð � U0j > zð Þ ¼ hV zð ÞDzþ o Dzð Þ; ðIÞ

for a parameter h > 0. This hazard represents the increased risk of
displaying symptoms as the tumor progresses, either through a
palpable lump, or other breast cancer–related symptoms. The param-
eter h determines the relationship between latent volume (mm3) and
the instantaneous hazard rate, where each mm3 increase in tumor
volume increases the hazard rate by h. This simple formulation has
been used previously (5–7), and gives tractable mathematical
results (6).

Screen detection
Before the tumor is symptomatically detected, there are opportu-

nities to detect the tumor early throughmammography screening. We
assume that, if there is a breast cancer tumor at the time a woman
attends a screening, there is a probability of detecting it at the
screening. We call this probability the screening test sensitivity (STS),

and represent this as a logistic function of the current tumor diameter d
and the mammographic percent density m:

STS d; mð Þ ¼ expðb0 þ b1dþ b2mÞ
1þ expðb0 þ b1dþ b2mÞ : ðJÞ

This represents the fact that larger tumors are easier to detect, and
that highmammographic density canmask tumors.Here, we choose to
not use the tumor volume as in the other submodels, because the
mammogram is a two-dimensional projection of the breast. The
diameter has been previously used in similar approaches (4, 7). We
note that we use the statistical definition of sensitivity (above) as
opposed to that which defines sensitivity as one minus the proportion
of cancers that are interval detected (21).

At the end of follow-up, each woman will have an individual
screening history, including the ages they attended, and the results
(positive or negative). Only the cases that were observed as screen-
detected will have a positive screening result (their last screening,
marking the end of their follow-up). The rest will have a series of
negative screening results. In the likelihood, these screening results are
combined into the probability of the observed screening history. If a
particular woman attended screening at ages t1; t2; . . . ; tk, this
probability is

P Screening historyð Þ ¼
STS� tkð Þ Qk�1

j¼1
1� STS� tj

� �� �
; if screen� detected

Qk
j¼1

1� STS� tj
� �� �

; otherwise

8>>><>>>: ;

ðKÞ

Where STS�ðtjÞ is the STS where the tumor diameter is unknown at
age tj. Because the tumor diameter is only known at diagnosis, the rest
needs to be inferred by using the other submodels. This is done by
back-calculation, as part of the final likelihood function.

In our model, the processes of symptomatic detection and screen-
detection act as competing risks. After all, the goal of mammography
screening is to detect the tumor before it would be detected by
symptoms. The observed mode of detection is determined by which-
ever comes first.

Likelihood
The above submodels are assembled into a joint likelihood function

of age at detection, mode of detection, and tumor size for each
individual. The form of the likelihood contribution depends on each
woman’s observed endpoint. For the two types of breast cancer cases,
the individual likelihood contribution is given by

Lcase x; vð Þ ¼ C
Z x

0

x� tð Þ exp �h v � v0ð Þ x�t

ln v
v0

� �24 35fRjT¼t
x�t

ln v
v0

� �0@ 1AfT tð Þ

Q
jjt�tj�x 1þ exp b0 þ b1d0e

1
3 ln

v
v0

� �
tj�t

x�t þ b2m

 ! ! dt;

ðLÞ

where

C ¼

h

ln2 v
v0

� � ; if symptomatically detected

exp b0þb1dþb2mð Þ
vln2 v

v0

� � ; if screen� detected
:

8>><>>: ðMÞ

We have no information on the size of any possibly latent tumor for
the censored women. If we want to determine their likelihood of not
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having a detected breast cancer by the censoring time, we must
therefore compound over an additional variable, for example, the
inverse growth rate. The log-likelihood contribution is

Lcens xð Þ ¼ GT xð Þ þ
Z x

0

Z ¥

0

exp �hrv0 e
x�t
r � 1

� �� �
fRjT¼t rð ÞfT tð ÞQ

jjt�tj�x 1þ exp b0 þ b1d0e
1
3 tj�tð Þ

r þ b2m

� �	 
 drdt:

ðNÞ

See Eq. (K) for a derivation of these formulas, and for how they are
adapted to account for left truncation. Heuristically, we can recognize
all four submodels in Eqs.(L) and (N). The exponential expression in
the enumerator represents surviving symptomatic detection up to age
x, which is derived from Eqs. (I) and (J). The product in the denom-
inator represents surviving screen-detection (i.e., having all screenings
be negative) and comes from Eq. (J). For the cases, the age and tumor
volume are used to substitute r ¼ ðx� tÞ=lnðv=v0Þ, and the factor C
is addedwith an additional expression relating to the observedmode of
detection.

Each individual contribution is then combined into a log-like-
lihood

logL ¼
XN
i¼1

ln L ið Þ
� . . .ð Þ

� �
; ðOÞ

which is maximized with respect to the 10 model parameters
A; B; d; �0; �1; �; h; b0; b1; b2:

Implementation
The model likelihood and estimation procedure were implemented

in R version 3.6.1 and Cþþ functions integrated using the package
RcppArmadillo. Confidence intervals (CI) were calculated by inverting
the Hessian of the log-likelihood, which was approximated using finite
differences as part of the numerical optimization of the log-likelihood.
Monte Carlo sampling (10,000 times) from the estimated joint param-
eter distribution was used to repeatedly calculate the quantities pre-
sented below, and the 2.5th and 97.5th percentiles of each calculated
quantity was used for the 95% CIs.

Data availability
The data that support the findings of this study are available

from www.karmastudy.org but restrictions apply to the availabil-
ity of these data, which were used under license for this study, and
so are not publicly available. Data are, however, available from the
authors upon reasonable request and with permission of www.
karmastudy.org.

Results
A summary of key characteristics of the KARMA data included in

this study is presented inTable 1. At the end of follow-up, there were a
total of 1,032 cases of invasive breast cancer, which corresponds to
1.6% of the women. Out of these, 703 (68%) were screen-detected, and
329 were symptomatically detected. The percent mammographic
density significantly differs between screen-detected and symptomatic
cases. The higher percent density (PD) among symptomatic cases is
consistent with the tumors being masked at screening among women
with high percent density. Tumor sizes are on average smaller among
screen-detected cases. This is due to the earlier detection that screening
gives compared with the eventual symptomatic detection, that is, the
lead-time (22) conferred by screening. Tumor sizes were also, on
average, larger in women with high mammographic density (medians
of 12 mm and 16 mm in the lowest and highest quartiles of density,
respectively).

In Fig. 2A, we display the occurrence of all mammography screen-
ings after study entry (i.e., we exclude the entry screen and the
screenings before entry). We see that, after the entry screen, the
women are typically screened around either 18 or 24 months later.
We also see that, over time, the screenings get increasingly spread out.
This particularly highlights the importance of considering individual
screening histories and behaviors, as is incorporated into ourmodeling
strategy (see section 4 of ref. 11).

A histogram representing the incidence of the 1,032 invasive breast
cancers since study entry is shown in Fig. 2B. In this figure, patients
have all been synchronized according to their respective date of entry.
We see that most of the patients are screen-detected and occur in
approximately two-year intervals after entry. There are very few
symptomatically detected cancers occurring at these time points. The
number gradually increases afterwards, leading up to the next round.
This behavior is due to the fact that soon-to-be symptomatic cancers
are instead detected at screening.

The estimates of the 10 parameters in our continuous growthmodel
are presented in Table 2. Because the model parameters are not
straightforward to interpret, we also present some more intuitive
statistics, which are functions of the parameter estimates.We estimated
(with 95%CIs in parentheses) the probability of onset occurring before
age 75; themedian tumor volume doubling time (for tumorswith onset
at ages 40 and 60); and the screening sensitivities for detecting a 13-mm
tumor (the median screen-detected size), for women with the median
percent density of 18%, and for women with the 90th percentile of
density 50%, and for women with the 10th percentile of density of 2%.
Sensitivities for other values can be read from Fig. 3 (see below).

Table 1. A descriptive summary of the three types of data entries: censored women (noncases), and invasive breast cancer cases,
separated into screen-detected and symptomatic cancers.

Screen-detected cases Symptomatic cases Censored

Number of women 703 329 64,504
Age at entry 62 56 54
(median and quartiles) (53–67) (48–66) (54–63)
percent mammographic density 0.14 0.26 0.18
(median and quartiles) (0.05–0.28) (0.12–0.42) (0.06–0.35)
Number of negative screenings 2 2 3
(median and quartiles) (1–2) (1–3) (3–4)
Tumor size, mm 13 17 —

(median and quartiles) (9–20) (12–24) —
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The parameter estimates that relate to the association between age at
onset and tumor growth rate (q1), and the association between percent
density and screening sensitivity (b2) are especially relevant. We
see in Table 2 that increased percent density is associated with a
reduction in screening sensitivity. The estimated effect of age at onset

on the inverse tumor growth rate was exp b�1 ¼ 1:011 ð95% CI;
0 : 997;1 : 025Þ, which is interpreted as a 1.1% increase in tumor
volume doubling time per year difference in age at onset, that is, that
earlier onset tumors are, on average, faster growing than later onset
tumors.

Using our estimated parameters, we constructed the estimated
distributions of age at onset and tumor volume doubling time, along
with functions of screening sensitivity and tumor growth. These are
presented in Fig. 3.

Figure 3A shows the distribution of age at onset, with a 95%
confidence area. This function corresponds to the PDF in Eq. (F). In
Fig. 3B, we show the estimated cumulative risk of onset, corresponding
to one minus the survival function in Eq. (E). The estimated cumu-
lative risk of onset by age 75 is 13.4% (95% CI, 10.3–17.1). For
reference, the life-time risk of breast cancer diagnosis in American
women is 13% (SEER cancer statistics review 1975–2016). We note
also that the estimated incidence of tumor onset resembles a time-
shifted version of incidence rates of breast cancer diagnosis that is
observed in Sweden (23).

In Fig. 3C, we see the estimated screening sensitivity (with 95%
confidence areas) for two different percent densities, 2% and 50%,
which are the 10th and 90th percentiles of percent density found in our
data. These functions correspond to Eq. (J).

Fig. 3D and E show, respectively, the distributions of the tumor
volume doubling times [ln(2) times the inverse growth rate] of tumors
when onset occurs at age 40 and 60 (with 95% confidence areas). These
are estimates of the PDF in Eq. (H), with inverse growth rates
transformed to tumor doubling times. We estimated the median to
be 0.46 years (95%CI, 0.32–0.65) or 167 days (95%CI, 118–236) when
onset occurs at age 40; and 0.56 years (95% CI, 0.44–0.72) or 207 days
(95% CI, 163–262) when onset occurs at age 60. We estimate that the
time it takes for a tumor with these estimated median tumor volume
doubling times to grow from 0.5 mm to 15 mm (the median observed
tumor size) is 6.7 years for onset at age 40, and 8.4 years for onset
at age 60.

Because the processes we estimate are not directly observed, it is
difficult to assess the goodness-of-fit of our model. To do this, we
took our fitted model and performed a simulation study, where the
goal was to replicate the outcome in the study data. We generated a
large cohort of women, and matched them to the women in the
observed data. To approximate the screening attendance, we ran-
domly assigned each woman a screening program as follows: with
25% probability, screening every 24 months between ages 40 and 74;

Figure 2.

A,A histogram showing the timings of themammograms in the study. All participants are synchronized according to their date of entry, and the screening at entry is
omitted. B, A histogram showing the incidence of invasive breast cancer in KARMA. The participants are all synchronized according to their entry date.

Table 2. Estimates of various key statistics, and the model
parameter estimates, from fitting our continuous growth model,
with 95% CIs in parentheses.

Statistic Estimate 95% CI

Probability of onset before age 75 13.4% (10.3–17.1)
Median tumor doubling times (days)

Onset at age 40 167 (118–236)
Onset at age 60 207 (163–262)

Screening sensitivity for a 13-mm tumor
with 2% PD 79.3% (68.1–87.3)
with 18% PD 73.3% (61.1–82.7)
with 50% PD 58.3% (43.6–71.9)

Parameter estimates
A�100 �7.22 (�3.73 to �14.00)
B�1,000 1.18 (0.65–2.16)
d�100 9.52 (2.10–43.19)
ln(h) �8.82 (�8.98 to �8.66)
b0 �4.99 (�5.39 to �4.60)
b1 0.49 (0.43–0.55)
b2 �2.09 (�2.93 to �1.26)
j 0.56 (0.46–0.68)
exp(q0) 0.52 (0.22–1.23)
exp(q1) 1.011 (0.997–1.025)

Note: The CIs are derived from the estimated hessian of the log-likelihood
function.
Abbreviation: PD, percent density.
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with 75% probability, screening every 18 months between ages 40
and 52, and every 24 months between ages 52 and 74. We then
randomly assigned one of the screenings to be the entry into the
study. We then matched our simulated women to the observed data
with respect to the age at study entry, and PD. For each woman in
the data, we matched 100 simulated women. A random maximum
follow-up time was then sampled from the observed follow-ups, and
the outcome was simulated.

The goodness-of-fit results can be found in Fig. 4. In Fig. 4A, we
present a histogram of the observed incidence by age, with the
simulated incidence as a smoothed curve. The simulated incidence

was slightly lower (1.35% cases) than the observed (1.57% cases)
but resemble each other closely with age. In Fig. 4B, we present
the tumor size distributions for all ages, separated by mode of
detection. Again, histograms of the observed sizes are compared
with a smoothed curve of the simulated sizes. The simulated size
distributions look similar to the observed for both screen-detected
and symptomatic cases, but the median tumor size of the simulated
cases was overall slightly higher (15.6 mm) than the observed
(15.0 mm). In Fig. 4C, we present the tumor sizes only for women
ages 40–49 at diagnosis, and in panel (D) only for women aged
50 and over.

Figure 3.

Fitted distributions/functions for our natural history model. A,Age at onset distribution, with 95% confidence area. B, Cumulative risk of onset, with 95% confidence
area. C, Mammography screening sensitivity as a logistic function of tumor diameter, for women with 2% and 50% mammographic density, with 95% confidence
areas. D and E, Distributions of tumor volume doubling time for tumors with onset at age 40 and age 60, respectively, with 95% confidence areas.
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Discussion
In this study, we used a large breast cancer mammography cohort

to quantify the distributions of age at onset (carcinogenesis), the
heterogeneity of tumor growth, and mammography screening
sensitivity. In particular, we studied the effect age at onset has on
tumor growth rates, and the effect of mammographic density
on screening sensitivity. Younger age at onset was associated
with faster tumor growth. We note that, although the 95% CI for

exp b�1 (just) included 1, a log-likelihood ratio test comparing the
presented model to one without onset-dependent growth (i.e.,
�1 ¼ 0) showed a (just) statistically significant improvement
(P ¼ 0:045). Despite its borderline statistical significance, the
association is in the same direction as reports of reports of age at
diagnosis and tumor growth (1, 4, 9, 10).

Our estimates of the median tumor doubling time—both for onset
at 40 years and 60 years—were noticeably longer than estimated in
previous applications of continuous growth models. Weedon-Fekjær
and colleagues (4) and Abrahamsson and Humphreys (7) estimated
142 days and 124 days, respectively. However, our estimate of
207 days for tumors with onset at age 60 is in line with estimates
obtained by Fournier and colleagues (24). They estimated a median
tumor doubling time of 212 days by measuring tumor size change
in vivo using sequential mammograms. Similarly, Zhang and col-
leagues (25) used serial ultrasound images, and estimated 167 days
for women aged 26–51 (at diagnosis), and 227 days for women aged
52–71 (at diagnosis).

We used simulations to assess the goodness-of-fit of our model to
the observed data, since the model consists of four unobservable
processes. The general impression it gives is that incidence and
screen-detected tumor sizes are well fitted, but that the symptomatic
tumor sizes are overestimated, particularly in the younger women. The
inferior fit for the young symptomatic women could be attributed to
the scarcity of data for that subgroup, which contributed to only 80 of
the 1,032 cases. It could, however, indicate an area where the model
could be improved, where additional attention is needed for women
ages 40–49.

The choice to do a simulation for the model assessment is not
ideal, due to the individual screening attendances, screening inter-
vals, study entries and ends of follow-up. These all had to be
approximated to some extent. However, these complications are
precisely the reason why simulation was the best approach. While it
is conceivable to use formulas to represent the expected outcome,
these remain to be derived. These formulas would be related to
making age-, size-, and mode-specific risk predictions, which will
be the focus of a future study of ours on risk prediction, once more
follow-up data from the KARMA study is available. This requires
deriving a number of theoretical results, such as conditional growth
rate distributions (conditioning on tumor size, detection mode,
and screening history), and conditional distributions of future
onset times.

It is worth noting that the women in our study are all above the age
of 40, since that is when the Swedish screening program starts. In the
context of breast cancer, youngwomen are often defined as those being

Figure 4.

A comparison between the observed data (histograms) and the simulated data from our fitted model (lines).A, The age at diagnosis. B, The tumor size distributions
separated by mode of detection. C, The tumor size distributions by mode, for ages 40–49. D, The tumor size distributions by mode, for ages 50 and over.

AACRJournals.org Cancer Epidemiol Biomarkers Prev; 31(3) March 2022 575

Estimating Distributions of Breast Cancer Onset and Growth



under 40 years (26). This is a limitation that is shared with similar
previous studies, however, where the youngest women were either
40 years (1) or 50 years (4). Those studies did not takemammographic
density into account.

Another potential limitation of our study is the relatively short
follow-up time (median 5.4 years). However, this is enough follow-up
to include at least two full rounds of screening, as seen in Fig. 3. If we
combine this with the fact that the participants were recruited at all
screening ages (40–74 years in Sweden), we believe that our results are
valid for women attending screening in Sweden.

More aggressive subtypes of breast cancer (e.g., estrogen receptor–
negative, HER2-enriched, or triple negative), and tumors of a higher
grade, are associated with younger age (26, 27). The type of model
presentedhere can conceivably be extended tomodel different subtypes
of breast cancer, possibly by using mixture distributions. More meth-
odologic development is needed. In the currentis model, the different
subtypes and tumor grades can be considered to occupy different parts
of the random effects submodel for the inverse growth rate.

By modeling the natural history of breast cancer through four
different submodels, we open up the possibility of studying the effect
known breast cancer risk factors have on individual submodels. In this
study, we only included PD in the submodel for screening sensitivity.
Our group is currently working on adding more factors to other
submodels. To obtain reliable estimates, it will be important to include
relevant risk factors, and to carry out studies with larger numbers of
patients with cancer. We showed here how including mammographic
density in the screening sensitivity model impacts estimates of tumor
growth rates.

Continuous growthmodels are proving to be a promising approach
for studying breast cancer natural history. By better understanding the

processes of onset, growth, and screening sensitivity, we can study the
effects of factors such as mammographic density, hormone replace-
ment therapy use, parity, or family history on more than just breast
cancer incidence. Among other things, this opens up the possibility to
assess individualized screening, by identifying the individuals for
which screening will be most necessary and effective.
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