

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Carboxypyridinium maleate

P. Pandi,^a G. Peramaiyan,^b R. Akilan,^c G. Chakkaravarthi^{d*} and R. Mohankumar^{b*}

^aDepartment of Physics, Panimalar Engineering College, Chennai 600 123, India, ^bDepartment of Physics, Presidency College, Chennai 600 005, India, ^cDepartment of Physics, Aksheyaa College of Engineering, Kancheepuram 603 314, India, and ^dDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India Correspondence e-mail: chakkaravarthi_2005@yahoo.com, mohan66@hotmail.com

Received 1 September 2012; accepted 1 October 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.071; wR factor = 0.199; data-to-parameter ratio = 16.5.

In the title molecular salt, C₆H₆NO₂⁺·C₄H₃O₄⁻, the 2carboxypyridinium cation is essentially planar with a maximum deviation of 0.003 (3) Å. In the crystal, adjacent cations and anions are linked by an extensive system of weak N-H···O, O-H···O and C-H···O interactions, forming a layer parallel to the *ab* plane.

Related literature

For details of pyridine and its derivatives, see: Banerjee & Murugavel (2004); Bis et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$C_6H_6NO_2 \cdot C_4H_3O_4$
$M_r = 239.18$
Monoclinic, $P2_1/c$
a = 14.6498 (9) Å
<i>b</i> = 10.3976 (8) Å
c = 6.9067 (5) Å
$\beta = 100.089 \ (3)^{\circ}$

V = 1035.78 (13) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.13 \text{ mm}^{-1}$ T = 295 K $0.24 \times 0.20 \times 0.16 \; \rm mm$ 9722 measured reflections

 $R_{\rm int} = 0.027$

2557 independent reflections

2092 reflections with $I > 2\sigma(I)$

Data collection

Bruker Kappa APEXII CCD

```
diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.970, T_{\max} = 0.980
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.071$	155 parameters
$wR(F^2) = 0.199$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
2557 reflections	$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O2	0.86	2.28	2.639 (3)	105
$D5 - H5A \cdots O4$	0.82	1.73	2.540 (3)	168
$N1 - H1 \cdots O1^{i}$	0.86	2.02	2.725 (3)	139
$O2-H2A\cdots O3^{ii}$	0.82	1.71	2.463 (3)	152
$C2 - H2 \cdot \cdot \cdot O2^{iii}$	0.93	2.54	3.462 (4)	170
$C3 - H3 \cdot \cdot \cdot O6^{iv}$	0.93	2.59	3.221 (4)	125
$C5 - H5 \cdots O4^{v}$	0.93	2.40	3.251 (4)	152
$C8 - H8 \cdots O6^{vi}$	0.93	2.40	3.285 (4)	158
Symmetry codes:	(i) - <i>x</i> +	$1, y + \frac{1}{2}, -z + \frac{1}{2};$	(ii) $-x + 1$,	-y, -z; (iii)
$-x+1, y-\frac{1}{2}, -z+\frac{1}{2};$	(iv) - <i>x</i>	+2, -y, -z + 1;	(v) $x, -y +$	$\frac{1}{2}, z + \frac{1}{2};$ (vi)
$-x+2, y-\frac{1}{2}, -z+\frac{1}{2}.$				

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors wish to acknowledge the SAIF, IIT Madras, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2380).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545-552.

Bis, J. A., McLaughlin, O. L., Vishweshwar, P. & Zaworotko, M. J. (2006). Cryst. Growth Des. 6, 2648-2650.

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o3081 [doi:10.1107/S1600536812041177]

2-Carboxypyridinium maleate

P. Pandi, G. Peramaiyan, R. Akilan, G. Chakkaravarthi and R. Mohankumar

Comment

Pyridine and its derivatives are some of the most frequently used synthons in supramolecular chemistry based on hydrogen bonds (Banerjee & Murugavel, 2004; Bis *et al.*, 2006). We herewith report the molecular and crystal structures of the title compound, **I**, which belongs to this class of compounds.

The asymmetric unit of **I**, (Fig. 1), contains a 2–carboxypyridinium cation and a malonate anion. The bond lengths (Allen *et al.*, 1987) and angles are within the normal range. The crystal structure exhibit weak intermolecular N—H···O, O—H···O and C—H···O (Table 1 & Fig. 2) interactions.

Experimental

A solution of picolinic acid (0.123 g, 1 mmol) in 10 ml ethanol was added with stirring to a solution of maleic acid (0.116 g, 1 mmol) in 10 ml of distilled water at 303 K. After some time, white precipitate was obtained, which was dissolved in ethanol and colourless block–shaped single crystals were obtained by slow evaporation of the ethanol solution.

Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H, N—H = 0.86Å and $U_{iso}(H) = 1.2U_{eq}(N)$ for amine H and O—H = 0.82Å and $U_{iso}(H) = 1.5U_{eq}(O)$ for hydroxyl H.

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The molecular structure of title compound with atom labels. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as asmall spheres of arbitrary radius.

Figure 2

The packing of I, viewed down c axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

2-Carboxypyridinium maleate

Crystal data

C₆H₆NO₂·C₄H₃O₄ $M_r = 239.18$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 14.6498 (9) Å b = 10.3976 (8) Å c = 6.9067 (5) Å $\beta = 100.089$ (3)° V = 1035.78 (13) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω - and φ -scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.970, T_{\max} = 0.980$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.071$ $wR(F^2) = 0.199$ S = 1.102557 reflections 155 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 496 $D_x = 1.534 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4245 reflections $\theta = 2.4-28.3^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.24 \times 0.20 \times 0.16 \text{ mm}$

9722 measured reflections 2557 independent reflections 2092 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 28.3^\circ, \theta_{min} = 1.4^\circ$ $h = -19 \rightarrow 18$ $k = -13 \rightarrow 13$ $l = -9 \rightarrow 9$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0625P)^2 + 1.8972P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.43$ e Å⁻³ $\Delta\rho_{min} = -0.33$ e Å⁻³ Extinction correction: *SHELXL*, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.015 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.57261 (18)	-0.0804 (3)	0.3125 (4)	0.0320 (6)	
C2	0.6336 (2)	-0.1778 (3)	0.3751 (5)	0.0389 (7)	
H2	0.6170	-0.2628	0.3454	0.047*	
C3	0.7201 (2)	-0.1492 (3)	0.4825 (5)	0.0438 (7)	
Н3	0.7618	-0.2149	0.5261	0.053*	
C4	0.7440 (2)	-0.0230 (3)	0.5246 (5)	0.0412 (7)	
H4	0.8020	-0.0027	0.5963	0.049*	
C5	0.6817 (2)	0.0725 (3)	0.4599 (5)	0.0401 (7)	
Н5	0.6971	0.1582	0.4869	0.048*	
N1	0.59856 (15)	0.0413 (2)	0.3575 (4)	0.0342 (5)	
H1	0.5599	0.1021	0.3187	0.041*	
C6	0.47635 (19)	-0.1001 (3)	0.1946 (4)	0.0346 (6)	

06	1.08852 (16)	0.1899 (3)	0.2139 (4)	0.0580 (7)	
H5A	0.8978	0.2340	0.0523	0.084*	
05	0.95136 (17)	0.2604 (2)	0.0741 (4)	0.0559 (7)	
O4	0.79341 (16)	0.1568 (2)	-0.0311 (4)	0.0601 (8)	
03	0.72935 (14)	-0.0300 (2)	0.0195 (4)	0.0446 (6)	
H2A	0.3766	-0.0161	0.1075	0.068*	
O2	0.42766 (14)	0.0007 (2)	0.1721 (4)	0.0453 (6)	
01	0.45516 (17)	-0.2082 (2)	0.1321 (4)	0.0566 (7)	
C10	1.0058 (2)	0.1714 (3)	0.1674 (5)	0.0401 (7)	
H9	1.0084	-0.0061	0.2955	0.047*	
C9	0.9664 (2)	0.0462 (3)	0.2149 (5)	0.0388 (7)	
H8	0.8762	-0.0878	0.2130	0.045*	
C8	0.8827 (2)	-0.0055 (3)	0.1646 (5)	0.0373 (6)	
C7	0.79780 (19)	0.0490 (3)	0.0421 (4)	0.0354 (6)	

Atomic displacement parameters (\mathring{A}^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0282 (13)	0.0299 (13)	0.0366 (14)	-0.0020 (10)	0.0024 (10)	0.0014 (11)
0.0389 (15)	0.0262 (13)	0.0493 (17)	0.0000 (11)	0.0014 (13)	0.0055 (12)
0.0374 (15)	0.0392 (16)	0.0514 (18)	0.0078 (13)	-0.0014 (13)	0.0081 (14)
0.0284 (13)	0.0471 (17)	0.0440 (17)	-0.0014 (12)	-0.0051 (12)	-0.0031 (13)
0.0310 (14)	0.0349 (15)	0.0518 (18)	-0.0029 (11)	0.0001 (12)	-0.0068 (13)
0.0270 (11)	0.0274 (11)	0.0458 (14)	0.0014 (9)	-0.0005 (10)	0.0004 (10)
0.0270 (13)	0.0327 (14)	0.0417 (15)	-0.0060 (10)	-0.0003 (11)	0.0041 (11)
0.0295 (13)	0.0331 (14)	0.0426 (15)	0.0006 (11)	0.0031 (11)	-0.0015 (12)
0.0358 (14)	0.0296 (13)	0.0451 (16)	0.0011 (11)	0.0029 (12)	0.0029 (12)
0.0352 (14)	0.0320 (14)	0.0452 (17)	0.0020 (11)	-0.0041 (12)	0.0017 (12)
0.0378 (15)	0.0350 (15)	0.0459 (17)	-0.0054 (12)	0.0024 (13)	-0.0057 (13)
0.0479 (13)	0.0352 (12)	0.0781 (18)	-0.0090 (10)	-0.0125 (12)	-0.0019 (12)
0.0261 (10)	0.0393 (12)	0.0648 (15)	-0.0008 (9)	-0.0079 (9)	-0.0009 (10)
0.0323 (10)	0.0425 (12)	0.0555 (14)	-0.0055 (9)	-0.0018 (9)	0.0043 (10)
0.0395 (12)	0.0409 (13)	0.092 (2)	-0.0009 (10)	-0.0120 (12)	0.0193 (13)
0.0458 (13)	0.0373 (12)	0.0786 (18)	-0.0083 (10)	-0.0054 (12)	0.0109 (12)
0.0378 (12)	0.0526 (15)	0.0787 (19)	-0.0125 (11)	-0.0037 (12)	-0.0083 (13)
	$\begin{array}{c} U^{11} \\ \hline 0.0282 (13) \\ 0.0389 (15) \\ 0.0374 (15) \\ 0.0284 (13) \\ 0.0210 (14) \\ 0.0270 (11) \\ 0.0270 (13) \\ 0.0295 (13) \\ 0.0358 (14) \\ 0.0352 (14) \\ 0.0378 (15) \\ 0.0479 (13) \\ 0.0261 (10) \\ 0.0395 (12) \\ 0.0458 (13) \\ 0.0378 (12) \\ \end{array}$	$\begin{array}{c ccccc} U^{11} & U^{22} \\ \hline 0.0282 \ (13) & 0.0299 \ (13) \\ 0.0389 \ (15) & 0.0262 \ (13) \\ 0.0374 \ (15) & 0.0392 \ (16) \\ 0.0284 \ (13) & 0.0471 \ (17) \\ 0.0310 \ (14) & 0.0349 \ (15) \\ 0.0270 \ (11) & 0.0274 \ (11) \\ 0.0270 \ (13) & 0.0327 \ (14) \\ 0.0295 \ (13) & 0.0327 \ (14) \\ 0.0358 \ (14) & 0.0296 \ (13) \\ 0.0352 \ (14) & 0.0320 \ (14) \\ 0.0378 \ (15) & 0.0350 \ (15) \\ 0.0479 \ (13) & 0.0352 \ (12) \\ 0.0323 \ (10) & 0.0425 \ (12) \\ 0.0378 \ (13) & 0.0373 \ (12) \\ 0.0378 \ (12) & 0.0526 \ (15) \\ \end{array}$	U^{11} U^{22} U^{33} 0.0282 (13)0.0299 (13)0.0366 (14)0.0389 (15)0.0262 (13)0.0493 (17)0.0374 (15)0.0392 (16)0.0514 (18)0.0284 (13)0.0471 (17)0.0440 (17)0.0310 (14)0.0349 (15)0.0518 (18)0.0270 (11)0.0274 (11)0.0458 (14)0.0270 (13)0.0327 (14)0.0417 (15)0.0295 (13)0.0331 (14)0.0426 (15)0.0358 (14)0.0296 (13)0.0451 (16)0.0352 (14)0.0350 (15)0.0459 (17)0.0479 (13)0.0352 (12)0.0781 (18)0.0261 (10)0.0393 (12)0.0648 (15)0.0395 (12)0.0409 (13)0.092 (2)0.0458 (13)0.0373 (12)0.0786 (18)0.0378 (12)0.0526 (15)0.0787 (19)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

C1—N1	1.342 (4)	C6—O2	1.261 (3)
C1—C2	1.370 (4)	C7—O4	1.227 (4)
C1—C6	1.514 (4)	С7—ОЗ	1.284 (3)
C2—C3	1.384 (4)	C7—C8	1.488 (4)
С2—Н2	0.9300	C8—C9	1.328 (4)
C3—C4	1.376 (5)	C8—H8	0.9300
С3—Н3	0.9300	C9—C10	1.484 (4)
C4—C5	1.369 (4)	С9—Н9	0.9300
C4—H4	0.9300	C10—O6	1.213 (4)
C5—N1	1.336 (4)	C10—O5	1.315 (4)
С5—Н5	0.9300	O2—H2A	0.8200
N1—H1	0.8600	O5—H5A	0.8200

C6—01	1.224 (4)		
N1 C1 C2	118.8(2)	O1 C6 O2	128.0 (3)
N1 - C1 - C2	116.0(2)	01 - C6 - 02	128.0(3)
NI = CI = C0	110.8(2)		117.9(3)
C2C1C6	124.4 (3)	02	114.0 (2)
C1—C2—C3	119.7 (3)	04	123.4 (3)
C1—C2—H2	120.1	O4—C7—C8	124.1 (3)
C3—C2—H2	120.1	O3—C7—C8	112.5 (3)
C4—C3—C2	119.5 (3)	C9—C8—C7	129.5 (3)
С4—С3—Н3	120.2	С9—С8—Н8	115.2
С2—С3—Н3	120.2	С7—С8—Н8	115.2
C5—C4—C3	119.5 (3)	C8—C9—C10	132.4 (3)
C5—C4—H4	120.3	С8—С9—Н9	113.8
C3—C4—H4	120.3	С10—С9—Н9	113.8
N1C5C4	119.4 (3)	O6—C10—O5	120.7 (3)
N1—C5—H5	120.3	O6—C10—C9	119.4 (3)
С4—С5—Н5	120.3	O5—C10—C9	120.0 (3)
C5—N1—C1	123.1 (2)	C6—O2—H2A	109.5
C5—N1—H1	118.5	C10—O5—H5A	109.5
C1—N1—H1	118.5		
N1 - C1 - C2 - C3	0.0(5)	C2—C1—C6—O1	-8.5 (5)
C6-C1-C2-C3	-1799(3)	N1 - C1 - C6 - O2	-7.8(4)
C1 - C2 - C3 - C4	-0.3(5)	C_{2} C_{1} C_{6} C_{2}	1721(3)
$C_{2} = C_{3} = C_{4} = C_{5}$	0.2(5)	04-07-08-09	-1.2.(6)
C_{3} C_{4} C_{5} N_{1}	0.2(5)	03-07-08-09	178.2(3)
C_{4} C_{5} N_{1} C_{1}	-0.6(5)	C7 C8 C9 C10	-1.2(6)
$C_{\tau} = C_{\tau} = 0$	0.0(3)	$C_{1} = C_{2} = C_{10}$	-171 4 (4)
$C_2 = C_1 = N_1 = C_3$	0.3(3)	$C_{0} = C_{0} = C_{10} = 0_{0}$	-1/1.4(4)
$C_0 - C_1 - N_1 - C_2$	-1/9.7(3)	03-09-010-05	8.0 (0)
NI-CI-C6-01	171.6 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
N1—H1…O2	0.86	2.28	2.639 (3)	105	
O5—H5 <i>A</i> ···O4	0.82	1.73	2.540 (3)	168	
N1—H1···O1 ⁱ	0.86	2.02	2.725 (3)	139	
O2—H2 <i>A</i> ···O3 ⁱⁱ	0.82	1.71	2.463 (3)	152	
C2—H2···O2 ⁱⁱⁱ	0.93	2.54	3.462 (4)	170	
C3—H3…O6 ^{iv}	0.93	2.59	3.221 (4)	125	
С5—Н5…О4 ^v	0.93	2.40	3.251 (4)	152	
C8—H8····O6 ^{vi}	0.93	2.40	3.285 (4)	158	

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) -*x*+1, -*y*, -*z*; (iii) -*x*+1, *y*-1/2, -*z*+1/2; (iv) -*x*+2, -*y*, -*z*+1; (v) *x*, -*y*+1/2, *z*+1/2; (vi) -*x*+2, *y*-1/2, -*z*+1/2.