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Introduction

Epithelia are physical barriers that constitute a functional inter-
face between distinct body compartments and the outside. Under 
healthy condition, cells that composed the epithelial sheets are 
tightly bound to neighboring cells and to underlying basement 
membranes via various structures such as adherens junctions, 
tight junctions, desmosomes and hemi-desmosomes.1 However, 
epithelial cells empower high degree of plasticity and under cer-
tain circumstances such as developmental processes, fibrogenesis 
or tumor progression, they lose their static phenotype and acquire 
migratory and invasive behavior.2 Epithelial plasticity could be 
limited to relocalization of junctional proteins or to a more dras-
tic epithelial to mesenchymal transition (EMT). EMT is asso-
ciated with phenotypic and genotypic changes. Phenotypically, 
epithelial cells undergoing an EMT lose their cobblestone 
phenotype to acquire an elongated fibroblastic morphology. 
Genetically, a downregulation of E-cadherin, as well as downreg-
ulation and translocation of β-catenin from the cell membrane 
to nucleus and an upregulation of mesenchymal markers such 
as vimentin, fibronectin and N-cadherin were observed. Overall, 
these changes allowed a disassembly of cell-cell junction, actin 
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It is noteworthy that bacterial or viral infections, and 
the resulting chronic inflammation, have been shown to 
predispose individuals to certain types of cancer. Remarkably, 
these microbes upregulated some transcription factors 
involved in the regulation of the epithelial to mesenchymal 
transition, referred herein as EMT. EMT is a cellular process 
that consists in the conversion of epithelial cell phenotype to a 
mesenchymal phenotype. Under physiological conditions EMT 
is clearly important for embryogenesis, organ development, 
wound repair and tissue remodeling. However, EMT may also 
be activated under pathologic conditions, more particularly 
in carcinogenesis and metastatic progression. In this review, 
we make a parallel between microbes- and growth factors-
induced transcription factors. A unifying EMT model then 
emerges that may help in understanding the development of 
microbial pathogenesis and in defining new potential future 
therapeutic strategy in treating diseases linked to infections.
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cytoskeleton reorganization and induction of contractile proteins 
and non-motile epithelial cells convert into individual, motile 
and invasive mesenchymal phenotypic cells.3-5

It is to note that EMT is different than collective cell move-
ment, which occurs when two or more cells that retain their 
genetic and phenotypic feature move together across a two-
dimensional (layer of extracellular matrix) or through a three-
dimensional interstitial tissue.6

During the last decade major efforts have been made to deci-
pher molecular signals that control initiation of EMT. It appears 
that EMT is the result of growth factor-induced signaling path-
ways that affect the epithelial integrity and target downstream 
transcriptional regulators to regulate epithelial to mesenchymal 
gene expression. Mostly, these signaling pathways share common 
endpoints, the central target being the regulation of expression 
of the adherens junction protein, E-cadherin. Remarkably some 
of these EMT-signaling pathways are upregulated by microbial 
pathogens, therefore suggesting that pathogens may also be 
considered as EMT inducers. In addition, the observation that 
microbe invasion leads to transforming growth factorβ (TGFβ) 
modulation supports our proposal.7-9 Indeed, once activated, the 
TGFβ receptor leads to phosphorylation and activation of two 
transcription factors, Smad-2 and Smad-3.10 Phospho-Smad2/3 
heterodimerize with Smad-4 and the Smad-complex translocate 
to the nucleus to regulate the transcription of genes that control 
cell proliferation, differentiation and cell migration.11 Moreover, 
TGFβ activates Smad-independent signaling cascade leading to 
the activation of the classical Ras-MAPK pathway,12 a signaling 
pathway that is particularly relevant for the EMT process.

The Epithelial to Mesenchymal Transition

A general overview. EMT has been extensively reviewed in the 
literature,3-5 we therefore decided to summarize the key point 
steps of this cellular process in Figure 1. As mentioned earlier, 
epithelial cells are apico-basal polarized cells with lateral adher-
ence to their neighbors under the control of E-cadherins and 
basal adherence to the extracellular matrix (ECM) mainly under 
the control of cytokeratins. In contrast, migrating mesenchymal 
cells display front-back polarity with only focal adhesions to 
their neighbors and to ECM. These contacts are mainly under 
the control of vimentin. Therefore, loss of E-cadherin and cyto-
keratin expression and gain of vimentin are commonly used to 
characterize EMT.
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The IKK complex. The IKK complex (700 to 900 kDa) consists 
of two catalytically active kinases (IKKα and IKKβ) and a regu-
latory scaffold protein, IKKγ (NEMO), which connects both of 
the catalytic subunits with upstream activators. In non-stimulated 
cells, NFκB complexes are sequestered in the cytosol in an inac-
tive form, due to their association with inhibitory IKB proteins 
(IKBα, IKBβ and IKBε). Upon activation, activated IKK kinases 
promote the degradation of IKBα and NFκB family of transcrip-
tion factors can than translocate to the nucleus where they regu-
late gene expression.22 The NFκB family of transcription factors 
which is composed of five members, p65 (REL-A), REL-B, cyto-
plasmic (c) REL, p50;p105 (NFκB1) and p52;p100 (NFκB2), is 
widely activated under cytokines and/or microbial challenge.23,24

In an integrative genomic analysis, NFκB has been shown 
to regulate ZEB2, a regulator of EMT.25 In addition, NFκB is 
involved in the upregulation of twist-1 and twist-2 expression in 
response to TNFα; this regulation is lost in fibroblasts lacking 
the p65 subunit of NFκB.26 Moreover, the authors proposed a 
model in which TWIST orchestrates a negative feedback loop 
by repressing cytokine expression under cytokine challenge 
and therefore maintaining a controlled inflammatory response. 
Interestingly enough, the classical NFκB pathway is also respon-
sible for the EMT process attributable to von Hippel-Lindau 
(VHL) loss and subsequent HIF-1 activation since molecular and 
pharmacological approaches to inhibit NFκB promote a partial 
reversion to an epithelial phenotype.27 Finally, NFκB also con-
trols mesenchymal marker expression since an NFκB binding site 
has been described on the vimentin gene28 and overexpression of 
a constitutively active form of p65 in breast cancer cells increases 
expression of vimentin.29 Moreover, NFκB directly activates the 
transcription of the (MMP)-9 matrix metalloprotease gene, a 
type IV collagenase which increases cellular invasiveness and 
motility30 and indirectly controls MMP-2.31

The MAPK module. MAPK signaling pathways are organized 
in modular cascades in which activation of upstream kinases by 
cell surface receptors leads to sequential activation of a MAPK 

Transcription factors and EMT. EMT is controlled by a 
small group of transcription factors defined as the core EMT 
regulatory factors that comprises SNAI1/Snail1,13 SNAI2/Slug/
Snail2,14 ZEB1, Sip1/ZEB2 15 and Twist1 and 2.16 Whereas 
these proteins share the same function that is a transcriptional 
repression of E-cadherin, they have different structures (Fig. 2).  
The Snail family is composed of zinc finger proteins, the ZEB 
family has two zinc finger clusters and Twist proteins have a 
helix loop helix motif.17 Interestingly enough, it was recently 
shown that in neural crest cells all these factors are coordinately 
regulated by an E3 ubiquitin ligase named Partner of paired 
(Ppa).18 Ppa is a F-box containing protein that targets its bound 
substrates to the ubiquitin-proteasome system for degradation. 
Given the importance of EMT in physiological development, 
the existence of a common regulatory protein that can be tightly 
controlled in a spatio-temporal manner makes sense. However, 
it remains to be defined whether Ppa is also involved in patho-
physiogical EMT such as tumor progression and microbial  
pathogenesis.

In addition to the classical core EMT regulatory factors, the 
Foxo3a protein, which belongs to the Forkhead transcription fac-
tor family,19 is known to upregulate E-cadherin expression via 
downregulation of Twist 1.20 Further, the lipopolysaccharide 
(LPS), a major component of the outer membrane of Gram-
negative bacteria, has been shown to regulate the Foxo3 pro-
tein activity in intestinal epithelial cells,21 suggesting a direct 
link between LPS and non-classical regulation of E-cadherin 
expression.

The signaling pathways that govern EMT. Growth factor 
binding to their respective receptors triggers activation of a mul-
titude of signaling pathways that ultimately stimulate the core 
EMT regulatory factors.12 Similarly, microbes via their specific 
trans-membrane receptors induce cell signaling that mediate 
transcription factor activation. Interestingly, growth factors and 
microbes share common signaling pathways, suggesting that 
microbes may be considered as EMT inducers.

Figure 1. A basic view of epithelial to mesenchymal transition. EMT is a highly conserved and fundamental process that governs morphogenesis in 
multicellular organisms. EMT is the result of a transcriptional repression of E-cadherin gene leading to the loss of the epithelial phenotype and the 
remodeling of the actin cytoskeleton associated to the mesenchymal phenotype. EMT plays an important role in the emergence and progression of 
carcinoma by allowing carcinoma cells scattering. This cellular process is reversible; at secondary sites, solitary carcinoma cells can extravasate and 
form a new carcinoma trough a mesenchymal to epithelial transition (MET).
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effector of the phosphatidylinositol-3-kinase (PI3K), has been 
shown to repress transcription of the E-cadherin gene.39 Indeed, 
cells producing a constitutively active form of Akt produced 
Snail, which in turn repressed expression of the E-cadherin gene. 
In addition, activated Akt triggered loss of cell-cell adhesion, 
morphological changes, loss of apicobasolateral cell polarization, 
induction of cell motility and decreased in cell-matrix adhe-
sion, all features that represents the hallmark of EMT. Further, 
a link with TGFβ signaling via autocrine or paracrine stimula-
tion has been proposed since TGFβ-induced cuboidal morphol-
ogy to a spindle-like elongated shape was inhibited by the the 
PI3K inhibitor LY294002 and by a dominant-negative (kinase- 
inactive) AKT mutant.40

The others pathways. The readers should keep in mind that in 
addition to these signaling pathways others less classical path-
ways exist. Among them, the smad pathway that is activated by 
TGFβ7-9,41 and the signal transducers and activators of transcrip-
tion (STAT) pathways which are activated by tyrosine phos-
phorylation of receptor tyrosine kinases, by the cytokine and 
chemokine receptor/Janus activated kinase (JAK) complexes or 
by non-receptor tyrosine kinases.42 In particular, STAT3 has 
been involved in EMT.43,44 Finally, an alteration in the micro-
environmental oxygen tension (hypoxia) and activation of 
hypoxic signaling through hypoxia-inducible factor (HIF) 45-51 
and microRNAs (miRs) 52-55 are emerging as important triggers 
and modulators of EMT.

EMT and Bacterial Pathogens

Prior to induce signaling pathways relevant for EMT, microbes 
should be sensed by the cells. These sensors belong to the pattern 
recognition receptor families.

module (MAPKKK→MAPKK→MAPK). This module com-
prises three different signaling pathways (MAPK, p38 and JNK). 
They are activated by inflammation, stress, oxidative stress and 
mitogens.32 Ultimately, these interconnected signaling pathways 
activate transcription factors leading to repression of E-cadherin 
but also activation of mesenchymal genes and cell motility.2,33

The Ras > Raf > MAPK kinase cascade is activated by a large 
number of mitogen receptors including tyrosine kinase receptors 
(such as fibroblast growth factor receptor, epithelial growth factor 
receptor, hepatocyte growth factor, vascular endothelial growth 
factor) and the G-protein coupled receptors, a family of seven 
trans-membrane domains proteins including cytokine and che-
mokine receptors. This signaling cascade, which is extremely well 
conserved from yeast to man, allows the repression of E-cadherin 
expression via activation of Snail/Slug. This pathway also controls 
upregulation of mesenchymal genes and cell motility via activation 
of SRE, AP1 and SP transcription factors2 and references herein.

The p38 MAPK pathway is certainly the most relevant MAPK 
module in regard to microbe sensing. It was first described to 
downregulate E-cadherin expression during mouse gastrulation.34 
Further, p38 MAPK was described to participate in TNFα-35 
and TGFβ-induced EMT.36 In addition a crosstalk between the 
Smad and NFκB pathways accentuates TGFβ-induced EMT in 
presence of TNFα.

The c-Jun N-terminal kinase (JNK) pathway is mainly acti-
vated by cellular stress and by cytokines that act through sev-
eral upstream kinases such as TAK1 and TRAF6. JNK pathway 
mediates TGFβ-induced EMT in keratinocytes.37 Further it was 
shown that activation of Smad3 by JNK is necessary to mediate 
TGFβ-induced EMT.38

The PI3K/Akt pathway. The oncogenic serine/threonine 
kinase AKT (also known as PKB), which is a downstream 

Figure 2. The transcription factors that govern EMT. The core EMT regulatory factors are composed of Helix Loop Helix (blue) and zing-finger DNA 
binding proteins. The green boxes represent zing-finger clusters. Homeo domains of the ZEB transcription factor family is represented as hatched 
circle and the Slug domain of SNAI2/Slug1 is represented as a gray motif. Once in the nucleus these transcription factors downregulate E-cadherin 
expression. The SNAI family of transcription factors can also activate vimentin and fibronectin expression and control the membrane basement  
degradation.
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to be the common end points of microbes sensing. However, cel-
lular responses to invading microbes are also the result of indirect 
activation of intracellular pathways comprising Smad and Stat 
pathways but also hypoxia and microRNAs.

The microbes normally present in humans are collectively 
estimated to number 10-fold that of human cells. Mainly located 
in the gut, the microbiota is crucial for human life by influenc-
ing human physiology and nutriment uptake.69 In addition, 
the microbiota contributes to the shaping of healthy intestinal 
immune responses.70 It has been proposed that an alteration in the 
development and/or composition of the microbiota may disturb 
the relationship between microbes and the immune system. In 
turn, immune defects may favor pathogenesis of various human 
inflammatory disorders,71 and inflammatory disorders promote 
EMT. We can therefore speculate that most of microbes that per-
sist in the body have the potential to indirectly favor an EMT 
behavior. In this review we will only focus on the few examples 
that describe a direct involvement of microbial pathogens in 
EMT induction based on their ability to modulate E-cadherin 
expression via an increase of the core EMT regulatory factors. 
Indeed, we will let aside all bacteria species and viruses that only 
induce a loss of epithelial barrier functions.

Bacterial products. LPS. Lipopolysaccharide (LPS), the 
major component of the outer membrane of Gram-negative 
bacteria binds to TLR4. LPS is an endotoxin, which induces a 
strong response from normal animal immune systems; therefore 
it is widely used to study gram-negative bacteria-induced cellular 
responses. Intriguingly, we found in the literature only one report 
that studies LPS-induced EMT. Using a model of intrahepatic 
biliary epithelial cells, Zhao and co-authors have shown that in 
response to LPS stimulation a decrease in E-cadherin expression 
was observed whereas expression of the mesenchymal mark-
ers (S100A and α-SMA) increased by more than 12-fold.72 In 
addition to EMT markers, they noticed that the messenger cod-
ing for TGFβ-1 was significantly increased. As indicated previ-
ously, TGFβ-1 is a well-known inductor of EMT that transmits 
its effect via Smad2/3. Indeed, silencing of Smad 2/3 in biliary 
epithelial cells resulted in a significant decrease of mesenchymal 
markers and an increase in E-cadherin expression. Therefore, the 
authors concluded that LPS induced the EMT probably through 
the TGFβ1/Smad2/3 pathway. In addition and as described in 
an earlier section, LPS also induced phosphorylation of the Foxo3 
protein leading to its export from the nucleus and its degradation 
in the cytosol.21

Flagellin and muramyl dipeptides. Flagellin and muramyl 
dipeptides (MDP) represent the two main other bacterial prod-
ucts that have been extensively studied in the literature. Once 
bound to the TLR5 receptor, flagellin induced the NFκB and 
MAPK signaling pathways.73 As described for LPS, cells induced 
by bacterial flagellin produced TGF-β1 and TGFβ is an EMT 
inducer.74 However, it remains to be determined whether flagel-
lin are true EMT inducers. Similarly, once in the cells, MDP are 
recognized by the NOD proteins which in turn induced NFκB 
and MAPK signaling.75 A recent report claims that MDP induce 
the expression of genes associated with EMT and invasive cell 
growth in intestinal epithelial cells (Scharl M., oral presentation 

A general overview on pattern recognition receptor (PRR). 
Twenty years ago, Charles Janeway identifies a mechanism based 
on the recognition of pathogen-associated molecular patterns 
(PAMPs) by host pathogen-recognition receptors (PRRs). He 
was the first to understand that this mechanism represents the 
first defense against pathogens.56 His discovery was further con-
firmed by the identification of the Drosophila transmembrane 
receptor Toll as a key player in the antifungal defense.57 One year 
later the human homolog was discovered,58 and then the toll-like 
receptor (TLR)4 was identified as the protein involved in the rec-
ognition of LPS. Therefore, the link between a microbial motif, 
LPS and a host receptor, TLR4, was made.59 Today, TLRs family 
encounters 10 members in human and each TLR has a distinct 
function in terms of PAMP recognition.60

TLRs are divided into two subgroups based on their cellu-
lar localization and respective PAMP ligands. The first group is 
expressed on cell surfaces and recognizes mainly microbial mem-
brane components such as lipids, lipoproteins and proteins. This 
group is composed of TLR1, TLR2, TLR4, TLR5, TLR6 and 
TLR1. The second group, expressed exclusively in intracellular 
vesicles where the receptors recognize microbial nucleic acids, is 
composed of TLR3, TLR7, TLR8 and TLR9.

In mammals, in addition to TLRs, an intra-cytoplasmic sens-
ing system for microbial effector exists. This second family of 
receptors is named Nod (nucleotide-binding oligomerization 
domain)-like receptors (NLRs). Among the NLRs, Nod1 and 
Nod2 recognize the intracellular degradation products of bacte-
rial cell wall components such as muropeptides.61 In this review 
we will focus our attention on TLRs and NLRs that represent 
the most important microbial sensors. The readers should keep 
in mind that other sensors exist.62-65

Mediators linking PRRs to transcription factors. TLRs 
shared a common structure based on three different domains: 
(1) a type I trans-membrane proteins with extracellular domains 
containing leucine-rich repeats and mediating the recognition of 
PAMPs, (2) a trans-membrane domains and (3) an intracellular 
Toll-interleukin 1 (IL-1) receptor (TIR) domains which recruit 
TIR domain-containing adaptor molecules to induce down-
stream signal transduction.

MyD88 was identified as the first member of the TIR family 
adaptors. Once bound to TLRs, MyD88 recruits the IL-1 recep-
tor-associated kinases IRAK4, IRAK1, IRAK2 and IRAK-M. 
Mostly, direct or indirect activation of IRAK allows the activa-
tion of IKK and MAPK signaling pathways which in turn induce 
a myriad of transcription factors.60 The TIR family also comprise 
TIRAP (Mal), TRAM and TRIF. TIRAP and TRAM func-
tion as additional sorting adaptors allowing the recruitment of 
MyD88 to TLR2 and TLR4. TRIF is also used by TLR3 and 
TLR4 and induces alternative pathways that lead to activation of 
the transcription factors IRF3 and NFκB.

RIP2 (also known as RICK or CARDIAK) is the common 
downstream signaling molecule of Nod1 and Nod 2.66 RIP2 
leads to the activation of NFκB via its binding to NEMO, the 
regulatory subunit of the IKK complex.67 We schematized in 
Figure 3 the PRR-induced signaling pathways. Thus, activation 
of IKK and MAPK and PI3K/Akt signaling pathways appeared 
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world’s population. Highly purified lipopolysaccharide from  
H. pylori strain 26,695 activate NFκB in HEK293 via TLR2 
but not TLR4. Further in gastric epithelial cells, H. pylori 
induce TLR2 and TLR5 signaling pathways leading to NFκB 

to the European Crohn’s Disease Colitis Organisation 2012; 
Abstract 567).

Helicobacter pylori. Helicobacter pylori is a gram-negative bac-
teria which colonizes the human stomach of about 50% of the 

Figure 3. A schematic view of PPR-induced pathways involved in stimulation of NFκB and MAPK signaling. TLRs (TLR1, TLR2, TLR4, TLR5, TLR6, TLR7 
and TLR9) do activate IKK and MAPK modules by binding of MyD88 to the receptor TIR domain and subsequently triggering IRAK, TRAF6 and TAK1. 
Alternatively, TIRAP (TIR domain-containing adaptor protein), a second TIR-domain-containing adaptor protein, is involved in the MyD88-dependent 
signaling pathway through TLR2 and TLR4. A third TIR-domain-containing adaptor, TRIF (TIR domain-containing adaptor protein inducing IFNβ), is 
essential for the MyD88-independent pathway. Further, the non-typical IKKs IKKε and TBK1 (TRAF-family-member-associated NFκB activator (TANK)-
binding kinase 1) mediate activation of IRF3 downstream of TRIF. A fourth TIR-domain containing adaptor, TRAM (TRIF-related adaptor molecule), 
is specific to the TLR4-mediated, MyD88-independent/TRIF-dependent pathway. By contrast, activation of NLRs leads to the recruitment of the 
receptor-interacting protein 2 (RIP2) kinase, which is essential for the activation of the IKK complex. In addition, activation of NOD1 leads to JNK stimu-
lation. Finally, double strand DNA has been linked to inflammasome activation. This protein complex, which is composed of NLRs of the NALP-family 
and adaptor-proteins apoptosis-associated speck-like protein (ASC), mediates the generation of IL-1β through cleavage of its precursor by caspase-1. 
Upon IKK complex activation, NFκB is freed and consequently translocate to the nucleus where it can bind to the promoter of its targeted genes. 
Similarly, once activated, ERK, JNK and p38 kinase translocate to the nucleus where they phosphorylate their respective transcription factors and 
therefore modulated gene expression. TLRs are connected to the PI3K/Akt pathway. Indeed, depending of the TLRs and the cells, PI3K has been shown 
to modulate transcription factor activities and cytokine production.68 Up to date, the molecular link between TLRs and PI3K are still unknown.
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Epstein-Barr virus, Kaposi sarcoma-associated herpes virus, poly-
oma virus, hepatitis B and C virus and human papilloma virus. 
Previous works indeed confirmed that at least two families of 
viruses (Epstein-barr and hepatitis B and C) induce EMT in epi-
thelial cells.

Epstein-barr virus. Epstein-Barr virus (EBV) is a member of 
the herpes virus family, which infects more than 90% of world 
population. EBV utilizes normal B cell biology to infect, persist 
and replicate in B cells. In these cells, EBV initially uses TLR7 to 
enhance cell proliferation.88 Further, it was shown that EBV infec-
tion of primary human monocytes induced the release of monocyte 
chemotactic protein 1, a cellular response mediated by TLR2.89 
Beyond immune cells, EBV also infects epithelial cells and it has 
been associated with neoplastic diseases such as nasopharyngeal 
carcinoma;90 the link between EBV and EMT has been studied in 
this particular context. Latent EBV encodes for eight proteins, two 
of them, the latent membrane protein 1 and 2A (LMPs), which 
highjack cell host signaling,91,92 are particularly involved in EMT. 
Horikawa and coauthors were the first to describe that transforma-
tion of MDCK epithelial cells with LMP1 induces EMT, charac-
terized by loss of epithelial markers, gain of mesenchymal markers 
and its associated increase in cell motility and invasiveness.93 To go 
further, the authors have shown that Twist1-silencing in MDCK 
cells resulted in changes from scattered and fibroblast-like shapes 
to tightly packed cobblestone morphology, characteristics of mes-
enchymal-to-epithelial transition, the reverse of EMT. Finally, the 
authors demonstrated that LMP1 induces Twist through NFκB 
in nasopharyngeal epithelial cells. More recently the same group 
demonstrated that Snail1 acts in combination to twist1 to induce 
EMT.94 Similar results were found in alveolar epithelial cells.95 
In addition, a link between EBV and fibrosis was demonstrated 
with EMT being the core of the process. Indeed, LMP1 induces 
pro-EMT signaling that occurs primarily through the nuclear 
factorκB pathway and secondarily through the extracellular sig-
nal-regulated kinase (ERK) pathway.96

In addition to a classical effect on intracellular signaling, 
EBV also downregulates expression of miR-200a and miR-200b, 
the downregulation of which induces EMT.97 First, the authors 
demonstrated an association between miR-200a and miR-200b 
downregulation and E-cadherin expression on resected gastric 
carcinoma tissue. Further, using in vitro established EBV-infected 
cell lines they confirmed that downregulation of these miRs cor-
relates with upregulation of the ZEB family of transcription fac-
tors and their associated loss of cell-to-cell adhesion. Finally they 
uncovered the ability of LMP2A, EBNA1 and BARF0 to down-
regulate the pri-miR-200 transcript.

Hepatitis B and C viruses. At least seven different viruses 
cause hepatitis, hepatitis viruses A, B and C are the most known. 
Whereas hepatitis virus A (HAV) induces acute infection disease 
of the liver, HBV and HCV induce more chronic diseases that 
can lead to cirrhosis and hepatocellular carcinoma. Both HBV 
and HCV have been shown to induce EMT.

Viral particles of mammalian HBV encode for a small regula-
tory protein, known as the X protein that modulates intracellular 
signaling pathways by directly or indirectly interacting with host 
factors. Therefore it was hypothesized that HBV X protein may 

activation.76 In addition to TLRs, H. pylori signal to cells via their 
numerous virulence factors. Two of them, the cytotoxin VacA 
and CagA, an effector of the cag pathogenicity island, can co-
opt epithelial cell function. Whereas VacA can disrupt the bar-
rier function of tight junction,77 CagA has major effects on the 
apical junctional complex allowing the deregulation of epithe-
lial cell-cell adhesion and a loss in epithelial polarity.78,79 More 
importantly, using the pathogenic H. pylori strain 60190, Yin and 
co-authors observed expression of Snail and Slug in gastric epi-
thelial cells.80 Further, they demonstrated that induction of EMT 
genes depends on H. pylori-induced signaling cascade pathways 
that involve gastrin, MMP7 and shedding of soluble heparin-
binding epidermal growth factor. Interestingly, the increase of 
gastrin observed in response to H. pylori infection occurred via 
a Ras > Raf > Mek > Erk > NFκB signaling pathway.81 Then, it 
appears that NFκB is a central common effector that plays a key 
role in the EMT process induced by pathogenic H. pylori.

Enterovirulent Escherichia coli strains. Escherichia coli, 
which colonize the gastrointestinal tract of human infants within 
a few hours after birth, normally coexist in harmony with its 
human hosts. However, there are several highly adapted E. coli 
clones that have acquired specific virulence factors, which con-
fer an increased ability to adapt to new niches and allow them 
to cause a broad spectrum of diseases. Among the intestinal 
pathogens there are six well-described classes: enteropathogenic-, 
enterohemorrhagic-, enterotoxigenic-, enteroaggregative-, entero-
invasive- and diffusely adherent-E. coli. Enteropathogenic E. coli 
cause entero/diarrheal disease as a consequence of lack of intes-
tinal barrier permeability.82 In most of the cases this epithelial 
plasticity is limited to relocalization of junctional proteins; how-
ever, depending on the bacterial strain used to infect epithelial 
cells, it could lead to a more drastic EMT. Among the families 
of entero-pathogenic E. coli, diffusely adherent E. coli (DAEC) is 
a heterogeneous group with variable virulence factors promoting 
adherence to epithelial cells.83 Using the clinical isolate DAEC 
C1845, we have shown that infection of intestinal epithelial cells 
promotes an EMT-like behavior. We have deciphered the molec-
ular mechanisms leading to EMT and observed that F1845 adhe-
sin binding to the DAF receptor promotes Ras > Raf > MAPK 
and PI3K pathways.84-86 Activation of these signaling pathways is 
required to induce an increase in HIF-1α protein expression but 
also Twist1 mRNA expression. We noticed that HIF-1α silenc-
ing significantly blocked the expression of Twist1 gene, revealing 
a role for HIF-1 in the transcriptional regulation of this gene. 
Furthermore, we observed that C1845-induced HIF-1α protein 
expression leads to a loss of E-cadherin and cytokeratin 18 and an 
increase in fibronectin expression, which are reversed in HIF-1α 
silenced cells,48 therefore highlighting the critical role of HIF in 
DAEC-induced EMT.

EMT and Viral Pathogens

As for microbial pathogens, viral infection leads to activation of 
intracellular signaling pathways;87 thus we can intuitively specu-
late that viruses can induce EMT. The major pathogenic viruses 
include cytomegalovirus (CMV), herpes simplex virus (HSV), 
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Instead, we have attempted to depict the main lines that govern 
EMT in order to highlight similarities that exist between growth 
factor-and pathogens-induced signaling pathways allowing us 
to give a coherent picture of the place of microbial infection in 
EMT and subsequent human pathologies (Fig. 4). However, 
it is important to note that in healthy individuals, infection is 
effectively controlled, and the inflammatory response is promptly 
resolved. Indeed, microbes-induced chronic inflammation is 
intimately linked to defective innate immunity correlating with 
microenvironment, genetic and epigenetic susceptibilities but 
also treatment access. For example, H. pylori colonize the human 
stomach of about 50% of the world’s population, however less 
than 2% of this population will develop a stomack cancer, imply-
ing the existence of individual predispositon.

Interestingly, it appears that only pathogens associated to 
chronic pathologies (fibrinogenesis and cancer)105 have been 
described to induce EMT. Given that all pathogen recognition 
receptors induce IKK and MAPK pathways, one can speculate 
that each pathogen may have the potential to induce EMT and 
EMT-linked pathologies, such as cancer, as its attack remains 
unresolved by innate immunity. Keeping that in mind, we can 
assume that a large part of EMT knowledge can be moved to 
translational research in molecular medicine with potential 
future new therapeutics in treating diseases linked to infections.
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Perspective: EMT and Microbial Pathogenesis
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view is by no means intended to provide a global view on EMT. 

Figure 4. Microbe-induced chronic inflammation in predisposed individuals leads to EMT. Here we suggest a model in which microbe infection plays 
a critical role as an EMT promoter. In healthy individuals, microbe infection is contained by the innate immunity. By contrast in predisposed individu-
als the innate immunity is exceeded by microbe infection leading to chronic inflammation. Chronic inflammation, associated to chronic infection lead 
to sustained NFκB and MAPK module activation: the basement of EMT. Finally, EMT plays a critical role in onset of various human pathologies such as 
fibrinogenesis, cancer progression and metastasis.
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