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Abstract

Hydrophobins are highly surface-active proteins that have versatile potential as agents for interface engineering.
Due to the large and growing number of unique hydrophobin sequences identified, there is growing potential to
engineer variants for particular applications using protein engineering and other approaches. Recent applications
and advancements in hydrophobin technologies and production strategies are reviewed. The application space of
hydrophobins is large and growing, including hydrophobic drug solubilization and delivery, protein purification
tags, tools for protein and cell immobilization, antimicrobial coatings, biosensors, biomineralization templates and
emulsifying agents. While there is significant promise for their use in a wide range of applications, developing new
production strategies is a key need to improve on low recombinant yields to enable their use in broader
applications; further optimization of expression systems and yields remains a challenge in order to use designed
hydrophobin in commercial applications.

Introduction
Hydrophobins are a family of small (< 20 kDa), highly
surface-active globular proteins that play diverse roles in
filamentous fungi growth and development [1–3]; they
have been cited as the most surface-active proteins
known [3]. Structurally, hydrophobins are characterized
by the presence of 8 highly conserved cysteine residues
in a specific primary sequence pattern, forming 4 disul-
fide bonds [4–9]. These 4 disulfide bonds stabilize an
amphipathic tertiary structure which imparts surfactant-
like activity [5, 6, 10, 11], driving hydrophobin self-as-
sembly into amphipathic layers at hydrophobic-hydro-
philic interfaces. Hydrophobins have historically been
separated into two groups, class I and class II, based on
their hydropathy plots, solubility characteristics, and
structures formed during self-assembly [12, 13]. Specific-
ally, class I hydrophobins, like SC3 from Schizophyllum
commune, form highly insoluble amyloid-like rodlets at
interfaces [2, 8, 14, 15], often proceeding through a con-
formational change [14–16], that can only be dissolved
using strong acids [17, 18]. In contrast, class II hydro-
phobins, like HFBI or HFBII from Trichoderma reesei,
form a highly ordered 2D crystalline monolayer at

interfaces [19–21] that can easily be dissolved with de-
tergents, organic solvent solutions, or high pressure [3].
Interestingly, the structural and functional roles of the
conserved disulfide bonds differ between the two classes,
with disulfides of class I hydrophobin SC3 being neces-
sary to keep the protein soluble and structurally stable,
but not affecting the self-assembling ability [10], while
class II hydrophobin HFBI disulfides are critical to both
protein structure and stability as well as function at in-
terfaces [11]. Recently, intermediate hydrophobin types
have been discovered that are between class I and class
II either structurally [22, 23] or functionally [24, 25].To
this end, Lo et al showed that by producing genetic chi-
meras of class I hydrophobins EAS and DewA with class
II hydrophobin NC2, properties of both classes of
hydrophobins could be obtained [21]. The high sequence
diversity within the hydrophobin family suggests mul-
tiple biological roles of these biosurfactants [18, 26, 27],
with complementation studies suggesting, at least for
class I hydrophobins, that each was evolved to function
at a specific interface [3], which is also demonstrated by
the differential expression and localization of different
hydrophobins during S. commune development [28]. Re-
cently, Pham et al determined that hydrophobins have a
significant level of conformational plasticity, with the na-
ture of the interfacial assemblies being highly dependent
on the specific interface the proteins are interacting with
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[29]. Lienemann et al found that by engineering native
surface charges on hydrophobin HFBI, viscoelastic prop-
erties of the assembled film at the air-water interface
and ability to absorb secondary protein layers were
affected [30]. Additionally, Meister et al showed that
mutating the surface charges of HFBI does not affect
overall protein folding state, but specific charge muta-
tions could be linked to inter-protein interactions at the
assembled film, while other mutations were linked to
protein orientation at the interface [31]. Meister et al
also reported that HFBI adsorbed to the air-water inter-
face reoriented in a pH responsive way due to changes
in inter-protein interactions caused by side-chain charge
states [32]. Overall, these findings indicate a significant
potential to use hydrophobins both directly and in modi-
fied forms for many interface-engineering applications,
which will be the primary focus of this review. For other
areas of active hydrophobin research such as foam
stabilization and gushing, the reader is referred to the
following reviews [33, 34]. Additionally, the current
hydrophobin production modalities and pitfalls will be
discussed (Fig. 1).

Applications
The vast diversity among known hydrophobins, the spe-
cificity of particular hydrophobins in their roles in fungal
development, and their unique structures and surface
activity implicate hydrophobins as advantageous agents
in many applications where interfaces need to be altered,
bridged, or stabilized.

In biomedical applications, hydrophobins have been
particularly useful for hydrophobic drug formulation and
delivery. While hydrophobic drugs are often formulated
using surfactants such as Tween 80 or Chremophore EL
to improve their solubility in an aqueous environment,
these surfactants are not innocuous, and have been
shown to be immunogenic in immunocompromised
patients, such as cancer patients [35]. Aimanianda et al
showed that hydrophobins forming the hydrophobic
rodlet layer of airborne fungal spores are responsible for
the immunological silencing that occurs when a host
breathes the spores [36], which suggests that hydrophobins
have the opposite effect of industrial surfactants on the
immune system, and may act as an immune-suppressive
barrier in drug formulations.
Given their high surface activity, hydrophobin-based

drug stabilization has been an area of active research
[37–42]. Valo et al demonstrated the preparation of class
II hydrophobin-coated drug nanoparticles below 200 nm
that were stable for at least 5 h in suspension, and for
longer times after freeze-drying [37]. They also utilized a
hydrophobin fused to green fluorescent protein (GFP) to
demonstrate that the particles were indeed decorated
with the proteins, and suggested that hydrophobin
fusions could be used to further modify the particle
surfaces [37]. Hydrophobin HFBI produced as a genetic fu-
sion to cellulose binding domains allowed a cellulose-based
nanofibrillar matrix stabilization of hydrophobin stabilized
drug particles of around 100 nm, capable of over 10
months storage and enhanced drug dissolution rates [38].
Sarparanta et al. showed that functionalizing thermally

Fig. 1 Visual summary of current hydrophobin applications and production systems
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hydrocarbonized porous silicon nanoparticles with hydro-
phobin HFBII altered the biodistribution compared to
unfunctionalized particles, as well as altered the protein
adsorption profile to the particle surface [39]. Fang et al
utilized a commercially available surfactant blend contain-
ing class I hydrophobin, H star protein B [43], to solubilize
the chemotherapy drug docetaxel [41]. They showed that
the formulation was biocompatible and exhibited a high
drug loading, high nanoparticle yield, small particles of
narrow distribution, and delayed drug release in rats [41].
Moreover, the effective stabilization of model drug
oil-in-water emulsions using low concentrations of HFBII
with nanofibrillar cellulose suggests an additional advan-
tage of formulation with hydrophobins since less material
is needed compared to traditional pharmaceutical
surfactant-based emulsion stabilizers [42]. When the class
I hydrophobin SC3 was used to solubilize the hydrophobic
drugs cyclosporine A and nifedipine, the oral bioavailabil-
ity was increased by 2- and 6-fold, respectively [44].
Hydrophobins have also been explored, with positive
results, as a topical drug formulation agent for nail perme-
ation [45, 46]. Thus, several drug-formulations and
administration modalities implicate hydrophobins as ef-
fective adjuvants for improved hydrophobic drug solubil-
ity, stability, and bioavailability. Furthermore, by using a
protein-based biosurfactant capable of manipulation at
the genetic level, hydrophobin fusion proteins have also
been employed for specific drug targeting. Recently,
Reuter et al demonstrated that coating porous silicon
nanoproteins with a fusion of T. reesei class II hydropho-
bins to human transferrin protein resulted in their uptake
in cancer cells [47]. Also, the stabilizing effect of the highly
conserved disulfide bonds in class II hydrophobins has
been exploited as a drug-release mechanism [48]. Maiolo
et al used the class II hydrophobin HFBII to organize and
stabilize supraparticles of dodecanethiol-protected gold
nanoparticles that could be loaded with hydrophobic drug
and remain stable in the blood until taken up by tissues,
where cytoplasmic glutathione would reduce the disulfides
allowing the supraparticles to release the drug load
directly in the cytoplasm [48]. This resulted in a two or-
ders of magnitude enhancement of the anticancer drug
therapeutic efficiency [48]. Overall, these studies show the
feasibility of hydrophobin-based drug formulation and
point to a need to continue to understand hydrophobin
structure and function as a means to engineer novel
hydrophobins for biocompatible coatings that improve
both drug bioavailability and targeting.
The self-assembly characteristics of hydrophobins ren-

ders them conducive to biosensor applications as well.
Corvis et al used class I hydrophobin coating from S.
commune to render glassy carbon electrodes catalytic by
immobilizing redox enzymes to the hydrophobin layer
[49]. Also, Zhao et al utilized class II hydrophobin HFBI

as an enzyme immobilization matrix on platinum elec-
trodes to create a selective and efficient glucose biosen-
sor [50]. Later, HFBI was used to alter the surface
wettability of a gold surface and immobilize the enzyme
choline oxidase [51]. They found that the HFBI layer
could withstand pH values from 1 to 13, and was able to
behave as an amperometric choline biosensor, further
suggesting the potential of hydrophobins in electro-
chemical biosensing applications [51]. After 7 weeks of
storage, the sensor retained > 70% of its initial activity,
suggesting the stability of the protein film [51]. More
recently, Spadavecchia et al reported that by using gold
nanoparticles complexed with a class I hydrophobin
Vmh2, which has a natural propensity to bind carbohy-
drates, a glucose biosensor could be generated using a
one-pot synthesis approach [52]. This introduces the
idea of using specific hydrophobins with unique and in-
trinsic biological properties on an application-specific
basis. Similarly, a class I hydrophobin-based biosensor
for small peptides, specifically yeast pheromones, was
reported that enabled an extremely low limit of detec-
tion by using combinations of alpha-factor labeled and
unlabeled hydrophobins [53]. Recombinant class I EAS
hydrophobin was expressed in E. coli with and without
the yeast alpha factor, and used to wet a hydrophobic
polystyrene surface [53]. The researchers found these
biosensors were robust against changes in the sample
composition, and due to the high stability of the hydro-
phobin monolayer, as it was able to withstand hot 2%
sodium dodecyl sulfate (SDS) extraction from the poly-
styrene surface, they could be reused several times with-
out loss of sensitivity [53]. Soikkeli et al designed class II
hydrophobin HFBI fusion proteins fused to Protein A or
a small peptide ZE produced either in plant or fungal
systems to create graphene biosensors that are label free
and have femptomolar sensitivities with approximately 1
s readout [54]. The biosensors could be prepared in
one-step due to the self-assembling nature of the hydro-
phobin domain in the fusion proteins, and demonstrated
that the receptor modules could be removed and re-
placed with a different receptor module in situ [54]. Fur-
ther, they showed that the monolayers survive drying,
indicating a reasonable shelf life, and showed that both
large and small analytes (immunoglobin and charged
peptide) are compatible with this system [54]. In yet
another interesting sensor-related application, genetically
modified hydrophobin HFBI with an N-terminal
cysteine residue were used to selectively nanopattern
gold-nanoparticles onto a hydrophobic surface in a
pH controlled manner [55]. This allowed production
of nanoscale components with a functional electronic
interface [55]. The hydrophobin HFBI was also used
in a method to exfoliate and functionalize graphene
sheets [56].
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The surface activity and self-assembly of hydrophobins
suggest a broad and growing potential application space.
Some additional applications include hydrophobins used
as protein purification tags [57–60], protein and cell
immobilization [61–65], antimicrobial coatings [66], and
biomineralization [67, 68]. Linder et al first demon-
strated that class II hydrophobins from T. reesei could
be efficiently separated in aqueous two phase systems
(ATPS) using nonionic surfactants from crude fungal
culture supernatants, and then efficiently back extracted
using isobutanol with a partition coefficient over 2500
for HFBI [57]. Joensuu and colleagues later utilized this
separation technology to purify Green Fluorescent Protein
(GFP)-HFBI fusion expressed in Nicotiana benthamiana
leaves, and reported enhanced accumulation of GFP in
the leaves due to formation of novel protein bodies, as
well as a 91% selective recovery of the GFP-HFBI fusion at
concentrations of 10mgml− 1 after ATPS separation [58].
Reuter et al explored other class II hydrophobin fusion
partners to GFP in the same system and found that effi-
ciency of separation was highly hydrophobin dependent,
with only two of the eight new hydrophobins efficiently
concentrating GFP to the surfactant phase from plant
extracts [59], which suggests specific molecular determi-
nants of separation efficiency. Hydrophobin ATPS separ-
ation has also been used to indirectly capture proteins
with affinity for the hydrophobin fusion partner. Recently,
an HFBI fusion to Protein A, an antibody binding protein,
was produced recombinantly in both N. benthamiana
leaves and tobacco BY-2 suspension cells, then utilized in
a nonionic surfactant ATPS to efficiently bind and purify
antibodies in solution [60].
Hydrophobins have also been successfully applied to re-

versing the wettability of poly(dimethylsiloxane) (PDMS),
a material commonly used in microfluidic devices. Wang
et al showed that PDMS could effectively be turned from
hydrophobic to hydrophilic using a hydrophobin surface
layer, which then rendered the surface bioactive so that
antigen molecules could be patterned onto the surface
layer [61]. Washing the PDMS with water did not remove
the stability deposited hydrophobin films from the surface
[61]. Hou and colleagues explored the class I hydrophobin
HGFI on PDMS wettability, and found that it had higher
stability in this application than class II hydrophobin
HFBI, able to withstand washes with hot 2% SDS [62].
Furthermore, the versatility of hydrophobin HFBI as a
protein-immobilization layer on both hydrophobic and
hydrophilic substrates was demonstrated by Qin et al,
whereby adsorbed HFBI layers on both PDMS (hydropho-
bic) and mica (hydrophilic) could immobilize chicken IgG
for biosensing applications [63]. They noted that the
modified water contact angle due to hydrophobin depos-
ition did not change when the surfaces were stored for
several days in air or water, indicating the hydrophobins

were stable in this configuration [63]. Similarly, Zhang et
al used hydrophobin HFBI to improve hydrophilicity and
design bioactive surfaces of electrospun PCL grafts used
in tissue engineering [64]. Anti-CD31 antibody could then
be immobilized to the PCL surface through the HFBI
layer, which promoted the attachment and retention of
endothelial cells to the graft [64]. Enhanced cellularization
and vascularization of PCL scaffolds was similarly accom-
plished using a vascular endothelial growth factor fused to
class I hydrophobin HGFI produced in the yeast Pichia
pastoris [69]. Additionally, Boeuf et al exploited a recom-
binant class I hydrophobin DewA fused to an integrin
binding Arginine-Glycine-Aspartic acid motif (RGD) or
laminin domain to enhance adhesion of mesenchymal
stem cells, osteoblasts, fibroblasts, and chondrocytes to
orthopaedic implant surfaces without affecting the pro-
pensity of the bacteria Staphylococcus aureus to adhere
[65]. To generate explicitly antibacterial surface coatings,
class IIa bacteriocin pediocin PA-1, an antibacterial pep-
tide, was expressed in Saccharomyces cerevisiae fused to
the class I hydrophobin HGFI and used to functionalize
and greatly improve the bacterial resistance of electrospun
PCL grafts [66].
In biomineralization applications, Heinonen et al engi-

neered hydrophobin HFBII modified with a ceramophilic
protein sequence to mineralize calcium carbonate [67].
The microparticles produced were uniform and exhib-
ited amphiphilic properties that were demonstrated by
preparing pickering emulsions [67]. Melcher et al used a
modified class I DewA hydrophobin fusion in a biomim-
etic approach to enhance hydroxyapatite binding and
calcium phosphate nucleation for reconstruction of
eroded teeth [68].
In an additional application, Taniguchi et al have used

commercially available class I hydrophobin H*protein B
[43] in a ligand encapsulation process to phase transfer
quantum dots from solvent to aqueous phases. They
demonstrated that encapsulating quantum dots allowed
for efficient phase transfer while maintaining a signifi-
cant portion of emission characteristics, and allowing for
additional conjugation for biological imaging applica-
tions [70]. HFBI fused to an RGD motif was recently
employed as a solubilizing agent for a hydrophobic
boron-dipyrromethene (BODIPY) dye, with the RGD
motif on the encapsulated dye causing effective labeling
of tumors in nude mice [71].

Production of hydrophobins
While hydrophobin research has ballooned over the
last two decades and application space is growing in
terms of impact and diversity, the commercial viabil-
ity of hydrophobins has been hampered by generally
low yields.
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Askolin et al were able to overproduce the class II
hydrophobin HFBI by homologous expression in T. ree-
sei using a clone with 3 copies of the HFBI gene to a
production level of 600 mg L-1 [72]. However, most of
the hydrophobin (80%) was bound to the mycelium and
required further extraction steps to obtain pure protein
[72]. In trying to overproduce the class I hydrophobin
SC3 via homologous expression in S. commune using
multiple gene copies, Schuurs et al observed gene silen-
cing of the endogenous and introduced SC3 genes at the
transcriptional level due to gene methylation [73]. Turn-
ing to heterologous production of SC3 in T. reesei
yielded approximately the same level of SC3 as the na-
tive S. commune [74]. Thus, recombinant production,
using either prokaryotic or eukaryotic organisms, has
been an attractive choice to try to overproduce both
native type or engineered hydrophobins as a means to
enhance scalability and avoid pitfalls of using the hom-
ologous host. In bacteria, however, hydrophobin produc-
tion, especially for class I hydrophobin, has typically
been on the order of 10 to 100 mg L− 1, but often less
[75–78]. In many cases, recombinant hydrophobin pro-
duction in bacteria proceeds through purification from
inclusion bodies, requiring a denaturation/renaturation
step to achieve the final product [8, 53, 76, 77, 79].
These denaturation and refolding steps represent added
expense for large-scale hydrophobin production using
these heterologous systems. On rare occasions for spe-
cific hydrophobins these pitfalls were overcome, as for
the case of H star A and B proteins where advantageous
fusions and expression conditions have yielded industri-
ally feasible amounts of soluble class I hydrophobin from
bacteria [43]. More recently, however, eukaryotic heter-
ologous expressions systems have been employed to
greatly increase yields of both class I and class II hydro-
phobins recombinantly with generally better yields than
bacteria.
The methylotropic yeast Pichia pastoris has become a

popular heterologous host for hydrophobin expression
[11, 69, 80–86]. P. pastoris has several advantages for
heterologous hydrophobin production. As a fungal host,
P. pastoris is expected to share similar chaperone
proteins and folding strategies as filamentous fungi.
These include glycosylation and proper disulfide bond
formation [87, 88], which has been shown to be critical
in class II hydrophobin structure and function [11] as
well as to class I hydrophobin stability [10]. In addition,
recombinant proteins can be secreted into the culture
medium of P. pastoris [89], which secretes very low
levels of endogenous proteins, under the control of a
highly inducible promoter such as the methanol induced
AOXI promoter [89, 90]. This means the recombinant
proteins are effectively pre-purified by being secreted
[89]. In particular, Niu et al have been able to express

class II hydrophobin to levels of 120 mg L− 1 in P. pas-
toris [81], while class I hydrophobins RodA and RodB as
well as HGFI were produced to levels of between 200
and 300 mg L− 1 [83, 85]. This represents a substantial
improvement to previously reported yields but could be
further improved with additional optimization. Of inter-
est is the reported increase in HGFI production in P.
pastoris from shake flasks yielding 86 mg L− 1 [82] to
fed-batch fermentation yielding 300 mg L− 1 [85]. By op-
timizing the process parameters using controlled feed
rate in the fed-batch fermentation, the recombinant class
I hydrophobin HGFI yield was increased over 3-fold
between these studies. Of note is the possibility for
hydrophobin producing P. pastoris strain optimization at
the molecular level [87] to further increase yields at an
intrinsic level in conjunction with extrinsically optimized
growth conditions, such as growth media pH and com-
position, temperature, and feed rate. Molecular optimi-
zations might be to increase strain copy number of the
target gene, which has been shown to often correlate to
higher product expression in P. pastoris [91].
The other emerging heterologous hosts in hydropho-

bin production are plant based. Transient or stable
expression of GFP-HFBI fusion has been carried out in
Nicotiana benthamiana leaves [58, 59, 92] and tobacco
BY-2 suspension cells [93, 94] to produce high yields of
hydrophobins and hydrophobin fusions. In particular,
Joensuu et al reported a GFP-HFBI production level of
3.7 mg g− 1 fresh leaf weight [58], comprising approxi-
mately 51% of the total soluble protein. Häkkinen et al
recently reported the yield of a high-expressing BY-2
clone as 1.1 g L− 1 of GFP-HFBI in suspension, and also
reported successful cryopreservation of the cultures,
enabling industrial application of this hydrophobin fu-
sion production technology [94]. The interesting devel-
opment of hydrophobin-induced protein bodies in the
leaf cells were credited with the increased accumulation
of the recombinant proteins, keeping them in a pro-
tected state from proteases in the cytosol [58, 60, 92].

Conclusions and future perspectives
The remarkable surface-activity of hydrophobins has
made them attractive candidates in a wide variety of
interface-engineering applications to date. While some
very specific hydrophobins can be made at industrially
feasible levels, there remains an unmet need to produce
high levels of both native and engineered forms of
hydrophobins before hydrophobin-based technologies
can fully realize their commercial potential. Further-
more, a deeper understanding of hydrophobin structure-
function relationships would inform novel hydrophobin
design for specific applications, which would have tre-
mendous implications in many important fields such as
pharmaceuticals, electronics, microfluidics, and food
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products. To date, biochemical studies have related sta-
bility to disulfide bonds [10, 11] and film viscoelastic
properties, inter-protein interaction, and pH responsive
orientation to surface charge [30–32]. However uncover-
ing other key structure-function relationships in hydro-
phobins could lead to design from first principles,
whereby application specific characteristics could be
programmed into the hydrophobin at a genetic level to
enable outcomes such as increased binding, enhanced
solubilization, switchable surface activity, or specific
nanopatterning, although the potential is limitless. To
get at this goal, further research into hydrophobin se-
quence, folding, and the related function needs to be
undertaken in order to build a foundation for design.
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