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Abstract

Background: Irregularities in circadian rhythms have been associated with adverse health outcomes. The regularity of rhythms
can be quantified using passively collected smartphone data to provide clinically relevant biomarkers of routine.

Objective: This study aims to develop a metric to quantify the regularity of activity rhythms and explore the relationship between
routine and mood, as well as demographic covariates, in an outpatient psychiatric cohort.

Methods: Passively sensed smartphone data from a cohort of 38 young adults from the Penn or Children’s Hospital of Philadelphia
Lifespan Brain Institute and Outpatient Psychiatry Clinic at the University of Pennsylvania were fitted with 2-state continuous-time
hidden Markov models representing active and resting states. The regularity of routine was modeled as the hour-of-the-day random
effects on the probability of state transition (ie, the association between the hour-of-the-day and state membership). A regularity
score, Activity Rhythm Metric, was calculated from the continuous-time hidden Markov models and regressed on clinical and
demographic covariates.

Results: Regular activity rhythms were associated with longer sleep durations (P=.009), older age (P=.001), and mood (P=.049).

Conclusions: Passively sensed Activity Rhythm Metrics are an alternative to existing metrics but do not require burdensome
survey-based assessments. Low-burden, passively sensed metrics based on smartphone data are promising and scalable alternatives
to traditional measurements.

(JMIR Form Res 2022;6(9):e33890) doi: 10.2196/33890
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Introduction

Background
The proliferation of smartphone use in mobile health (mHealth)
research has resulted in a wealth of longitudinal data capable

of quantifying human behaviors pertinent to the study of mental
health [1-3]. Smartphones collect a wide variety of sensor data,
ranging from accelerometer and geolocation (ie, GPS) data to
screen time and social interactions, which are increasingly being
used as digital biomarkers of behavior in a variety of contexts
[4-7]. The continuous collection of this wealth of data enables
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us to study an individual’s pattern of behavior across the course
of each day. Many behaviors show a diurnal rhythm, an
observed 24-hour periodic pattern, some of which are
measurable through digital biomarker data [6,8]. These rhythms
reflect endogenous physiological circadian processes related to
many clinically relevant outcomes [9]. A wide range of
physiological processes follows a circadian rhythm [10-12],
such as cardiometabolic function and gene expression [13-15].
Certain immunological processes and drug efficacy are sensitive
to specific points in the circadian cycle, highlighting the need
to understand the role of circadian rhythms from a
pharmacodynamics perspective [16,17]. In addition, disruptions
in rest-activity cycles have been associated with adverse
outcomes in posttraumatic stress and affective disorder studies
[18,19]. This underscores the need to meaningfully quantify
circadian rhythms in ecological contexts, such as the assessment
of diurnal rhythms, as reflected in smartphone use data.

Before mobile devices were used to gather high-frequency
ecological momentary assessment (EMA) and continuous
streams of sensor data collection, information obtained from
diaries and surveys was used for scoring the regularity of diurnal
activities [20,21]. For example, Social Rhythm Metric (SRM)
uses daily administered diaries to record the timing of routine
activities (eg, getting out of bed, eating lunch, and starting
work). To score highly on the SRM, one must consistently
perform these activities close to the same time of day for most
records, such as consistently waking up at the same time every
day. Subsequently, high scores can be interpreted as greater
regularity in routine or rhythm and provide a useful
quantification of the regularity of rhythms, which can be used
to study clinical outcomes. Disruptions to the regularity of
rhythms have been associated with psychiatric disorders (eg,
bipolar disorders [22-24], anxiety disorders [25], depression
[12,26], mood or affective disorders [27,28], posttraumatic
stress disorder [27,29], and substance-related disorders [30,31]).
Measures of regularity are often markers of treatment efficacy
in social rhythm therapies aimed at improving mental health
[27]. Despite the utility of diary-based scores in the studies of
psychopathology, manual data collection could be burdensome,
susceptible to self-report bias, recall bias, nonresponse bias,
and experience degradation over time because of the loss of
engagement with the participant [1,32-34].

The potential use of smartphones for long-term data collection
is made possible by ensuring a low burden on the participant,
particularly through sensor data that can be collected passively
(ie, without requiring active participation or input from the user)
[35,36]. As irregular circadian rhythms are associated with a
range of psychiatric disorders, particularly affective disorders
[28,37,38], the logical next step is to use smartphone sensor
data to quantify regularity in diurnal rhythms and then identify
correlated clinically relevant outcomes [4]. If passively collected
smartphone sensor data can be used to inform clinically relevant
behaviors and symptoms, this would provide an effective and
low-burden approach to mental health assessment and treatment
monitoring [39].

Objectives
Many models have been proposed to study circadian or diurnal
rhythms based on passively collected sensor data, ranging from
simple rule-based analyses to deep learning models [18,40-42].
Longitudinal data collected in mHealth studies can be viewed
as a multivariate time series and subsequently often draw upon
a variety of longitudinal and stochastic models [43-46]. A focal
point of mHealth studies is to model rest-activity cycles or other
categorical outcomes [47-50]. Modeling the dichotomy of
rest-active states often simplifies clustering [8,51,52] or
classification [5,52,53] problems where rhythmic effects can
be modeled with harmonics [45,54-56]. For our purposes, to
model transitions between different circadian biological states
over the course of the day, we modeled these data using hidden
Markov models (HMMs). In this framework, we captured the
circadian nature of behaviors, as measured using smartphone
sensor data, through the use of hour-of-the-day random effects
[57-59].

Despite the potential of mHealth data, statistical models that
translate these data into interpretable measures of diurnal
rhythms and markers to manage mental health are an active area
of research [27,39]. In the time series literature, random effects
have been used to model seasonality or other periodic effects
[59,60]. Our continuous-time HMM (CT-HMM) transitions
between rest-activity cycles use individual-specific random
intercepts for hours of the day (eg, 12 AM to 1 AM and 1 AM
to 2 AM) to allow for personalized patterns of diurnal activity
[61]. By fitting this model to each individual separately, we
were able to quantify the regularity of activity rhythms or
routines and determine how this strength of routine is correlated
with a variety of demographic and clinical outcomes. Finally,
we developed a novel score to gauge the regularity of activity
rhythms and determine how this score correlates with
self-reported sleep-related outcomes and other characteristics
in a sample of adolescents with or at risk of affective instability.

Methods

Participants
A sample of 41 adolescents and young adults (28/41, 68%
female participants) aged 17 to 30 (mean 23.4, SD 3.5) years
were enrolled as part of a study on affective instability in youth.
Participants were recruited via the Penn or Children’s Hospital
of Philadelphia Lifespan Brain Institute or through the
Outpatient Psychiatry Clinic at the University of Pennsylvania
[62]. Of these 41 participants, 38 (92%) met the criteria for an
Axis I psychiatric diagnosis based on a semistructured clinical
interview, and 33 (80%) met the criteria for >1 disorder [63].
In addition, 39% (16/41) of participants met the criteria for a
personality disorder based on an assessment with the Structured
Clinical Interview for the Diagnostic and Statistical Manual of
Mental Disorders-4 Axis II Personality Disorders (Tables 1 and
2) [63]. As a secondary analysis, we used data collected from
a prior study. Subsequently, the availability of new clinical data
was a limitation of our retrospective study design. Although we
had digital EMA and passive sensor data for all participants,
baseline measurements such as the Pittsburgh Sleep Quality
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Index (PSQI) and psychiatric diagnoses were not available for all participants.

Table 1. Psychiatric diagnoses of participants (N=41).

Participants, n (%)Diagnosis

Axis I diagnosis

3 (7)No diagnosis

38 (93)Diagnosis

24 (59)Major depressive disorder

4 (10)Bipolar disorder

1 (2)Depressive disorder NOSa

1 (2)Mood disorder NOS

14 (34)Generalized anxiety disorder

14 (34)Posttraumatic stress disorder

12 (29)Social phobia

11 (27)Obsessive-compulsive disorder

5 (12)Panic disorder

2 (5)Anxiety disorder NOS

6 (15)Attention-deficit or hyperactivity disorder

1 (2)Schizoaffective disorder

18 (44)Substance-related disorders

Axis II diagnosis

7 (17)No diagnosis

16 (39)Diagnosis

12 (29)Borderline personality disorder

4 (10)Personality disorder NOS

aNOS: not otherwise specified.

Table 2. Baseline demographic and clinical characteristics (N=41).

ValuesCharacteristics

28 (68)Sex (female), n (%)

23.4 (3.5)Age (years), mean (SD)

1724 (753)Hours of Beiwe sensor data (screen-on and accelerometer), mean (SD)

6.96 (8.45)Beck Depression Inventory scores, mean (SD)

Beiwe ecological momentary assessment, mean (SD)

7.43 (1.03)“About how many hours did you actually sleep?”

11:28 PM (1.92 hours)“About what time did you go to bed last night, regardless of the time you actually fell asleep?”

7:41 AM (2.17 hours)“What time did you wake up?”

3.12 (1.5)“How happy versus sad do you feel right now? (1-Very cheerful or happy, 2, 3, 4, 5, 6, 7-Very sad or depressed or un-
happy)”

Ethical Considerations
All participants provided informed consent for all study
procedures. For minors, the parents or guardians, in addition to
the minors, provided informed consent. This study was approved
by the Institutional Review Board of the University of
Pennsylvania (828424).

Data Acquisition
From the 41 participants, 2972 person-days of sensor data,
including accelerometer measures (meters per second squared)
for the axes, were obtained from participant smartphones
through the Beiwe app, a research platform developed by the
Onnela Lab at the Harvard TH Chan School of Public Health
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[64]. Screen-on events for Android devices were recorded,
whereas screen-unlock events for iOS devices were acquired
through Beiwe; however, we have referred to both as screen-on
events in this paper for simplicity. Every morning, participants
were also asked about their mood and sleep patterns and quality
from the night before via self-report prompts delivered by
Beiwe. These questions included sleep duration in hours (“About
how many hours did you actually sleep?”), time to sleep (“About
what time did you go to bed last night, regardless of the time
you actually fell asleep?”), and time to wake (“What time did
you wake up?”) and were obtained using self-report
questionnaires. The possible time-to-sleep and time-to-wake
responses were limited to hour-long intervals. Participants were
asked to rank their mood with the following question: “How
happy versus sad do you feel right now? (1-Very cheerful or
happy, 2, 3, 4, 5, 6, 7-Very sad or depressed or unhappy).” A
summary of the demographic and EMA covariates is provided
in Table 2. In addition to these questions administered through
smartphones, additional measurements were collected at
baseline, including the PSQI and the Beck Depression Inventory
(BDI) scores [65,66].

Data Processing
Our analysis goals are 2-fold: (1) to use smartphone sensors
and activity data to quantify the strength of each participant’s
activity rhythm or routine and subsequently (2) to test for
significant associations between demographic variables or
self-reported mood outcomes and the strength of activity rhythm
or routine. Given our first goal of modeling a participant’s
activity rhythm, we leveraged active smartphone use to provide
an indicator of activity over the course of the day. From
accelerometer data, hourly features were calculated to reflect
the magnitude of movement of the smartphone. For each hour
of the day, labeled by the time at the end of hour t, X(t) is the
mean of the magnitude of phone acceleration over the course
of that hour. In addition, Y(t) is the screen-on count over the
course of the hour. However, the periods of dormancy, where

X(t) was unobserved, because of user- and device-related factors
such as the phone being powered off, having no cell signal, or
being in airplane mode required accelerometer features to be
imputed.

By considering the characteristics of screen-on events and
accelerometer data, we designed a data imputation procedure
guided by domain knowledge. Periods of dormancy usually
align with periods of low phone use such as night-time hours,
have a greater probability of missing accelerometer data X(t),
and were identified using a 2-state hidden semi-Markov model
with Bernoulli state-dependent distributions [67]. For example,
if accelerometer data are seldom missing over a given window
of time and there are many screen-on events over the same
period, it is likely that there was significant accelerometer
activity despite being missing. Here, screen-on events can be
used to impute accelerometer data. In contrast, if accelerometer
data are missing and there are no screen-on events, then it is
likely that the phone was in a state of dormancy with low
accelerometer magnitudes. The periods of dormancy correspond
to the 2 latent states in our hidden semi-Markov model
imputation. Missing mean accelerometer magnitudes from
dormant periods were imputed using the minimum (excluding
outliers) mean accelerometer magnitudes X(t), whereas missing
data assigned to the nondormant state were imputed by
regressing X(t) on Y(t) over all hours where data were
completely observed. Ultimately, this led to an imputed X(t),
which we used in the following analyses, with a diagram of the
imputation procedure outlined in Figure 1.

The final source of noise in the data was user error, which often
occurred when answering questionnaires, such as accidentally
selecting 8 PM for wake-up time instead of 8 AM. To avoid
these user errors, bedtimes were automatically corrected to be
between 5 PM and 4 AM, and wake-up times were corrected
to be between 4 AM and 3 PM when such extreme discrepancies
occurred that resulted in unrealistic sleep durations that were
almost certainly the result of measurement error.
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Figure 1. Hidden semi-Markov model to identify periods of dormancy and missing data imputation. First, a hidden semi-Markov was used to identify
periods of dormancy, which were characterized by a high proportion of missing accelerometer data, often associated with night-time hours. Hidden
semi-Markov allows for a geometric dwell time distribution with Bernoulli outcomes to model the proportion of missingness over consecutive hours.
Second, missing mean accelerometer magnitudes X(t) for dormant states were imputed using the minimum (excluding outliers) mean accelerometer
magnitudes X(t), whereas missing data for nondormant states were imputed using linear regression.

Activity Rhythm Modeling
Stochastic models are often used to study longitudinal data sets
such as the data generated by smartphones, and we opted to use
a continuous-time Markov chain framework with the addition
of random intercepts representing each hour of the day to model
activity rhythms for each participant separately. This choice
was driven in part by its ability to account for missing data for
which many harmonic analyses were not designed [68]. If an
hour of the day has a large random intercept, it represents a
higher probability of active phone use during that hour relative
to other hours of the day for a specific participant. With this
interpretation in mind, a participant with a strong activity rhythm
will have hour-of-the-day random intercepts with a large
magnitude or, equivalently, with high variability. In addition,
the variances of the random intercepts are the test statistics of
a mixed-effect ANOVA, where the null hypothesis is that the
hour of the day has no effect on the state transition. Phone use,
binned into hour-long intervals of activity or rest, was fitted
with a 2-state continuous-time Markov chain. By modeling
transition rates with an exponential proportional hazard (PH)
regression with time-varying covariates, we treated the state
labels as latent variables, which correspond to an HMM.

In our HMM, screen-on counts, Y(t), were characterized by a
mixture of 2 state-dependent Poisson distributions with a rest
state, C(t)=2, where E[Y(t)|C(t)=2]≈0, and an active state,
C(t)=1, where E[Y(t)|C(t)=1]>0. We also incorporated
accelerator magnitude averaged over the hour, X(t), and
hour-of-the-day random intercepts (or frailties) in an exponential
PH regression used to estimate rates of transitioning from the
rest-to-active and active-to-rest states. Random intercepts can
be viewed as a penalized effect that the hour of the day has on

transition rates and can be interpreted as the activity rhythm.
Using our rates and event times, we use Kolmogorov equations
to estimate transition probability matrices and construct a 2-state
mixed CT-HMM [69]. The transition rates are as follows:

Rest to active: λ1(t)=exp×(α1+β1×x[t]+b1[t]), with

b1(t)∼N(0,σ1
2) (1)

Active to rest: λ2(t)=exp×(α2+β2×x[t]+b2[t]), with

b2(t)∼N(0,σ2
2) (2)

where b1(t) and b2(t) are random intercepts for the hour of the
day. Subsequently, the corresponding transition rate matrices,
Q(t), are functions of λ1(t) and λ2(t). The transition probability

matrices are given by the matrix exponential Γ(t)=eQ(t) as the
event times are 1-hour increments (Figure 2). In cases where
periods of consecutive missing accelerometer data continue
over 24 consecutive hours, this constitutes a sufficiently long
period of missing data that requires splitting the HMM into 2
segments on either side of the missing interval, where the
likelihood of the multiple HMMs can be treated as independent
and multiplied together during parameter estimation. The
CT-HMM is fitted with the expectation-maximization (EM)
algorithm by iteratively solving Θ=(α1,β1,α2,β2), b1(t), b2(t),

σ1
2, σ2

2 and Pr×(C[t]=i,C[t+1]=j) [70-72]. A high frequency
of missing data can result in an identifiability problem when
fitting the HMM; for example, when an individual seldom uses
their phone and the 2 states of the HMM become
indistinguishable as the data may not reflect the daily differences
in activity rhythms. Seldom phone use results in low screen-on
counts and missing accelerometer data, leading to unimodal
data streams, even after imputation, where daily differences are
difficult to identify. Following this procedure, 7% (3/41) of
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individuals were omitted from the analysis as their EM
algorithms failed to converge because of the much higher than

normal frequency of missing data, resulting in a final sample
size of 38.

Figure 2. Hidden Markov model framework and the ARM. (A) Graph of the 2-state continuous-time hidden Markov model used to model phone
engagement via screen-on counts. Active states are characterized by expected screen-on counts >0, and the rest states are characterized by expected
screen-on counts close to 0. Transition rates between rest and active states are modeled with exponential proportional hazard regressions by using 24
hours of the day as random intercepts. (B) Hourly state membership probabilities, state-dependent distribution counts, accelerometer norms, and random
intercepts for the hour of the day. We controlled for accelerometer activity in the regression models while estimating activity rhythm with random
intercepts. Accelerometer activity is positively correlated with rest-to-active transitions and negatively correlated with active-to-rest transitions. Large
hour-of-the-day effects correspond to a regular activity rhythm and resulted in a large ARM. ARM: Activity Rhythm Metric.

Comparing Activity Rhythms, Self-reported Sleep,
and Depression-Related Variables
After modeling each participant’s activity rhythm via the
CT-HMM—random intercepts corresponding to the effect of
the hour of the day on the likelihood of rest versus activity—we
naturally expect regularity in activity profiles to correspond
with large values of the variance of the random intercepts as

quantified by σ1
2 and σ2

2. In other words, if a person tends to
be active or at rest during the same hours of the day routinely,
then the restful hours will have very low random intercepts,
with active hours having high random intercepts. Under the
mixed-effects ANOVA, the large random intercept variances
correspond to rejecting the null hypothesis that the hour of the
day has no effect on state transition. This large discrepancy in
random intercepts between different hours of the day manifests

as large values of σ1
2 and σ2

2. Thus, for each individual, we fit
a CT-HMM and sum over these 2 variance terms to obtain what

we define as Activity Rhythm Metric (ARM): ARM=σ1
2+σ2

2

(Figure 2).

With quantification of the strength of each participant’s activity
rhythm or routine through the ARM, we validate the ARM as
a measure of daily rhythm by treating it as the outcome in a
linear regression to test for associations with the following
self-reported sleep-related covariates: mean nightly sleep
duration (mean response of “About how many hours did you
actually sleep?”), the baseline sleep duration component of the
PSQI, time-to-sleep SD (SD of “About what time did you go
to bed last night, regardless of the time you actually fell
asleep?”), and time-to-wake SD (SD of “What time did you
wake up?”). We would expect a higher ARM to correspond
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with a stronger routine and therefore with small time-to-sleep
or time-to-wake SDs and longer mean sleep duration. For each
sleep-related covariate alone, we fit linear regression models
controlling for age and sex and compared it with a null model
with only age and sex, using a likelihood ratio test (LRT) to test
for the association in a 2-sided alternative hypothesis. We used
the mean mood response from the Beiwe questionnaire (mean
response of “How happy versus sad do you feel right now?”)
and BDI as a depression-related measure, with higher mean
values corresponding to severe depression. For each
depression-related covariate, we tested for an association with
the ARM by using the same LRT framework. In addition, we
tested the association between age or sex and the ARM while
controlling for the others by using the LRT.

Results

Relationship With Sleep Duration
We found that all sleep-related measures, namely, mean nightly
sleep duration, the baseline sleep duration component of the

PSQI, time-to-sleep SD, and time-to-wake SD, were marginally
significantly (P<.05) associated with the ARM (Figure 3).
Association tests included only individuals with corresponding
self-reported outcomes. Notably, continuous daily administration
of sleep surveys may increase the patient burden in a study,
highlighting the advantages of passive data collection methods.
We found that individuals with a higher ARM are more likely
to have longer sleep duration, with an hourly increase in mean
sleep duration corresponding to a 0.4 increase in the ARM. The
mean nightly sleep duration from the Beiwe questionnaires
(“About how many hours did you actually sleep?”) captures the
same information as the baseline sleep duration component of
the PSQI, which was also significantly (P<.001) associated with
the ARM and had the same direction of effect. Considering
sleep duration as a component of sleep quality, these findings
suggest that the ARM was positively correlated with sleep
quality. In other words, a stronger and more consistent routine,
as measured passively through smartphone use, corresponds to
better sleep quality.

Figure 3. The Activity Rhythm Metric and self-reported sleep. (A) Visualization of 3 example participants with hour-of-the-day random intercepts
mapping to low, medium, and high Activity Rhythm Metrics. Random intercepts are the hour-of-the-day effect on state transition: low or high Activity
Rhythm Metric score participants have low or high variability in random intercepts. (B) Linear regression models were fit between the Activity Rhythm
Metric and sleep-related outcomes across all participants using a likelihood ratio test for and association with each sleep measure while controlling for
age and sex. Higher Activity Rhythm Metrics are associated with a longer mean duration of sleep (r=0.38). (C and D) Higher Activity Rhythm Metrics
are associated with less variability in self-reported time-to-sleep (r=−0.40) and time-to-wake (r=−0.23) responses.

Relationship With Self-reported Sleep and Wake Times
The questionnaires captured by Beiwe through smartphones
prompted participants to report time to sleep and time to wake,

which have been used to measure the regularity of activity
rhythms in other contexts [73]. We expected that the high
variance in self-reported time-to-sleep and time-to-wake
responses would correspond to irregular routines. This finding
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is consistent with the relationship between the ARM and
variability in self-reported sleep or wake timing. In particular,
we found that the ARM is significantly correlated with the SDs
of time-to-sleep (“About what time did you go to bed last night,
regardless of the time you actually fell asleep?”) and
time-to-wake (“What time did you wake up?”) responses (Figure
3). A unit increase in time-to-sleep SD corresponds to a 0.52
decrease in the ARM, and a unit increase in time-to-wake SD
corresponds to a 0.48 decrease in the ARM. Thus, our proposed
ARM measure passively captures many of the same
routine-related signals as traditional survey-based metrics while
avoiding the high burden of daily self-reporting, which is
otherwise necessary to collect data on the variability of the sleep
schedule.

Relationship With BDI and Self-reported Mood
In a variety of clinical populations, there is evidence of a
relationship between depression-related metrics and irregular

routines, where the quantification of regular rhythms can be
used to assess treatment efficacy [27]. In line with this, we found
that the ARM was negatively correlated with the BDI (Figure
4); that is, irregular activity rhythms were associated with higher
BDI. Of note, only the response to the Beiwe mood question
(“How happy versus sad do you feel right now?”) was
marginally associated with the ARM (P=.049); however, the
direction of the associations was intuitive, albeit borderline
significant (Figure 4). Of note, 15% (6/41) of additional
participants had missing BDI scores. The average ARM for the
participants with missing BDI was 2.86, whereas it was much
lower (1.31) for participants who had recorded the BDI; it is
likely that the missing BDI information, if observed, would help
increase the precision of the association and increase its strength.
The difference between the average BDI values of these 2
groups suggests that informative missingness may have
diminished statistical power.

Figure 4. Activity rhythm and its relationship with mood and depression. In total, 2 mood or depression-related self-reported outcomes were compared
with the ARM: (1) The BDI was recorded for 32 participants, and (2) the mean response from the Beiwe smartphone mood question: “How happy
versus sad do you feel right now? (1-Very cheerful or happy, 2, 3, 4, 5, 6, 7-Very sad or depressed or unhappy).” Linear regression models were fit by
using a likelihood ratio test while controlling for age and sex. ARM and BDI have a negative correlation (r=−0.45, P=.06). ARM and mean response
from the Beiwe mood survey have a negative correlation (r=−0.21, P=.049). ARM: Activity Rhythm Metric; BDI: Beck Depression Inventory.

Relationship With Age and Sex
In addition to the ARM being associated with sleep-related
measures of duration and variability in time-to-sleep and
time-to-wake responses, we found that the ARM was associated
with age in a manner similar to previous regularity of rhythm
studies, although previous studies examined different study
populations [73,74]. We found a positive correlation between

age and the ARM (P=.001); a year increase in age corresponds
with a 0.18 increase in the ARM, meaning that older individuals
tend to have more regular activity rhythms and routines (Figure
5). In addition, our analysis of the ARM suggests that there is
a significant (P<.001) sex-based difference in the regularity of
a participant’s activity rhythm (Figure 5). We expect a 1.31
increase in the ARM of male participants in our sample relative
to that of female participants.
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Figure 5. Activity rhythm and its relationship with age or sex. Linear regression models were fit by using a likelihood ratio test for age or sex each
while controlling for the other covariate. Age is positively correlated with ARM (r=0.34, P=.001), and male participants have higher ARMs (Cohen
d=−0.82, P<.001). ARM: Activity Rhythm Metric.

Discussion

Principal Findings
The regularity of daily routine, as measured through the
ARM—a quantification of routine based solely on passively
collected smartphone data— was found to be significantly
associated with a variety of demographic, mood, and
sleep-related measures. We developed a CT-HMM that allows
for an hour-of-the-day effect on state membership (active vs
rest). Using the variance of the hour-of-the-day random
intercepts to represent the strength of the routine, we constructed
an ARM and found it to be associated with the SD in
self-reported time-to-bed and time-to-wake responses on a
night-to-night basis. These findings validate the ARM as a
quantification of the strength of routine, which can be used as
an outcome in studies aimed at improving mental health by
increasing regularity in routine. Furthermore, the ability to
calculate the ARM using only passively collected smartphone
data provides a crucial advantage relative to the traditional
reliance on self-report to dynamically quantify routine. This
can provide a low-burden alternative that can easily be deployed
at scale, even in studies with long follow-up durations, as
passively collected data are not susceptible to the same survey
fatigue, which makes long-term follow-up a challenge in studies
that rely heavily on self-report.

Comparison With Prior Work
The direction of associations for the ARM is aligned with
existing metrics such as the SRM. The SRM is a diary-based
metric that has helped inspire our ARM definition and approach,
where both are calculated from intraindividual routine variations,
and higher scores correspond to regular routines [20,21]. The
ARM evaluates active or rest states timing akin to calculating
sleep or wake variability in time from data obtained through a
survey or diary. Both the ARM and SRM are highly influenced
by variances in the timing of habitual daily behaviors, such as
time to sleep and time to wake, where a high variance
corresponds to a low score. Our findings showed that a low

ARM is associated with high variability in time-to-sleep and
time-to-wake self-reported responses, indicating that the ARMs
are correlated with information that would otherwise be obtained
through diary-based metrics.

Our results, which link the ARM to sleep duration, reinforce
some findings derived from diary-based methods. Monk et al
[73,75] found that the SRM was negatively correlated with
better sleep quality, as measured by the PSQI. Similar to the
SRM, we found that the ARM tends to increase with age, with
older participants tending to have greater regularity in their
routines [73,74]. Our analysis also showed greater regularity in
activity rhythms in male participants, which aligns with the
findings by Monk et al [67], despite some studies showing
conflicting data on sex-based differences in the SRM
[20,73,76,77]. Although the ARM is inspired by the SRM, we
noted that the ARM fundamentally represented a narrower scope
than the SRM by only focusing on a person’s activity and with
no direct measurement of social behavior.

We expected that the ARM would tend to decrease with higher
depressive symptoms, reflecting the established relationship
between stronger routines and milder depression [27]. Although
the same direction of effect was shown in our sample (Figure
4), we lacked the sample size to achieve more than marginal
statistical significance in this association. Similar psychiatric
studies had access to larger cohorts of participants and healthy
controls, which we lacked in this study, and would greatly
improve the statistical power [20,26]. An important next step
is to repeat these analyses with a larger sample size to validate
which relationships hold. Consequently, the potential to quantify
routines using only passively collected data may be an
informative and actionable digital biomarker with respect to
clinically relevant outcomes such as depression.

Limitations
Our analysis has limitations typical of a retrospective study—a
secondary analysis with limited data. The absence of a control
group could have affected the statistical power. For example,
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in a case-control study, we expected the control group to have
high ARMs and low BDI scores. Data from a control group
would be high leverage points in regression analysis in certain
situations and would increase the effect size. In addition, this
study was limited to a small age range. An in-depth analysis of
regularity was not anticipated during the initial recruitment of
the study cohort; subsequently, diary-based regularity metrics
were not available for a direct comparison with ARMs. In
summary, our analysis explored connections between routine
activity rhythms and several clinical covariates; however, the
validation of relationships and generalization to broader
populations are left to future studies with prospective designs.
In addition, differences between device hardware and operating
systems could introduce heterogeneity in the data and should
be accounted for in mHealth studies. For example, iOS
acceleration is normalized by the g-force constant, whereas
Android acceleration is not. Our individual-specific PH
regressions, as discrete class models, were not affected by a
scale difference in the covariates, and the g-force constant was
absorbed by the coefficient estimate.

Although the use of passively collected smartphone data
successfully reduces participant burden, there are some hurdles
in this type of data collection. In certain cases, many clinical
populations [78], including ours, are willing to share sensor
data despite privacy concerns. In addition, sharing ARM-like
summary statistics rather than the entire collection of sensor
data may attenuate the privacy concerns of clinicians, allowing
studies to increase the sample size. However, accounting for
the missing data of various missing mechanisms remains
paramount, and there is a lack of methods available to handle
missingness when it is associated with the outcome of interest
(missing not-at-random). Although we proposed a simple
domain-based approach that takes into account missingness
because of a lack of phone engagement induced by diurnal
patterns, additional sensitivity analyses using different
imputation procedures are necessary to completely understand
the effect of missing data in mHealth studies.

In addition, identifiability is an important concern in
mixed-effect modeling. A sufficient sample size for each hour
must be available for modeling random intercepts. HMMs,
which are models with many parameters, require large sample
sizes or strong signals for parameter estimation. Although our
EM algorithm failing to converge indicates an identifiability
concern with the underlying data, other criteria may be used for
the explorative analysis of data before HMM fitting. In
participants with limited data, the hour-of-the-day effects must
be pronounced to fit the random intercept model. In other words,
sufficient evidence is needed to detect hour-of-the-day effects,
either adequate sample size or the strength of association
between hour-of-the-day and state membership. In our case, a
lack of engagement with the study phone leading to unimodal
data streams is an important consideration related to model fit
but is addressed by our failure of convergence criterion. Proper
use of study phones is an important prerequisite for mHealth
studies, and exploring steps for filtering out individuals based
on data quality is an important component of the mHealth study
design. Data quality, both handling of missing data and proper
use of the study device, remains a paramount concern in

mHealth studies. As a result, we look to evaluate the many
relationships uncovered by our analyses in future work involving
different study cohorts and different methods for handling
missing data.

Potential Future Directions
Our novel CT-HMM framework could easily be adapted to
incorporate additional information to improve its ability to
quantify diurnal activity patterns and routines. For example, we
can extend the univariate outcome, Y(t), to a multivariate joint
probability distribution that also considers longitudinal GPS
data. Although we modeled a parsimonious representation of
daily routines, a common prompt in SRM diaries is the time of
starting work, which can be ascertained from GPS location. By
incorporating GPS data and increasing the number of states in
our CT-HMM beyond the 2 rest or active states used in this
study, we can model a wider range of routine behaviors and
participant states.

Alternative HMM formulations that allow latent states to
represent more than just rest or active states, such as symptom
severity, would make the expected timing of state transitions
clinically relevant. Many mixed-effect HMMs use a logit link
or logistic regression to model transitions between states, where
coefficients can be interpreted as odds ratios [60,61]. We elected
to use a PH model, where the coefficients can be interpreted as
hazard ratios. Although the interpretation of the signs of the
coefficients is similar across both models, under the PH model,
the expected event time (or time until state transition) can be
calculated as 1/λ(t). This expected event time is intuitively
important as it allows for the prediction of state changes in an
individual, which can be used to prompt a mHealth intervention
in the context of an HMM framework where latent states could
represent, for example, manic, or depressed states in an
individual with bipolar disorder.

Conclusions
The previous generation of diary-based metrics comparable
with the ARM are limited by self-report, which requires a high
burden on the participant, underscoring the potential of mHealth
solutions. However, the identifiability of complex models for
mHealth data should be taken into consideration during study
design. We estimated each participant’s activity rhythm and
corresponding strength of routine by calculating
participant-specific hour-of-the-day random intercepts in a novel
CT-HMM modeling framework that dictated consistency in
phone activity over the course of the day for each participant.
By using passively collected smartphone use and accelerometer
data, the CT-HMM was able to identify rest-activity states and
the effect of the hour of the day on the likelihood of being active
or at rest, which we used to construct the ARM, and found it to
be associated with a variety of demographic, sleep, and mood
or depression variables. We validated the ARM relative to
self-reported nightly sleep-wake cycles and found that the ARM
was correlated to variability in sleep or wake times from Beiwe
surveys. It is important to note that additional follow-up studies
are necessary to validate our ARM covariate relationships. Our
primary analyses suggest that the ARM is a promising
alternative to previous diary-based metrics, which are often
used to assess treatment efficacy.
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