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Abstract

Accuracy of transcript quantification with RNA-Seq is negatively affected by positional frag-

ment bias. This article introduces Mix2 (rd. “mixquare”), a transcript quantification method

which uses a mixture of probability distributions to model and thereby neutralize the effects

of positional fragment bias. The parameters of Mix2 are trained by Expectation Maximization

resulting in simultaneous transcript abundance and bias estimates. We compare Mix2 to

Cufflinks, RSEM, eXpress and PennSeq; state-of-the-art quantification methods implement-

ing some form of bias correction. On four synthetic biases we show that the accuracy of

Mix2 overall exceeds the accuracy of the other methods and that its bias estimates converge

to the correct solution. We further evaluate Mix2 on real RNA-Seq data from the Microarray

and Sequencing Quality Control (MAQC, SEQC) Consortia. On MAQC data, Mix2 achieves

improved correlation to qPCR measurements with a relative increase in R2 between 4% and

50%. Mix2 also yields repeatable concentration estimates across technical replicates with a

relative increase in R2 between 8% and 47% and reduced standard deviation across the full

concentration range. We further observe more accurate detection of differential expression

with a relative increase in true positives between 74% and 378% for 5% false positives.

In addition, Mix2 reveals 5 dominant biases in MAQC data deviating from the common

assumption of a uniform fragment distribution. On SEQC data, Mix2 yields higher consis-

tency between measured and predicted concentration ratios. A relative error of 20% or less

is obtained for 51% of transcripts by Mix2, 40% of transcripts by Cufflinks and RSEM and

30% by eXpress. Titration order consistency is correct for 47% of transcripts for Mix2, 41%

for Cufflinks and RSEM and 34% for eXpress. We, further, observe improved repeatability

across laboratory sites with a relative increase in R2 between 8% and 44% and reduced

standard deviation.

Author summary

RNA-Seq is a powerful tool for detecting and quantifying genes and gene isoforms. How-

ever, accurate quantification in genomic loci with multiple isoforms has proven difficult.

This is due to the fact that the transcript generating an RNA-Seq fragment cannot be
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identified if multiple transcripts share the fragment sequence. Due to this ambiguity, tran-

script concentration is usually determined in a statistical framework by calculating the

probability that a transcript generates an RNA-Seq fragment. Accurate estimation of this

probability requires an accurate model of the transcript specific distributions of RNA-Seq

fragments. However, fragment distributions in statistical models of RNA-Seq data are

usually over-simplified. This article introduces the Mix2 (rd. “mixquare”) model which

uses mixtures of probability distributions to model the transcript specific positional frag-

ment distributions. Mix2 learns the mixture weights and approximates therefore the frag-

ment bias in RNA-Seq data. We compare Mix2 on artificial and real RNA-Seq data to four

state-of-the-art quantification methods. Our experiments show that Mix2 yields more

accurate and repeatable quantification estimates and that it leads to more accurate detec-

tion of differential expression. We further show that the biases detected by Mix2 contra-

dict the common assumption of a uniform fragment distribution.

This is a PLOS Computational Biology Methods paper.

Introduction

RNA-Seq has established itself as a popular alternative to microarrays for the quantification of

RNA transcripts. In contrast to microarrays, which measure the quantity of an RNA transcript

by hybridization to a transcript specific oligonucleotide, RNA-Seq generates cDNA for frag-

ments of the RNA transcript, which are sequenced by a next generation (NGS) sequencer. One

advantage of RNA-Seq over microarrays is that it does not require prior knowledge of the

nucleotide sequence of the RNA transcript, which is needed to produce a transcript specific

hybridization probe, and that it can therefore detect and quantify novel RNA transcripts. In

addition, quantification by RNA-Seq covers a wider dynamic range since microarrays suffer

from signal saturation resulting in the truncation of abundance estimates for highly abundant

transcripts [1].

Despite these advantages, obtaining accurate transcript quantification measurements from

RNA-Seq has proven difficult. One of the main reasons for the inaccuracy is the failure of the

statistical models used in the derivation of the measurements to properly represent biases

inherent in RNA-Seq data. The statistical model of the original version of Cufflinks [2], for

instance, assumes that the cDNA fragments generated by RNA-Seq are uniformly distributed

along the transcripts. In reality, however, this assumption is rarely fulfilled and quantification

measurements by this version of Cufflinks are therefore often inaccurate.

One type of bias affecting transcript quantification from RNA-Seq data is the result of a

preference of the fragmentation, i.e. the process that generates cDNA fragments from RNA

transcripts, to produce fragments at certain positions within the transcript, e.g. at the start

and/or at the end of the transcript [3]. Hence, this type of bias is referred to as positional bias

[4]. Positional bias can also be caused by a bias in the RNA itself, for instance, due to RNA deg-

radation which results in a shortening of the RNA. Another kind of bias in RNA-Seq is intro-

duced during ligation, amplification and NGS sequencing [5]. This bias is correlated to the

RNA sequence of a transcript and is therefore called sequence specific bias [4]. The present

article focuses on the first type of bias, i.e. the positional bias, and develops a model, Mix2 (rd.
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“mixquare”), which learns the positional bias in RNA-Seq data. In our experiments we com-

pare Mix2 to Cufflinks [2, 4], eXpress [6], RSEM [7] and PennSeq [8] both on synthetic data

and on real RNA-Seq data [9] generated from the Universal Human Reference (UHR) and

Human Brain (HBR) samples of the Microarray Quality Control (MAQC) experiment [10].

The inclusion of bias models into the statistical models of RNA-Seq data has been investi-

gated before. In [11] a model is proposed to account for the variability in read counts depend-

ing on the sequence surrounding the start of a fragment. The intention is similar to that of the

fragment specific bias model [4], which has been implemented as an extension to Cufflinks

[2]. In addition, [4] includes a non-parametric positional bias model, which can theoretically

be trained with the EM algorithm. However, due to the large number of variables, this is only

feasible for few transcript length dependent classes, for which statistics are collected in a small

number of positional bins. As a result, [4] implements a positional bias model depending

exclusively on the length of a transcript. Similar to [4] the generative model of RSEM [7, 12]

uses a hidden variable for the positional bias, where the latter is estimated from the global bias

observed in the complete RNA-Seq data set. Also in RSEM, therefore, does the positional bias

model depend exclusively on the transcript length. The generative model of eXpress [6] differs

from Cufflinks mainly in the order of fragment-length selection and implements an online

rather than a batch EM algorithm. The implementation described in [6] is further restricted to

a sequence specific bias, with a uniform positional bias similar to Cufflinks. The model devel-

oped in PennSeq [8] is again non-parametric and the large number of variables makes its train-

ing computationally prohibitive. For this reason, the bias model of PennSeq [8] is not included

in the parameter update but is approximated by the overall bias in a gene locus and by the tran-

script specific reads. The method described in [13] is a model for gene read counts, which

models bias by exon specific weights, which are estimated both for the complete data set and

for individual genes. In [14] the authors focus on RNA-Seq data with 5’ bias which is the result

of RNA degradation and use an exponential model for the fragment distributions. The model

proposed in [15] is, again, a model for the read counts of a gene. Here the read counts are mod-

elled by a quasi-multinomial distribution with a parameter that can be adapted to account for

over and under dispersion.

Mix2 is, similar to [2, 4, 6–8, 12], a generative model for the probability of a fragment in an

RNA-Seq data set. In comparison, however, the model for the positional fragment bias in Mix2

is parametric. This considerably simplifies its implementation removing the need for any

restrictions of the non-parametric methods. At the same time, the model of the positional frag-

ment bias in Mix2 is very versatile since mixtures of probability distributions can approximate

distributions of arbitrary complexity. Section (Materials and methods) develops the theory of

Mix2 in greater detail and shows how its parameters can be updated with the EM algorithm

leading to simultaneous estimates for transcript abundances and transcript specific positional

fragment biases. Section (Experiments on artificial data) optimizes the number of mixture

components of the Mix2 model and compares it with Cufflinks, RSEM and eXpress on artificial

data sets. Sections (Experiments on the Microarray Quality Control (MAQC) data) and

(Experiments on the Sequencing Quality Control (SEQC) data) on the other hand, discuss

experiments on two publicly available real RNA-Seq data sets with Mix2, RSEM, eXpress, Cuf-

flinks and PennSeq. These experiments show that, in comparison to the other methods, Mix2

leads to better correlation between estimated and measured transcript concentrations, correct

recovery of mixing ratios and yields consistent titration orders. In addition, we show that the

Mix2 concentration estimates are repeatable across lanes and laboratory sites and lead to a

more accurate detection of differentially expressed transcripts. In addition, Section (Types of

bias in the MAQC data) shows that Mix2 can be used as an explorative tool to detect positional

biases present in RNA-Seq data. Mix2 has been implemented as an Octave script with readable

Mixture models yield accurate transcript concentration estimates from RNA-Seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005515 May 15, 2017 3 / 25

https://doi.org/10.1371/journal.pcbi.1005515


code and as a closed source C++ implementation. We used the latter for the majority of our

experiments. Both versions can be downloaded from https://www.lexogen.com/mix-square-

scientific-license. While the C++ version is considerably faster, we show at the end of Section

(Experiments on artificial data) and in Fig E in S2 Appendix that quantification results for

both implementations are virtually identical. Hence, either version can be used to evaluate the

accuracy of Mix2.

Results

The Mix2 RNA-Seq model: A mixture of mixtures

An essential part of Next Generation Sequencing (NGS) is the library preparation. This process

takes an RNA sample and produces a library of short cDNA fragments, each corresponding to

a section of an RNA transcript. The cDNA fragments are sequenced by an NGS sequencer

resulting in single or paired end reads which are mapped to a reference genome. Hence, the

probability p(r) of a fragment r can be interpreted as the probability of its genomic coordinates.

In a genomic locus the probability p(r) is the superposition of the fragment distributions

p(r|t = i) for the N transcripts in the locus, i.e.

pðrÞ ¼
XN

i¼1

aipðrjt ¼ iÞ ð1Þ

where αi is the relative abundance of transcript t = i, i.e. the probability that transcript t = i gen-

erates any fragment, and p(r|t = i) is the probability that transcript t = i generates fragment r.

Hence p(r|t = i) models the transcript specific fragment bias. An estimate for the concentration

of transcript t = i is obtained by normalizing the relative abundance αi, yielding the RPKM

[16] or FPKM values [2].

Mix2 uses a mixture model for p(r|t = i), i.e.

pðrjt ¼ iÞ ¼
XM

j¼1

bijpðrjt ¼ i; b ¼ jÞ ð2Þ

where p(r|t = i, b = j) are the M components of the mixture and the βij are the non-negative

component weights. Hence, p(r|t = i, b = j) is a probability distribution over r and

XM

j¼1

bij ¼ 1: ð3Þ

Since p(r) is itself a mixture of the p(r|t = i) with weights αi, this implies that p(r) is a mixture of

mixtures motivating the name of Mix2. For the p(r|t = i, b = j) we use Gaussians placed equidis-

tantly along the transcript t = i (Materials and methods).

An example for such a Mix2 model can be found in Fig 1. Fig 1(a) shows the mixture

weights βij whereas Fig 1(b) shows the weighted Gaussians, βijp(r|t = i, b = j), and the sum

of the weighted Gaussians, p(r|t = i). The distributions in Fig 1(b) are given in transcript

coordinates for a transcript of 2000 bp length, while the longer dashed curve in Fig 1(c) shows

p(r|t = i) in genome coordinates. The locus in Fig 1(c) contains two transcripts which share a

common junction. The shorter of the transcripts in Fig 1(c) has the same set of βij as in Fig

1(a) but is only 1000 bp long. The relative abundances of the long and short transcript are 0.7

and 0.3, respectively, which results in the overall distribution p(r) given by the solid curve

in Fig 1(c). In comparison, Cufflinks [2] can, for this locus, only model fragment start

Mixture models yield accurate transcript concentration estimates from RNA-Seq data
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distributions p(r|t = i) as visualized by the dashed curves in Fig 1(d) and is therefore inappro-

priate for 5’ biases as the one in Fig 1(c).

We use the Expectation Maximization (EM) algorithm (Materials and methods) to learn

the parameters of Mix2 from RNA-Seq data. This results in simultaneous estimates of the

transcript abundances αi and the mixture weights βij, hence the transcript specific fragment

distributions p(r|t = i). Mix2 is identifiable in most cases and can otherwise be easily made

identifiable (see Section 1.2 in S1 Appendix). It can therefore always be ensured that the EM

algorithm converges to the unique maximum likelihood solution. It should be pointed out that

we did not check for identifiability in our implementation and, like Cufflinks, returned the

maximum likelihood solution produced by our method.

The mixture weights βij determine the shape of the fragment distribution of transcript t = i.
Thus, if transcripts have a similar distribution they should share the same βij. This results in

their fragment distributions being identical and reduces the number of parameters in Mix2

Fig 1. Fragment start distributions modelled by Mix2 model and Cufflinks. (a) Set of eight βij. (b) Dashed curves: βijp(r|t = i, b = j). The

p(r|t = i, b = j) are Gaussians equidistantly distributed along a 2000 bp transcript. Solid curve: p(r|t = i). (a) and (b) in transcript coordinates.

(c), (d) Fragment distributions in locus with two transcripts, 1000 bp and 2000 bp long, sharing one junction. Long and short transcripts start

5000 bp and 5500 bp from beginning of locus contig. Junction starts at 6000 bp, extends to 6499 bp. Dashed curves: p(r|t = i) for Mix2 model

(c), Cufflinks (d), long and short transcript. Solid curve: p(r) for Mix2 model (c), Cufflinks (d). (c) and (d) in genome coordinates.

https://doi.org/10.1371/journal.pcbi.1005515.g001
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making it less prone to over-fitting. Consider, for instance, the fragment start distribution of

the Cufflinks model in Fig 2(a). Here the distributions are similar for transcripts with 2000 bp

and 3000 bp length and for transcripts with 700 bp and 1000 bp length. In this situation there-

fore, these four transcripts can be separated into two groups where the transcripts within each

group share the same mixture weights βij. In general, this leads to the scenario where each tran-

script t = i has an associated group g = k and the distributions p(r|t = i) of transcripts within

this group share the same βij. Multiple factors might influence the similarity of fragment start

distributions. Here, we investigate gene membership and, as the bias correction methods in [4,

12], transcript length. The rationale for choosing these two properties is that even if fragments

are uniformly distributed immediately after fragmentation, fragment size selection introduces

the transcript length dependent bias in Fig 2(a). On the other hand, transcripts belonging to

the same gene can share a substantial part of their sequence and exhibit therefore potentially

similar fragmentation properties. In the following, we refer to tying between all transcripts

Fig 2. Transcript length dependent fragment start distributions in artificial data. X-axis is position within transcript in percent.

Distributions are derived from an initial distribution, which is scaled to the transcript length. Subsequent multiplication with fragment start

distribution of Cufflinks (a) and renormalization. (a) Distributions for uniform initial distribution. Corresponds to Cufflinks model for Gaussian

fragment length distribution with mean 200 and standard deviation 80. Bias in (a) is referred to as Cufflinks bias. Distributions derived from

initial distribution with 5’ bias (b), 3’ bias (c) and 5’+3’ bias (d).

https://doi.org/10.1371/journal.pcbi.1005515.g002

Mixture models yield accurate transcript concentration estimates from RNA-Seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005515 May 15, 2017 6 / 25

https://doi.org/10.1371/journal.pcbi.1005515.g002
https://doi.org/10.1371/journal.pcbi.1005515


within a gene as global tying and to tying between all transcripts within a gene and the same

length range as group tying (Materials and methods). Hence, Fig 1(c) shows an example for a

Mix2 model with global tying since both transcripts share the same set of weights βij.

In our experiments we do not treat multi-mapping and uniquely mapping reads differently

and instead consider each read mapping to be associated with a unique fragment. Multi-map-

ping reads and sequence specific bias can, however, be integrated into Mix2 as shown in Sec-

tion 1.1 in S1 Appendix.

Experiments on artificial data

This section pursues two goals. First, we find a sensible number of mixture components for

each of the variants of Mix2. Second, we investigate the performance of Mix2 under conditions

favoring other quantification methods. The number of mixture components derived in this

section is used as a default by Mix2. While this might be suboptimal in some cases it is a neces-

sary compromise since reference measurements of isoform concentrations on which to opti-

mize the number of mixture components are usually not available in RNA-Seq data.

In our first experiments we studied the 4 transcript length dependent biases in Fig 2. These

resemble the biases we detected in our experiments on real RNA-Seq datasets MAQC and

SEQC. The most dominant biases in the MAQC data are visualized in Fig 3. The 5’ biased frag-

ment distributions in Fig 3(a) and 3(b), for instance, resemble the biases in Fig 2(b) and the

biases for short transcripts in Fig 2(a). Similarly, the fragment distributions concentrated on

the 3’ side in Fig 3(e) resemble the biases in Fig 2(c). While the biases in Fig 3 do not depend

on transcript length as strongly as the biases in our artificial data, we see with the exception of

Fig 3(d) an increase in the average transcript length with increasing 3’ bias. Overall, around

20.16% of transcripts have a 5’ bias in the MAQC data, 26.34% have a 3’ bias and 26.92% a uni-

form fragment distribution. Hence, the biases in our artificial data represent a sensible starting

point for evaluating the accuracy of quantification methods under real-life conditions. Fig 2

also illustrates how an incorrect choice of bias model can affect the accuracy of quantification

estimates. If the 5’ bias in Fig 2(b) is observed for a transcript of length 3000 bp but the bias

model in Fig 2(a) is used for quantification then the incorrect model will try to explain the bias

in Fig 2(b) with a shorter transcript, thus potentially leading to an overestimate of the concen-

tration of the short transcript.

In our experiments we used a set of 7 test genes from the GRCh37/hg19 Ensembl annota-

tion v75 containing between 4 and 15 transcripts as well as the main variants of differential

splicing, see Table A in S2 Appendix. While this set of genes might seem small, considering all

parameter combinations resulted in 538k experiments. The difference between true and esti-

mated relative isoform abundances is measured with the L1 distance, which is the sum of the

absolute differences between true and estimated relative isoform abundances. This value lies

between 0 and 2. In our experiments in Fig 4(a) we addressed the question if the optimal num-

ber of mixture components for Mix2 depends on the gene, the number of fragments in the

gene or the fragment bias. In the first three bars of Fig 4(a) we optimized the number of mix-

ture components for each combination of bias, gene and sample size separately and plotted the

average L1 distance over all experiments for the three types of Mix2. In the second group of

bars we optimized the number of mixture components for each combination of gene and sam-

ple size ignoring the bias, while in the third group we optimized for each gene ignoring bias

and sample size. Finally, for the last three bars in Fig 4(a) we selected a single number of mix-

ture components for all experiments independent of gene, bias and sample size. Overall, Fig

4(a) shows that little is gained by optimizing for each gene, sample size and bias separately. The

number of mixture components of Mix2 can be chosen independent of these factors. Fig 4(b)

Mixture models yield accurate transcript concentration estimates from RNA-Seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005515 May 15, 2017 7 / 25

https://doi.org/10.1371/journal.pcbi.1005515


shows the influence of the number of mixture components on the quantification accuracy of

Mix2. For each number of mixture components on the x-axis the average L1 distance is given

for different sample sizes. Each group of 4 blocks contains results for 500, 1000, 5000 and

10000 fragments, where the different groups show results for the different types of Mix2. Fig

4(b) implies that the minimal L1 distance for Mix2 without tying is obtained for 3 mixture

components, while for Mix2 with group and global tying the minimum is obtained with any

number between 4 and 10. In all our subsequent experiments we therefore chose 3 mixture

Fig 3. Types of biases detected in lane SRR037445 of UHR in MAQC data set and their transcript length distributions. (a) to (f) 6

most prominent biases which account for 73.43% of transcripts. Bias on the left, transcript length distribution on the right. (g) Bias and

transcript length distribution of complete, unclustered set of transcripts.

https://doi.org/10.1371/journal.pcbi.1005515.g003
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components for Mix2 without tying and 4 mixture components for Mix2 with global and group

tying.

We further studied the convergence of the fragment start distributions p(r|t = i) estimated

by Mix2 to the correct start distributions from which the data was sampled. For this purpose,

we calculated the average L1 distance between estimated and true distribution for the tran-

scripts within a gene weighted by the estimated relative abundance of the transcript. Fig 4(c)

and 4(d) visualize the difference between the L1 distance before (tall bars) and after estimation

of the fragment start distributions. The initial fragment start distribution in Mix2 is close to

uniform and independent of tying structure and read depth (Materials and methods). Fig 4(c)

shows that estimates of the fragment start distributions in Mix2 converge to the correct solu-

tion since the L1 distance for the 7 test genes decreases during the course of the parameter esti-

mation by between 50% and 65%. Mix2 with group tying and a read depth of 10000 fragments

achieves in many cases the smallest final L1 distance. In Fig 4(d) the relative decrease in L1 dis-

tance is considerably smaller for the Cufflinks bias as the initial fragment start distribution in

Mix2 is already close to the uniform Cufflinks distribution. Overall, the final L1 distance is sim-

ilar for all 4 biases.

Next, we compared the accuracy of Mix2, Cufflinks, RSEM, and eXpress on the full tran-

scriptome. We generated an exponential transcript expression profile from an exponential

Fig 4. Average L1 distance on artificial data between true and estimated abundances and fragment start distributions. (a)

Optimization of number of mixture components with regards to factors on x-axis (independent = no factors). Groups of 3 blocks give average

L1 distance between abundances for Mix2 without tying (none), with global and group tying. (b) Dependence of quantification accuracy on

number of mixture components and sample size. The three groups of four bars for each mixture number give L1 distance between

abundances for Mix2 without tying, with global and group tying. Four bars within each group correspond to 500, 1000, 5000 and 10000

fragments. (c) and (d) L1 distance of fragment start distributions for Mix2 on 7 test genes and 4 biases. Tall bars indicate L1 distance for initial

fragment start distributions of Mix2 before estimation of mixture weights βij. First four of remaining bars represent Mix2 without tying, second

and third group of four bars Mix2 with global and group tying. (e) and (f) Mean L1 distance between estimated and correct relative

abundances for Cufflinks, RSEM, eXpress and Mix2 for 4 biases on full transcriptome and total of 50 mio read pairs. Experiments include

results for Mix2 with initial fragment start distributions before estimation of mixture weights βij (Mix2 init). (f) boxplots of mean L1 distances in

(e) for all methods.

https://doi.org/10.1371/journal.pcbi.1005515.g004
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gene expression profile by FluxSimulator [17], as shown in Fig F and Fig G in S2 Appendix,

and divided the gene reads between the gene transcripts according to relative abundances

drawn from a uniform Dirichlet distribution. In total we generated around 50 mio 100 bps

read pairs for each bias in Fig 2, which we aligned with Tophat2. Data of this kind correspond

to the positional bias models in Cufflinks [4] and RSEM which are derived by scaling a single

prototype distribution to the transcript length. Our experiments therefore show whether Mix2

can learn data structures hard-coded into the statistical models of Cufflinks and RSEM. Fig

4(e) shows that on 5’ and 5’+3’ bias RSEM slightly outperforms Mix2 with group tying, while

for 3’ bias Mix2 yields the best results. On Cufflinks bias all methods apart from eXpress per-

form similarly. Fig 4(e) further contains results for Mix2 with initial fragment start distribu-

tions before estimation of mixture weights βij (Mix2 init). This shows that adapting the

mixture weights improves relative abundance estimates. For Cufflinks bias this improvement

is minor since the initial fragment start distributions in Mix2 are already close to the correct

solution. The bad performance of eXpress is likely due to the fact that it models only sequence-

specific and not positional bias. Fig 4(f) shows that Mix2 without any tying and with group

tying perform consistently across biases and slightly better than RSEM with mean L1 distance

of 0.36 versus 0.39. For Mix2 without parameter tying this is remarkable, as its statistical model

is completely assumption free with regards to the nature of fragment bias. We also performed

experiments for a smaller read-depth of 5 mio read pairs. These experiments which are sum-

marized in Fig H in S2 Appendix show an increase of L1 distance for all methods but otherwise

a similar trend as the experiments with 50 mio read pairs.

Finally, we compared the accuracy of the Octave and C++ version of our code, since on

larger data sets we used, for efficiency reasons, the closed source C++ version. We found on

our 7 test genes that the median L1 distance between the relative abundances estimated by the

two versions was between 0.01 and 0.004 for 500 and 10k reads per gene. The boxplots for

these experiments can be found in Fig E in S2 Appendix. Due to the small difference, either

version of our code can be used to evaluate the accuracy of Mix2.

Experiments on the Microarray Quality Control (MAQC) data

This section compares the accuracy of Mix2, Cufflinks [4, 18], PennSeq [8], RSEM [7] and

eXpress [6] on two publicly available real RNA-Seq data sets generated from the Universal

Human Reference (UHR) RNA and human brain (HBR) RNA of the Microarray Quality Con-

trol (MAQC) data [10] (Materials and methods). Both Cufflinks and RSEM were run with bias

correction. In accordance with our experiments on artificial data we used three mixture com-

ponents for Mix2 with no tying and 4 mixture components for Mix2 with global and group

tying. We treat the qPCR measurements as a reference and compare them to the FPKM values

generated by the quantification methods. The qPCR concentrations in the MAQC data are

unevenly distributed spanning several orders of magnitude. It is therefore customary to com-

press the concentrations by taking the logarithm. This achieves a more even distribution but

leads, on the other hand, to outliers for FPKM values close to zero whose logarithm approaches

minus infinity. In order to reduce the influence of these outliers on the quality metrics for the

quantification methods it is necessary to either remove transcripts with small FPKM values or

to truncate the logarithm of their FPKM values. We chose the latter strategy since the former

ignores the fact that some quantification methods fail to detect highly abundant transcripts

and furthermore leads to test sets varying significantly in size reducing the comparability of

the quality metrics. In our experiments, the logarithm of an FPKM value was truncated if it

was below the first quartile minus 1.5 times the interquartile range of the logarithms of the

method’s FPKM values on the test set. This threshold, which was between 0.01 and 0.001 in
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our experiments, is the point below which values are often considered to be outliers in box-

plots. We use the logarithm to the basis of 10 in our experiments.

Accuracy of quantification estimates. In order to compare the accuracy of the quantifi-

cation estimates of the different methods we measure the correlation between qPCR and

FPKM values. In addition, we study the transcripts with truncated FPKM values. These tran-

scripts can be considered not detected by the quantification method and their number should

therefore ideally be small. We also calculate the average of the logarithms of their qPCR values.

This should ideally also be a small number as it is more acceptable to not detect transcripts

with low rather than high abundance.

Fig 5(a) shows that for typical lanes on UHR PennSeq, eXpress and Mix2 have a similar

number of not detected transcripts, i.e. 41, 48 and 53, while this number is considerably higher

for Cufflinks and RSEM, i.e. 119 and 150. The average number of the qPCR values of not

detected transcripts is similar for Cufflinks, PennSeq and RSEM, i.e. -1.98, -1.95 and -1.86 and

for eXpress and Mix2 with -2.31 and -2.56. Thus the latter two methods fail to detect only tran-

scripts with low abundance while the former three also fail to detect highly abundant ones.

The boxplots in Fig 5(b) show that in comparison to the artificial data Mix2 without tying

outperforms Mix2 with group and global tying. The R2 values of Mix2 are slightly higher than

for eXpress on UHR and HBR with medians 0.62 and 0.54 versus 0.58 and 0.51. It should be

noted, however, that on one of the 7 lanes of HBR eXpress produced an outlier yielding sub-

stantially worse correlation than on the other 6 lanes with an R2 value of 0.4. This outlier is

indicated by the circle in the boxplots for eXpress. Overall, the correlation between qPCR and

Fig 5. Correlation between qPCR and FPKM. (a) Typical lane on UHR for each of the 5 methods. The R2 value of each lane corresponds

to the median of the R2 values over all 7 lanes of the respective method. The straight line of points at the bottom of the graphs represents the

truncated FPKM values, whose corresponding transcripts can be considered not detected. The number of not detected transcripts and the

average logarithm of their qPCR values are also given in the graphs. (b) Boxplots of R2 value over all 7 lanes of UHR and HBR.

https://doi.org/10.1371/journal.pcbi.1005515.g005
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FPKM values suggests that Mix2 has a slight advantage over eXpress in terms of R2 value and

fails to detect slightly fewer transcripts which also have a lower abundance. Both eXpress and

Mix2 outperform the remaining 3 methods.

Repeatability of quantification estimates. This section discusses the repeatability of

quantification estimates for identical transcripts and samples on different lanes. Fig 6(a) shows

that for the 5 typical lane pairs of UHR Mix2 without tying has the highest R2 value of 0.94.

The number of transcripts which Mix2 does not detect in one of the lanes is slightly higher

with 37 than for PennSeq with 32, but the average qPCR value of these transcripts is

Fig 6. Repeatability of FPKM measurements for identical transcripts and samples in different lanes. (a) Typical lane pairs on UHR

for each of the 5 methods. The R2 value of each lane pair corresponds to the median of the R2 values over all 21 lane pairs of the respective

method. The straight lines of points at the bottom and the left side of the graphs represent transcripts detected in one lane but not the other.

The number of these transcripts and the average logarithm of their qPCR values are also given in the graphs. (b) Boxplots of R2 value over

all 21 lane pairs of UHR and HBR. (c) Variance based measure of repeatability. X-axis shows the average of the detrended log FPKM

values. Y-axis shows the median standard deviation for all transcripts within one bin. X-axis was divided into 100 bins.

https://doi.org/10.1371/journal.pcbi.1005515.g006
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considerably lower with -2.43 than -1.96 for PennSeq. The other 3 methods perform noticeably

worse than the Mix2 model.

Fig 6(b) shows that on the complete 21 lane pairs in both UHR and HBR the FPKM values

of Mix2 are consistently better correlated and their correlation is less variable than those of the

4 other quantification methods. On HBR, for instance, the median of the R2 value for Mix2 is

0.93, whereas PennSeq achieves 0.88. In addition to the R2 value, we also evaluated the repeat-

ability of quantification estimates in Fig 6(c) with the variance based measure from [19]. Since

we performed evaluation on the complete transcriptome we had to exclude PennSeq since it

failed to produce a result on the vast majority of the data. FPKM values where detrended such

that all methods had the same median of log FPKM values on the house keeping genes in [20].

The x-axis in Fig 6(c) represents the average concentration over all 7 lanes while the y-axis rep-

resents the median standard deviation. Fig 6(c) shows therefore that over the complete con-

centration range Mix2 without tying achieves the best repeatability on both UHR and HBR

followed by the variants with group and global tying. In contrast to the experiments in Fig 6(a)

and 6(b), the variance based measure rates the repeatability of eXpress worse than that of

RSEM and Cufflinks.

Accuracy of fold change estimates and the detection of differential expression. Fold

changes of concentration measures between different samples are used in the analysis of differ-

ential expression both for microarrays [21] and RNA-Seq [2]. A high correlation between the

qPCR and FPKM fold changes is therefore important to ensure accurate differential expression

calls. Technical variability added by low correlation, on the other hand, leads to a loss of power

of statistical tests for differential expression, such as [22] and [23]. This section analyses the

correlation of FPKM and qPCR fold changes between UHR and HBR. For the 5 typical lane

pairs of UHR and HBR in Fig 7(a) Cufflinks and RSEM produce a large number of high

FPKM fold changes for transcripts with a small qPCR fold change. As a result, the R2 value of

the correlation between FPKM and qPCR fold changes for Cufflinks and RSEM is smaller than

for the other methods. The boxplots in Fig 7(b) show that the Mix2 model yields consistently

higher correlation between FPKM and qPCR fold changes on all 49 lane pairs of UHR and

HBR.

In order to determine the influence of the correlation of FPKM and qPCR fold changes

between UHR and HBR on the detection of differential expression, a simple classification

experiment was performed, similar to an experiment in [9]. Transcripts with a qPCR fold

change above 2 were defined as differentially up-regulated while transcripts with a qPCR fold

change below 0.5 were defined as differentially down-regulated. The remaining transcripts

were defined as not differentially expressed. Subsequently all transcripts were classified accord-

ing to their FPKM fold change. If the FPKM fold change was above a certain threshold the

transcript was classified as up-regulated, whereas it was classified as down-regulated if its

FPKM fold change was below the inverse of the threshold. The threshold varied between 1.1

and the maximal FPKM fold change for the method. For each threshold the true and false posi-

tive rate, with respect to the qPCR based definitions, were recorded. FPKM fold change outli-

ers are acceptable in this experimental setup and were therefore not truncated as before. Fig

7(c) shows that the true positive rate in the classification experiments for the 5 lane pairs in Fig

7(a) is consistently higher for Mix2 than for the other methods. For false positive rates of 5%,

10% and 15% this difference is particularly strong as indicated by the vertical lines in Fig 7(c).

Unlike the other methods, the ROC curve of RSEM does not reach the origin of Fig 7(c),

which is due to the large number of transcripts having a small qPCR and an infinite FPKM

fold change. The boxplots in Fig 7(d) show that Mix2 produces considerably higher true posi-

tive rates for false positive rates of 5%, 10% and 15% than the other 4 methods on the complete

49 lane pairs from UHR and HBR. For the false positive rate of 5%, for instance, the median of
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the true positive rates for Mix2 and PennSeq is 51% and 29%, respectively. For RSEM, in con-

trast, there is no lane pair for which the ROC curve obtains a false positive rate of 5%.

Resource usage. We performed experiments to determine the CPU usage and memory

footprint of Mix2 and the other methods. PennSeq was excluded from these experiments

because its unreliable implementation in PERL can only be regarded as a proof-of-concept.

We ran Mix2, eXpress, RSEM and Cufflinks in single-core mode on the complete 7 lanes of

UHR and HBR in parallel on an Intel Xeon E5620 with 2.4GHz and 8 physical cores. Only two

instances of eXpress were run at the same time as eXpress uses a minimum of 3 threads. From

these runs we derived the CPU usage for each lane as well as the maximal memory usage. The

average numbers over all 7 lanes are collected in seconds and gigabytes in Table 1. This shows

that Mix2 without tying is slightly faster than RSEM and both are considerably faster than

eXpress and Cufflinks. In comparison to Cufflinks, Mix2 without tying is faster by a factor of

70 and 87 on UHR and HBR, respectively. In comparison to eXpress it is faster by a factor of

16 and 13. In terms of memory usage all methods are within reasonable bounds. RSEM uses

the smallest amount, followed by Cufflinks and Mix2 which have roughly the same memory

footprint, eXpress, on the other hand, uses about 4 times more memory than Mix2.

Types of bias in the MAQC data. Mix2 simultaneously estimates relative abundances and

transcript specific fragment distributions and can therefore be used to detect biases present in

RNA-Seq data. Fig 3(a) to 3(f) visualize 6 bias types for a subset of transcripts in one lane of

UHR, which were obtained by clustering the fragment start distributions learned by the Mix2

model. For this purpose the fragment start distributions of the 798 genes of the MAQC test set

from one lane of UHR were selected, which were assigned a read count by Mix2 of at least 100.

The minimum read count was set at 100 in order to avoid fragment start distributions which

Fig 7. Correlation of qPCR and FPKM fold changes between UHR and HBR and accuracy of differential expression detection. (a)

Typical lane pairs for each of the 5 methods. The R2 value of each lane pair corresponds to the median of the R2 values over all 49 lane pairs

of the respective method. FPKM fold changes were truncated if they were larger or smaller than the maximal or minimal qPCR fold change.

The straight lines of points at the top and bottom of the graphs represent truncated FPKM fold changes. (b) Boxplots of R2 value over all lane

pairs in UHR and HBR. (c) ROC curves for classification experiment regarding differentially expressed transcripts in the lane pairs in (a). The

vertical lines correspond to false positive rates of 5%, 10% and 15%. (d) Boxplots of true positive rates of classification experiment on all 49

lane pairs in UHR and HBR for false positive rates of 5%, 10% and 15%.

https://doi.org/10.1371/journal.pcbi.1005515.g007

Mixture models yield accurate transcript concentration estimates from RNA-Seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005515 May 15, 2017 14 / 25

https://doi.org/10.1371/journal.pcbi.1005515.g007
https://doi.org/10.1371/journal.pcbi.1005515


might be inaccurate due to a small amount of data. The 858 fragment start distributions,

which satisfied these requirements were then length normalized and hierarchically clustered

with UPGMA [24] using the L1 distance. The resulting tree was traversed from top to bottom

and nodes were retained which had at least 5% or 43 of the 858 fragment start distributions. If

a node was reduced in size at the next level of the tree without changing the overall shape of

the distributions, the top node was chosen. This process resulted in the 6 clusters of fragment

start distributions shown on the left side of Fig 3(a) to 3(f). Fig 3(g), on the other hand, shows

the fragment start distribution for the complete unclustered data. The median in Fig 3(g) gives

the false impression that the fragment start distributions can be modelled by a uniform distri-

bution. Instead, the distributions separate into a class with 5’ bias, Fig 3(a) to 3(c), a class with

3’ bias, Fig 3(d) and 3(e), and a uniform class, Fig 3(f). The classes with 5’ or 3’ bias contain

46.50% of the complete fragment start distributions, while the uniform class contains only

26.92%. Overall, 73.43% of the distributions are contained in one of the classes in Fig 3(a) to

3(f). The remaining 26.57% of the distributions belong to classes each containing less than 5%

of the distributions. Thus, biased fragment distributions represent the majority of the data.

There exists, furthermore, no single bias type but multiple biases are observed.

Experiments on the Sequencing Quality Control (SEQC) data

In order to evaluate the quantification methods on more recent data than MAQC, we also per-

formed experiments on the SEQC data set [25]. The latter contains 100 bps paired-end RNA-

Seq reads generated with Illumina HiSeq 2000 at 6 laboratory sites and from four different

RNA samples. Samples A and B correspond to UHR and HBR from the MAQC data set. Sam-

ple C and D were created by mixing A and B in 3:1 and 1:3 ratios, respectively. This allows

tests for titration order consistency and the correct recovery of mixing ratios. These tests are

independent of a “gold standard” such as qPCR which is biased by its own technical limita-

tions. In this section, therefore, we evaluate the accuracy of quantification with respect to the

built-in ground truths of SEQC rather than with respect to qPCR measurements. For this pur-

pose, we downloaded RNA-Seq data for samples A to D for laboratory site BGI. To study

repeatability across sites we further downloaded RNA-Seq data for sample A and sites AGR,

CNL and COH. We compare the three variants of Mix2 with Cufflinks, RSEM and eXpress.

PennSeq had to be excluded as it failed to produce any output on the SEQC data. As before, we

used GRCh37/hg19 and Ensembl annotation version 75 in our experiments and 3 mixture

Table 1. Run-time and maximal memory usage on UHR and HBR.

Mix2 Mix2 global Mix2 group eXpress RSEM Cufflinks

Run time

mean UHR 407.39 427.01 461.21 7438.57 425.90 32522.00

std UHR 20.40 19.99 22.67 164.54 24.03 265.32

mean HBR 320.33 352.51 364.00 5032.15 367.28 32186.43

std HBR 24.19 28.48 26.75 413.70 20.52 378.58

Memory usage

mean UHR 1.25 1.26 1.28 5.07 0.84 1.32

std UHR 0.05 0.05 0.05 0.00 0.03 0.02

mean HBR 1.02 1.02 1.04 5.07 0.79 1.22

std HBR 0.08 0.08 0.08 0.00 0.01 0.02

Time and memory usage are given in seconds and gigabytes, respectively. Values are averages over the 7 lanes in UHR and HBR.

https://doi.org/10.1371/journal.pcbi.1005515.t001
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components for Mix2 without tying and 4 mixture components for Mix2 with global and

group tying.

Accuracy of quantification estimates. Since we were not interested in inter-lane effects

in this section, we pooled the data from all lanes in one flow-cell for each sample A to D for the

BGI site. This resulted in 43 mio to 55 mio read pairs per sample. The reads were then mapped

against the genome using tophat2 and against the transcriptome using bowtie2. Subsequently,

we ran Cufflinks, RSEM, eXpress and Mix2 to obtain quantification estimates for samples A to

D. As described in [25] we used the quantification estimates for each transcript in samples A

and B together with the known mixing ratios to predict the ratio between transcript abun-

dances in C and D. This predicted ratio was then compared to the ratio of the quantification

estimates in samples C and D. A high similarity between prediction and measurement is desir-

able as it shows a method to correctly reflect the relative changes across different samples. In

this respect, the experiments in this section answer a similar question as our experiments

regarding FPKM and qPCR fold changes on the MAQC data.

Fig 8(a) shows on the x-axis the relative error of the predicted versus the measured C/D

ratio. The y-axis of Fig 8 represents the percentage of transcripts with a relative error smaller

than the value on the x-axis. Fig 8 shows therefore that for any given value on the x-axis the

number of transcripts having a smaller relative error is higher for Mix2 than for the other

methods. As before on MAQC, Mix2 without tying yields the best results followed by group

and global tying.

Similar to the C/D ratio the titration order of all samples can be inferred from the titration

order of A and B and the known mixing ratios. In particular, if quantification for a transcript

yields A> B, then one should have A> C> D> B for this transcript, with reversed order if

B> A. Fig 8(b) shows the number of transcripts with correct titration order. Again, Mix2 with-

out tying yields the best results with about 47% of transcripts having a correct titration order

in comparison to around 42% for Cufflinks and RSEM and 33% for eXpress.

Fig 8. Evaluation on built-in ground truths of SEQC data set. (a) Relative error of predicted C/D ratio vs. measured C/D ratio. Y-axis

shows the percentage of transcripts having a relative error less than value on x-axis. (b) Titration order consistency. Y-axis shows the

percentage of transcripts with correct titration order.

https://doi.org/10.1371/journal.pcbi.1005515.g008
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Repeatability of quantification estimates. In the experiments in this section we evaluated

repeatability across sites on sample A. As before, we used data from a single flow-cell. In con-

trast to the previous section, we performed quantification on individual lanes to capture lane-

specific variations in repeatability. Lanes contained between 6 mio and 13 mio read pairs. We

measured repeatability both with the R2 value and the variance based measure in [19]. To cal-

culate the R2 value we truncated small FPKM values, as before, to a lane specific threshold.

However, for Cufflinks we used the median of the thresholds for MAQC since Cufflinks pro-

duced large numbers of extremely small FPKM values resulting in a large negative threshold

on the log scale. As a consequence, R2 values for Cufflinks were unusually small.

Fig 9(a) shows boxplots of the R2 values for comparisons between lanes from two sites.

Here, all lanes from a single flow-cell are considered and site AGR is compared to sites BGI,

CNL and COH. Not surprisingly, the R2 values are smaller for comparisons across sites than

for the comparisons across lanes in the MAQC experiments in Fig 6. This is also reflected by

the small variance of the boxplots in Fig 9(a). The boxplots for the remaining site comparisons

can be found in Fig I in S2 Appendix and give a similar picture. Whereas Fig 9(a) is a pairwise

comparison, Fig 9(b) shows the standard deviation over all lanes and sites versus the detrended

log signal as defined in [19]. In the region where these curves can be estimated reliably, Mix2

without tying has the smallest standard deviation. This is consistent with the pairwise analysis

in Fig 9(a) and Fig I in S2 Appendix.

Types of bias in the SEQC data. We further studied biases in the SEQC data by clustering

the distribution of fragment start sites estimated by Mix2 with group tying and 3 mixture

Fig 9. Repeatability across sites. (a) Boxplots of R2 values between lanes from two sites. All lanes from a single flow-cell are considered.

Comparison between site AGR and sites BGI, CNL and COH. (b) Variance based measure of repeatability across all 4 sites and all lanes.

Curves show the median standard deviation (y-axis) for transcripts with average detrended log signal (x-axis).

https://doi.org/10.1371/journal.pcbi.1005515.g009
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components. To obtain reliable estimates we pooled all lanes in a single flow-cell. In contrast

to our experiments on the MAQC data, we used all the transcripts in the annotation. We only

required that transcripts were between 200 bps and 20k bps in length and had a minimum of

100 fragments according to Mix2. This resulted in sets of between 38k and 54k transcripts. We

used hierarchical pairwise average linkage clustering as implemented in [26] in conjunction

with the L1 distance. Prior to clustering, distributions were length normalized and scaled such

that their maximal value equaled one. The latter helps to decrease the L1 distance between visu-

ally similar distributions. Without scaling the algorithm produced a single cluster containing

almost the entire data. Fig 10 shows the two most dominant bias types for the four evaluated

sites on sample A. These bias types and their associated transcript length histograms are simi-

lar for all sites. One of the clusters consists of distributions concentrated around the middle of

comparatively short transcripts while the other cluster contains slightly 3’ biased distributions

Fig 10. The two most prominent biases in sample A with corresponding transcript length histograms at site AGR (a) and (b), BGI

(c) and (d), CNL (e) and (f) and at site COH (g) and (h). The histograms also show the site dependent percentage of transcripts contained

in each cluster.

https://doi.org/10.1371/journal.pcbi.1005515.g010
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for comparatively long transcripts. Also the remaining clusters are similar for all sites as can be

seen from Fig J to Fig P in S2 Appendix. Biases are also similar across samples as can be seen

for Fig M to Fig P in S2 Appendix which show clusters for samples A to D of BGI. While hav-

ing very similar shapes and histograms, clusters sometimes appear to differ in their occupancy,

as can be seen from the percentage of their distributions shown in Fig 10. However, these dif-

ferences might be due to the clustering algorithm exaggerating small changes in the input data.

Overall, the experiments in this section show strong similarities between biases at different

sites and for different samples, which would be expected from applying the standard protocol

of a library preparation.

Discussion

This article introduced Mix2 which uses a mixture of probability distributions to model tran-

script specific positional fragment distributions in RNA-Seq data. Due to the flexibility of mix-

ture models, Mix2 can adapt to multiple positional fragment biases of arbitrary complexity.

The parameters of Mix2 are efficiently trained with the EM algorithm resulting in simulta-

neous estimates for fragment distributions and relative abundances. In addition, parameters of

Mix2 can be tied between transcripts with similar fragment distribution leading to improved

estimates of the relative abundances. Even though Mix2 accommodates a sequence specific

bias, we currently implement only a model for positional bias. Sequence specific bias can, how-

ever, be a prominent feature in RNA-Seq data. In [11], for instance, it was found that a linear

model on the sequences of 3 RNA-Seq data sets accounted for between 40% and 50% of the

variance in sequence frequencies. Implementing a model for the sequence specific bias to Mix2

might therefore result in further improvements in the accuracy of transcript quantification.

Experiments were conducted on artificial data to determine the optimal number of mixture

components of Mix2. These experiments showed that optimization can be performed indepen-

dent of gene, bias and sample size and that the optimal number of mixture components is 3 for

Mix2 without tying and any number between 4 and 10 for Mix2 with tying. These numbers are

fairly small given the biases in Fig 2. In particular, it seems implausible that Mix2 with only 3

mixture components should be able to accurately model the 5’+3’ bias in Fig 2(d). This sug-

gests that the potential of Mix2 has yet to be fully exploited. Our experiments, further, showed

that the estimate of Mix2 for the transcript specific fragment bias converges to the correct dis-

tribution and that these estimates can therefore be used to detect positional bias present in

RNA-Seq data.

Experiments were also performed on RNA-Seq data generated from Universal Human Ref-

erence (UHR) RNA and Human Brain (HBR) RNA for the Microarray and Sequencing Qual-

ity Control (MAQC, SEQC) data sets. On MAQC, we obtained improved correlation between

qPCR measurements and quantification estimates with Mix2, while on the SEQC data set,

Mix2 produced improved titration order consistency and recovery of mixing ratios. In addi-

tion, correlation and standard deviation of Mix2 quantification estimates were superior across

lanes in MAQC and across laboratory sites in SEQC, implying reduced sensitivity to technical

variance. Furthermore, correlation of qPCR and FPKM fold changes between UHR and HBR

on MAQC were noticeably higher for the Mix2 model than for the other methods. We showed

in a classification experiment that this leads to higher accuracy in the detection of differential

expression. In general, quantification accuracy affects sensitivity and specificity of statistical

tests for differential expression. Inconsistent quantification estimates, for instance, increase

technical variability and lead to an increase in the variance of the data models underlying sta-

tistical tests. This, in turn, leads to a decrease of the chi-square distributed test statistic of the

Wald test in DSS [27], DESeq2 [23], edgeR [22] and the score test in PoissonSeq [28] resulting

Mixture models yield accurate transcript concentration estimates from RNA-Seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005515 May 15, 2017 19 / 25

https://doi.org/10.1371/journal.pcbi.1005515


in a loss of sensitivity. The same holds for the Wilcoxon test in SamSeq [32] where the test sta-

tistic moves closer to the mean of the test distribution under the 0-hypothesis. Likewise, condi-

tional model probabilities in baySeq [29] and conditional probabilities in the exact tests of

DESeq [30] and edgeR [31] become more uniform and therefore less distinctive between dif-

ferent conditions. The noise distributions in NOISeq [33, 34] and DEGSeq [36] become wider

with increasing technical variability and fold change thresholds for the detection of differential

expression increase, again reducing the sensitivity of these methods. For DEXUS [35] the vari-

ance of the major and minor conditions increases resulting in greater overlap. Since the prior

of the model probabilities favors a single condition this makes it less likely that minor condi-

tions and therefore differential expression will be detected. Overall, the aforementioned statis-

tical tests benefit both in terms of sensitivity and selectivity from more accurate quantification

estimates and we expect therefore to see improved differential expression calls for transcripts

when using these tests in conjunction with Mix2.

In terms of resource usage, both RSEM and Mix2 take about the same time to process the 7

lanes of UHR and HBR in MAQC and are both faster than eXpress and Cufflinks. Memory

usage of RSEM is slightly smaller than that of Mix2 and Cufflinks but memory consumption of

all 4 methods is low given the specifications of current computing environments. In contrast

to the experiments on artificial data, experiments on MAQC and SEQC showed a degradation

in the performance of Mix2 when tying parameters. This cannot be attributed to a suboptimal

choice of parameters in the transcript clustering procedure. Instead, it seems that positional

fragment bias does not exclusively depend on gene membership and transcript length. This

fact was also highlighted in our experiments on bias types in MAQC and SEQC. In these

experiments we found dominant bias types by clustering fragment start distributions estimated

by Mix2. On MAQC we obtained 6 clusters, containing 73.43% of the distributions, of which 5

clusters exhibited non-uniform distributions. The cluster with uniform distributions con-

tained only 26.92%. On SEQC we also see the majority of distributions located in non-uniform

clusters. In addition, clusters are similar across laboratory sites. Contrary to our experiments

on artitifical data there is no obvious relationship between bias and transcript length, although

correlations between the two do exist. For instance, transcripts whose fragment start distribu-

tions are 3’ biased or uniform tend to be longer, whereas 5’ biased transcripts tend to be

shorter. A more detailed analysis of biases might reveal relations between positional bias and

RNA sequences that will lead to a better tying strategy for the Mix2 model on real RNA-Seq

data.

In summary, Mix2 can be used as an explorative tool to investigate the positional biases

present in RNA-Seq data and thereby study the influence of library preparation, sequencing

and data processing on the accuracy of transcript concentration estimates. In addition, and

more importantly, our results show that Mix2 yields improved transcript concentration esti-

mates for RNA-Seq data with higher repeatability for technical replicates and leads, further-

more, to improved accuracy in the detection of differential expression.

Materials and methods

Mixture components

We factorize p(r|t = i) as follows,

pðrjt ¼ iÞ ¼ pðlðrÞjt ¼ i; sðrÞÞ
X

j

bijpðsðrÞjt ¼ i; b ¼ jÞ ð4Þ

where s(r) and l(r) are the start and length of fragment r and p(s(r)|t = i, b = j) are Gaussians

whose means μij are placed equidistantly along the transcript. If one disregards the dependency
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on s(r) and t = i it is possible, similarly to Cufflinks, to estimate p(l(r)) from the data. For

paired-end data, however, we always set p(l(r)) to a Gaussian with mean 200 and standard

deviation 80, which is the default fragment length distribution for Cufflinks. The component

weights βij are associated with equidistant positions within the transcript t = i and represent

therefore the overall shape of p(r|t = i). In transcript coordinates the means μij of the Gaussians

are given by

mij ¼ j �
lðt ¼ iÞ

M
�

lðt ¼ iÞ
ð2MÞ

ð5Þ

and their standard deviations are, independent of j, set to

sij ¼
lðt ¼ iÞ
ð2MÞ

: ð6Þ

where l(t = i) is the length of transcript t = i and M is the number of mixture components. The

Gaussians are, furthermore, normalized such that their sum over the possible fragment starts

s = 1, . . ., l(t) equals one.

Parameter estimation

The relative abundances αi in Mix2 can be updated with the EM algorithm in the usual man-

ner, as implemented, for instance, in Cufflinks [2]. This update formula is given in Section 1.1

in S1 Appendix. For the transcripts in group g = k the βij = βkj can be updated with the EM

algorithm as follows

b
ðnþ1Þ

kj ¼

P
r pðnÞ g ¼ k; b ¼ jjrð Þ
P

r pðnÞ g ¼ kjrð Þ
ð7Þ

where

pðnÞðg ¼ kjrÞ ¼
X

i2k

pðnÞðt ¼ ijrÞ ð8Þ

and

pðnÞðg ¼ k; b ¼ jjrÞ ¼
X

i2k

pðnÞðt ¼ i; b ¼ jjrÞ ð9Þ

and the sums in Eqs (8) and (9) are extended over the transcripts t = i in group g = k. Here

b
ðnþ1Þ

kj and p(n)(�) are the mixture components and posterior probabilities after the n+1-th and

after the n-th iteration, respectively. To calculate p(0)(�) it is necessary to initialize the model

parameters, which we do as follows

a
ð0Þ

i ¼
1

N
; b
ð0Þ

kj ¼
1

M
: ð10Þ

where N is the number of isoforms in the gene locus and M is, again, the number of mixture

components. Hence, our initial distributions p(0)(r|t = i) are close to uniform. EM iterations

are repeated until changes in the model parameters or the overall likelihood of the model fall

below a predefined threshold.
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Group tying

We initially place the transcripts of a gene into groups according to their length where the 7

transcript length boundaries are equidistantly distributed on the log scale between 300 and

5000. Subsequently, groups are merged until each group has at least 20 valid reads and there is

at most one group containing a single transcript. Groups are merged according to their dis-

tance, which is calculated as follows

jmeanðg ¼ k1Þ � meanðg ¼ k2Þj

100 � min ðmeanðk1Þ;meanðk2ÞÞ
ð11Þ

where mean(g = k) is the average length of transcripts in group g = k. The two closest groups

are merged first.

The artificial data set

For each of the 7 genes, 200 sets of abundances (α1, . . ., αN) were sampled uniformly, accord-

ing to the Dirichlet distribution. Subsequently, for each of the 200 sets of abundances 500,

1000, 5000 and 10000 fragments were sampled from the superposition Eq (1), where the

p(r|t = i) belong to one of the 4 bias models in Fig 2. These biases are referred to as Cufflinks

bias (a), 5’ bias (b), 3’ bias (c) and 5’+3’ bias (d). The Cufflinks bias is the fragment start distri-

bution of the Cufflinks model for a fragment length distribution with mean 200 bp and stan-

dard deviation 80 bp. The other biases in Fig 2 are derived by scaling an initial 5’, 3’ or 5’+3’

biased distribution to the length of the transcript. Subsequently, the scaled distribution is mul-

tiplied by the Cufflinks bias for the transcript length and renormalized. This explains why the

5’ tails of the biases in Fig 2 become increasingly heavy for shorter transcripts. Section 2 in S1

Appendix contains a brief discussion of how the Cufflinks bias is derived from the Cufflinks

model and Fig A to Fig D in S2 Appendix show examples for the coverage resulting from sam-

pling the biases in Fig 2. The fragment lengths l(r) were sampled from a Gaussian with mean

200 bp and standard deviation 80 bp and the resulting fragments were then converted into 50

bp paired-end reads and written to a SAM file [37]. Thus, 800 data sets were generated per

gene and sample size or, equivalently, 1400 data sets per bias model and sample size resulting

in a total of 22400 data sets. On each of these data sets Mix2 was run without tying as well as

with group and global tying, where the number of mixture components ranged from 2 to 20.

Hence a total of 537600 experiments were performed with Mix2 on these artificial data.

For the experiments on the complete transcriptome we used only genes with multiple tran-

scripts since the estimated and true relative abundance on genes with a single transcript is

always one and their L1 distance is therefore zero. Hence, accumulating the L1 distance of

genes with a single transcript artificially decreases the average L1 distance.

The MAQC data set

The RNA samples were sequenced on an Illumina GenomeAnalyzer resulting in 7 lanes per

sample of 35 bp single-end reads [9]. The RNA-Seq data of the MAQC data set were down-

loaded from the NCBI read archive under accession number SRA010153, while the associated

qPCR values were downloaded from the Gene Expression Omnibus (GEO) under accession

number GSE5350. The reads of all 14 lanes were aligned to GRCh37/hg19 and Ensembl ver-

sion 75 with Tophat2 [18]. Rather than the RefSeq annotation, Ensembl version 75 was used in

the experiments, since the Ensembl annotation contains in many cases more transcripts per

gene than RefSeq and therefore yields a more challenging and also larger test set. Since the

MAQC data set records the association between qPCR probes and RefSeq annotations it was
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necessary to select only those qPCR probes mapping to a single RefSeq annotation, which, in

turn, has a unique Ensembl equivalent. This resulted in a test set containing 798 transcripts

with on average 8.6 transcripts per gene. It should be noted that the implementation of Penn-

Seq in PERL has to be considered a proof-of-concept and as such fails to produce an output

for around 10% of the test set.

Since the RNA-Seq data from MAQC are single-end the fragment length l(r) is unknown

and was summed out of Eq (4). This sets the first term of the right-hand side of Eq (4) to 1. As

the fragment start the down-stream end of each read was selected.

The SEQC data set

We downloaded the SEQC data from the NCBI read archive under accession number

GSE47792. On the BGI data we studied the ratio between the concentration of a single tran-

script for samples C and D and compared this to the expected ratio based on the concentration

calculated for samples A and B. The latter is given as follows

C
D
¼

k1Aþ 1 � k1ð ÞB
k2Aþ 1 � k2ð ÞB

ð12Þ

where k1 = 3z/(3z + 1) and k2 = z/(z + 3) and, according to [25], z = 1.43. We evaluate on tran-

scripts for which both sides of Eq (12) are well-defined for all methods. This gives us a test set

of 76514 transcripts.

Supporting information

S1 Appendix. Further properties of Mix2.

(PDF)

S2 Appendix. Additional Tables and Figures. The tables in this appendix contain all the

results from the experiments on the MAQC data.

(PDF)
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34. Tarazona S, Furió-Tarı́ P, TurràD, Pietro AD, Nueda MJ, Ferrer A, et al. Data quality aware analysis of

differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Research. 2015; 43

(21):e140. https://doi.org/10.1093/nar/gkv711 PMID: 26184878

35. Klambauer G, Unterthiner T, Hochreiter S. DEXUS: identifying differential expression in RNA-Seq stud-

ies with unknown conditions. Nucleic Acids Research. 2013; 41(21):e198. https://doi.org/10.1093/nar/

gkt834 PMID: 24049071

36. Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially

expressed genes from RNA-seq data. Bioinformatics. 2010; 26(1):136–138. https://doi.org/10.1093/

bioinformatics/btp612 PMID: 19855105

37. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format

and SAMtools. Bioinformatics. 2009; 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

PMID: 19505943

Mixture models yield accurate transcript concentration estimates from RNA-Seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005515 May 15, 2017 25 / 25

https://doi.org/10.1073/pnas.091062498
https://doi.org/10.1073/pnas.091062498
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pubmed/19910308
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1038/nbt.2957
http://www.ncbi.nlm.nih.gov/pubmed/25150838
https://doi.org/10.1093/bioinformatics/bth078
http://www.ncbi.nlm.nih.gov/pubmed/14871861
https://doi.org/10.1093/biostatistics/kxs033
http://www.ncbi.nlm.nih.gov/pubmed/23001152
https://doi.org/10.1093/biostatistics/kxr031
https://doi.org/10.1093/biostatistics/kxr031
http://www.ncbi.nlm.nih.gov/pubmed/22003245
https://doi.org/10.1186/1471-2105-11-422
http://www.ncbi.nlm.nih.gov/pubmed/20698981
https://doi.org/10.1186/gb-2010-11-10-r106
http://www.ncbi.nlm.nih.gov/pubmed/20979621
https://doi.org/10.1093/bioinformatics/btm453
http://www.ncbi.nlm.nih.gov/pubmed/17881408
https://doi.org/10.1177/0962280211428386
https://doi.org/10.1177/0962280211428386
http://www.ncbi.nlm.nih.gov/pubmed/22127579
https://doi.org/10.1101/gr.124321.111
http://www.ncbi.nlm.nih.gov/pubmed/21903743
https://doi.org/10.1093/nar/gkv711
http://www.ncbi.nlm.nih.gov/pubmed/26184878
https://doi.org/10.1093/nar/gkt834
https://doi.org/10.1093/nar/gkt834
http://www.ncbi.nlm.nih.gov/pubmed/24049071
https://doi.org/10.1093/bioinformatics/btp612
https://doi.org/10.1093/bioinformatics/btp612
http://www.ncbi.nlm.nih.gov/pubmed/19855105
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1371/journal.pcbi.1005515

